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Abstract: The present paper deals with the interactive buckling of thin-walled lipped channel (LC)
beams under the bending moment in the web plane when the shear lag phenomenon and distortional
deformations are taken into account. A plate model (2D) was adopted for LC beams. The structures
were assumed to be simply supported at the ends. A modal method of solution to the interactive
buckling problem within Koiter’s asymptotic theory, using the semi-analytical method (SAM) and
the transition matrix method, was applied. LC-beams, from short through medium-long via long
to very long beams, were considered. The paper focuses on the influence of the secondary global
buckling mode on the load carrying capacity for the steel LC-beams under bending.
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1. Introduction

Thin-walled cold-formed steel (CFS) members (columns, beams, and beam-columns) are widely
used in the construction industry. C-section and LC-section (i.e., lipped channel) beams are basic
structural elements that are primarily subject to bending. A capacity for resistant loads in thin-walled
beams is limited not just by their strength, but first of all due to their stability.

The numerical methods often applied in nonlinear analysis of stability and load carrying capacity are
as follows: finite strip method (FSM), finite element method (FEM), and generalized beam theory (GBT).

Mode decomposition of thin-walled columns and beams with different cross-sections subjected
to various loadings based on GBT has been analyzed in Reference [1]. References [2,3] deal with the
constrained finite element method (cFEM) employed for the buckling analysis of columns with opened
cross-sections. A new method with a modal decomposition feature, the so-called constrained finite element
method (cFEM) is presented in Reference [4]. The method can be applied to analyze a wide range of
thin-walled members, including members with holes and varying cross-sections and stiffened plates.

FSM is commonly used for nonlinear analysis of elastic stability due to its very high numerical
capability, low computational costs and easy implementation in thin-walled elements. The method is
limited mainly to simple geometries and boundary conditions. It has resulted in an introduction of
numerous new FSM variants or expansions.

In FEM, two kinds of analyses are usually conducted, namely for (i) linear elastic buckling to
enable determination of critical loads and the corresponding buckling modes, i.e., an eigenproblem,
(ii) nonlinear post-buckling analysis to determine the performance curve in the full range of loading
and/or load carrying capacity. In addition, the FEM model is affected by epistemic uncertainties.

The influence of distortional, global, and local buckling modes, and their combination,
on post-buckling behavior is widely investigated by Martins, Camotim, Gonçalves, and Dinis [5,6].
They and used their modification (GBTUL-2.0) [5] and employed existing tools (GBT and DSM) [6].
A semi-analytic method based on Koiter’s theory of the compressed thin-walled structure with
cross-section deformation modes is analyzed in Reference [7]. Composite C-beams subjected to the
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bending moment have been analyzed in References [8], among others. The development in the
theory of interactive buckling of thin-walled structures is discussed in Reference [9]. Observation of
the post-buckling behavior of beams during experimental investigations of channel-section beams
subjected to pure bending [10] inspired the research presented here. Moreover, another interpretation
of the obtained results has been adopted. Reference [10] that dealt with post-buckling behavior of
short beams with channel-section, subjected to pure bending, were the basis to carry out the research
presented in this paper. In References [11,12], the nonlinear problem of stability has been solved
using the semi-analytical method (SAM) based on Koiter’s nonlinear theory with Byskov-Hutchinson
interactive buckling approach. An interaction between two or three buckling modes (i.e., two- and
three-mode approach) has been analyzed, whereas in Reference [13] numerous buckling modes were
considered. The effect of various lengths (from the short ones through medium-long to long beams) of
C-beams subjected to the bending moment, with linearly variable stresses in the web plane, on the
interactive buckling and load carrying capacity using semi analytical method (SAM) [11,12] was
investigated. The present paper is a continuation of Reference [13], focusing on steel bending LC-beams
to confirm the generality of the results obtained in Reference [13] and to specify the length of the beam
for which the influence of the secondary mode of buckling on load carrying capacity appears in the
range of the most dangerous case. A literature review and the theoretical foundation are presented in
detail in Reference [13].

The post-buckling behavior of beams during experimental investigations of channel-section
beams subjected to pure bending was described in Reference [14]. Moreover, the influence of the
distortional-lateral buckling mode on the interactive buckling of thin-walled short channels with
imperfections subjected to the major-axis bending moment was analyzed. With the GBT it is possible to
define contributions of different buckling modes in the full range of structure loading, which facilitates
understanding the phenomena occurring during complex coupled buckling.

Moreover, composite C-beams subjected to the bending moment have been analyzed in
Reference [15], among others.

A distortional failure of steel beams simply supported under uniform bending with the direct
strength method (DSM) is presented in Reference [16]. The influence of distortional, global, and local
buckling modes, and their combination, on post-buckling behavior is widely investigated by Martins,
Camotim, Gonçalves, and Dinis [17,18]. In Reference [19], the interactive buckling of lipped channel (LC)
beams freely supported at both ends and subject to uniform major-axis bending was analyzed with the
generalized beam theory (GBT). Special attention was paid to the interaction of very numerous simple
buckling modes, and, in particular, to the distortional-global mode effect. Moreover, the influence of
distortional, global, and local buckling modes, and their combination, on post-buckling behavior is
widely investigated in References [20,21].

In this study, an analysis of LC beams with the same dimensions as in Reference [19] has been
conducted. In wide experimental investigations and the numerical analysis of steel C-beams [22,23],
particular attention was drawn to the distortional-global interaction buckling. Post-buckling behavior of
cold-formed channels axially compressed or subjected to pure bending was analyzed in Reference [24].
In Reference [25], the buckling behavior and imperfection sensitivity of thin steel cylindrical shells
under pure bending, with a focus range of slenderness, were presented.

The fire-resistant design of steel columns used in prefabricated modular construction was described
in References [26,27].

Modal analysis of interactive buckling enables an easier insight into the phenomena occurring
during the interactions of global, local, and distortional buckling modes. Moreover, it allows an
interpretation of complex interactions between individual buckling modes.

In the authors’ opinion, there is a lack of work devoted to the influence of the secondary global
distortional-lateral mode on the interactive buckling and assessment of the load carrying capacity for
LC-beams of various lengths. The paper attