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Abstract: Aluminum bronze is a complex group of copper-based alloys that may include up to
14% aluminum, but lower amounts of nickel and iron are also added, as they differently affect
alloy characteristics such as strength, ductility, and corrosion resistance. The phase transformations
of nickel aluminum–bronze alloys have been the subject of many studies due to the formations
of intermetallics promoted by slow cooling. In the present investigation, quaternary systems of
aluminum bronze alloys, specifically Cu–10wt%Al–5wt%Ni–5wt%Fe (hypoeutectoid bronze) and
Cu–14wt%Al–5wt%Ni–5wi%Fe (hypereutectoid bronze), were directionally solidified upward under
transient heat flow conditions. The experimental parameters measured included solidification thermal
parameters such as the tip growth rate (VL) and cooling rate (TR), optical microscopy, scanning
electron microscopy (SEM) analysis, hardness, and microhardness. We observed that the hardness
and microhardness values vary according to the thermal parameters and solidification. We also
observed that the Cu–14wt%Al–5wt%Ni–5wi%Fe alloy presented higher hardness values and a more
refined structure than the Cu–10wt%Al–5wt%Ni–5wt%Fe alloy. SEM analysis proved the presence of
specific intermetallics for each alloy.

Keywords: solidification thermal parameters; Cu-Al-Ni-Fe bronze alloys; hardness; microhardness;
specific intermetallics

1. Introduction

Cast copper alloys are used in applications that require metals with superior corrosion resistance,
high electrical and thermal conductivity, good surface quality for bearings, and other special properties.
Among the full range of copper alloys, aluminum bronzes are the best available material for fulfilling
these requirements [1,2]. Aluminum bronzes are copper-based alloys that may include up to 14%
aluminum, but lower amount of nickel and iron are also added to produce different alloy strength,
ductility, and corrosion resistance [3–6]. In the maritime field, nickel aluminum–bronze alloys are
known as “propeller bronze”, representing their application in the manufacturing of propellers of
ships and submarines [7].
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In the Cu-Al-Ni-Fe alloys, the aluminum component is the main alloying element, with a content
normally varying between 8% and 13%. Greater contents are used for obtaining high hardness and
reduce the ductility of the alloy. However, high levels of aluminum provide the appearance of γ2 phase,
which is detrimental to its mechanical resistance and corrosion. Some elements such as Ni and Fe
combine with Al to form complex phases called к, avoiding the emergence of the γ2. Nickel is added in
amounts ranging from 1% to 7% and its presence improves corrosion resistance, increases mechanical
strength, and contributes to increased erosion resistance in environments with high water flow velocity.
Iron is present in nickel aluminum–bronze to refine the structure and increase the toughness. The
low solubility of iron at low temperatures in these alloys is the main reason for the appearance of
precipitates rich in iron, which can be combined to produce the required mechanical properties [6].

The phase transformations of aluminum–bronze have been the subject of many studies due to
the formations of intermetallics promoted by slow cooling [4,8–11]. The phase diagram of the Cu-Al
system shows the different microstructures that arise in the cooling of the investigated alloys (Figure 1).
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The β phase is a solid solution phase at high temperatures in nickel aluminum–bronze and
presents disordered BCC (body-centered cubic) crystalline structure. The β phase is present mainly at
high temperatures and is considered the first solid generated in the transformation of the liquid state
to the solid state; later, part of the β phase becomes the α phase [7]. The α phase represents a solid
equilibrium solution or matrix with a FCC (face-centered cubic) crystalline structure. The α phase is
formed from the β phase around 1030 ◦C and exhibits a Widmastätten structure [6,9,13]. In addition to
the α phase, the aluminum–bronze alloy also exhibits a β phase that originates from three main types
of intermetallics present in these alloys, labeled к, which is formed via slow cooling: Kappa II (кII),
Kappa III (кIII), and Kappa IV (кIV), shown in Figure 2 [4,6–11,13].

We aimed to study the microstructure resulting from Cu-10wt%Al-5wt%Ni-5wt%Fe (hypoeutectoid
bronze, cited as Cu10Al alloy) and Cu-14wt%Al-5wt%Ni-5wi%Fe (hypereutectoid bronze, cited as
Cu14Al alloy) alloys after undergoing a directional solidification process. Directional solidification
allows different microstructures to be obtained in the length of the molten ingot, influencing the
alloy properties. The effects of the manufacturing processes on the microstructure and properties
of engineering materials have been highlighted in various studies [14–20]. Thermal parameters
of solidification, as tip growth rate (VL) and cooling rate (TR), were correlated with hardness and
microhardness values for both alloys studied. Optical microscopy and scanning electron microcopy
(SEM) images were obtained from various positions in the ingot for both alloys.
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Figure 2. Distribution of the different phases and intermetallic components of the nickel aluminum–bronze
cooled slowly: (a) optical microscopy [4] and (b) schematic representation [8].

2. Materials and Methods

The directional solidification apparatus has a cylindrical shape (Figure 3), covered with refractory
bricks and externally coated with steel plate. The heat required to keep the liquid metal heated before
the cooling process was created by electrical resistors controlled with an external control panel. Two
support tubes supported the ingot, the outer one being composed of SAE 1020 steel, and the internal
tube was stainless steel AISI 304. Refractory cement was placed between these two tubes to increase the
insulation of the internal space of the furnace. A tube inside the two support tubes directed the water
jet into a plate responsible for the removal of heat from the molten metal. This plate was composed
of SAE 1020 steel and was 5 mm thick. The upper surface of the sheet, which remained in contact
with the liquid metal, was sanded with 1200 mesh sandpaper. The ingot mold was composed of
stainless steel AISI 304, with a height of 160 mm and internal and external diameters of 60 and 76 mm,
respectively. For the acquisition of temperature data, type K thermocouples were used, with distances
of 4, 8, 12, 16, 35, 53, and 73 mm relative to the position of the upper surface of the heat exchange
plate. These thermocouples were connected to National Instruments NI 9212 (National Instruments,
Debrecen, Hungary) and NI cDAQ 9171 data acquisition devices (National Instruments, Debrecen,
Hungary), responsible for sending the collected data to a computer via a USB cable. The temperature
data obtained by the thermocouples were provided at the frequency of one per second.Materials 2019, 12, x FOR PEER REVIEW 4 of 10 
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The alloys were cast in a Fortelab muffle-type electric furnace (Fortelab, São Carlos, SP, Brazil)
in a Salamander SIC AS2 graphite crucible. The chemical composition of the alloys was analyzed
using X-ray spectrometry (XRS) using a Panalitycal Magix Fast Spectrometer (Panalitycal, Almelo,
The Netherlands) (Table 1). The alloys were heated to temperatures above their liquid temperature.
After this, the crucible was removed from the furnace and the liquid metal was poured into the ingot
mold in the unidirectional solidification furnace. Cooling of the liquid metal inside the ingot started
when the water jet was connected at a flow rate of 18 L/min.

Table 1. Chemical composition of ingots in weight%.

Alloy Al Ni Fe Others Cu

Cu–10wt%Al–5wt%Ni–5wt%Fe 10.79 4.42 3.67 0.051 Remaining

Cu–14wt%Al–5wt%Ni-5wt%Fe 14.23 5.44 5.39 0.340 Remaining

The tip growth rate (VL) was calculated by deriving the function P = f(t). This function is the
relationship between the position of the thermocouple (P) and the time interval between the start of the
alloy cooling and the time at which the liquidus temperature (TL) is observed in each thermocouple.
With this, VL corresponds to the velocity of the solidification front passage in each thermocouple. The
cooling rate (TR) values for each position on the thermocouple were obtained experimentally from
the temperature variation values as a function of time, at a temperature before and after the liquidus
temperature (∆T/∆t). For metallographic analysis, samples of cross-sections of the molten ingot were
selected. The analyzed surfaces of the samples were selected from different positions (P) in relation
to the heat exchange surface. These distances were 4, 8, 12, 16, 26, 35 and 53 mm. Each sample was
embedded in Bakelite, sanded with sands of different granulations, and polished with 3–6 µm diamond
paste. The etchant used to reveal the microstructure consisted of a solution of 10.7% HCl, 3.4% Fe3Cl,
and 85.9% distilled water. The reaction time was 25 s. A Zeiss AxioVert A1 microscope (Carl Zeiss,
Gottingen, Germany) was used to obtain optical images of the microstructure. Samples were analyzed
by scanning electron microscopy (SEM) using Phenom Pro X and Jeol JSM 6510 equipment (Jeol, Tokyo,
Japan) for checking the phases and intermetallics morphology. The mechanical characteristics were
evaluated by the hardness test, according to ASTM E10-2012 [21] standard in a Wilson UH-930 hardness
tester (Boehler, Lake Bluff, IL, USA) using a load of 62.5 kgf and a sphere 2.5 mm in diameter. The
hardness test was performed at five points of each position on the thermocouple. The microhardness
was tested according to ASTM E92-2003 [22] standard in a Boehler VH1102 microhardness tester
(Boehler, Lake Bluff, IL, USA) at five different points of each position on the thermocouple using force
of 1 kgf.

3. Results and Discussion

Figure 4 presents the thermal parameters VL and TR experimentally obtained as a function of the
distance to the heat exchange surface (P). For both alloys, VL values decreased with higher P values.
The Cu14Al alloy, which has a higher amount of Al in its composition, had higher initial VL values
than the Cu10Al alloy (Figure 4A). The values of TR, similar to VL, decreased as the distance from the
heat exchange surface (P) increased. We observed that the Cu10Al alloy had values slightly larger than
those for the Cu14Al alloy (Figure 4B). Analyzing the results obtained for both alloys, we observed
that the Al content influences the values of VL and TR.
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Figure 4. Solidification thermal parameters: (A) correlation between tip growth rate (VL) and distance
from heat extraction surface (P); and (B) correlation between cooling rate (TR) and distance from heat
extraction surface (P). The error bars represent the standard deviation of the measurements obtained.

The data obtained in the hardness test are presented in Figure 5. The experimental equations
that correlate the hardness values (HB) with the distance of the heat exchange surface (P) values and
with the values of TR in the graphs were obtained by the least square method using Origin software.
The linear fit of the data suggests that the hardness values (HB) decrease with increasing distance of
the heat exchange surface (P). For TR, the adjustment indicates the opposite: the values of hardness
increase with the increase in TR. This is important because it shows that it is possible to predict the
hardness performance of both alloys by changing the cooling conditions. Comparing the two alloys
studied, the Cu14Al alloy has higher hardness values than the Cu10Al alloy. This suggests that the
increase in Al content influences this property. The linear adjustment also suggests that there are
maximum hardness values. If P = 0 mm, we can define these values. For the Cu10Al and Cu14Al
alloys, the values were 196 and 284 HB, respectively.Materials 2019, 12, x FOR PEER REVIEW 6 of 10 
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The data obtained in the microhardness test are presented in Figure 6. The experimental equations
correlate the microhardness values (HV1) with the distance of the heat exchange surface (P). The values
of TR presented in the graphs were obtained by the least square method using Origin software. The
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linear fit of the data suggests that HV1 increases with the increase in the distance of the heat exchange
surface (P). For TR, the adjustment indicates the opposite: the values of hardness decrease with the
increase in TR.
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Figure 7 depicts the transverse micrographs of the two alloys studied at positions 4, 8, 12, 16,
35, and 53 mm with respect to the heat extraction surface (P). Comparing both alloys, the Cu10Al
alloy presents the α phase in Widmastätten morphology, whereas the Cu14Al alloy presents a diffuse
morphology with small microstructures inside the grain. At the position P = 4 mm, we observed
that the grains of the Cu14Al alloy have smaller dimensions than for the Cu10Al alloy. At position
P = 53 mm, the dendritic arms were observed in dark color for the Cu14Al alloy. The dendritic arms
being in positions of higher values of P and not in smaller values, show that the grain size increases as
the value of P increases.

The images obtained by SEM for both alloys are shown in Figure 8. Hasan et al. [8] studied the
morphology, crystallography, and composition of the phases present in Cu10Al alloy, determining
the characteristics of each phase. Jahanafrooz et al. [9] studied the mechanism of phase formation
in Cu10Al alloy during solidification. Pisarek [11] proposed a crystallization model for Cu-Al-Ni-Fe
alloys. The microconstituents in the SEM images obtained in this work were identified based on the
similarity of the SEM images presented by the authors mentioned above. We observed that the Cu14Al
alloy had a larger number of microconstituents. The Cu10Al alloy more prominently presents the
α phase.

The Cu14Al alloy had higher hardness values, a structure with smaller grains, and more
microconstituents evidenced by the SEM analysis than the Cu10Al alloy, suggesting that the higher Al
content influences these properties. It should be noted that the Cu14Al alloy presents the γ2 phase,
characteristic of the high aluminum content in the alloy. This phase is detrimental because it reduces
the performance of the alloy for corrosion resistance. The fact that this alloy has in its composition Fe
and Ni contents, this phase appears in smaller quantity, since these elements bind to Al forming the
microconstituents кmentioned above. It is also observed the appearance of the retained beta phase
caused by the high rate of cooling. This phase is martensitic giving higher hardness values for the alloy.
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4. Conclusions

The values of the solidification thermal parameters VL and TR decrease for larger distances from
the heat exchange surface. The Cu14Al alloy, which has the highest amount of Al in its composition,
has higher initial VL higher values than the Cu10Al alloy. The linear fit of the data suggests that
the hardness values (HB) decrease with increasing distance from the heat exchange surface (P). For
TR, the adjustment indicates the opposite: the values of hardness increase with increasing TR values.
The linear fit of the data also suggests that the microhardness values (HV1) increase with increasing
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distance from the heat exchange surface (P). For TR, the adjustment indicates the opposite: the values
of hardness decrease with increasing TR.

Comparing the transverse optical micrographs for both alloys, the Cu10Al alloy presents the α

phase in Widmastätten morphology, whereas the Cu14Al alloy presents a diffuse morphology with
small microstructures inside the grain. At position P = 4 mm, we observed that the grains of the
Cu14Al alloy were smaller than those in the Cu10Al alloy. At position P = 53 mm, the dendritic arms
were observed to have a dark color for the Cu14Al alloy. The ability to observe the dendritic arms at
positions of higher value of P and not in smaller values shows that the size of the grain increases as the
value of P increases.

In the SEM images for both alloys, we observed that the Cu14Al alloy has more microconstituents.
The Cu10Al alloy presented the most prominent α phase. The Cu14Al alloy has higher hardness
values, a structure with smaller grains, and more microconstituents, as evidenced by the SEM analysis,
than the Cu10Al alloy, suggesting that the higher Al content influences these properties.
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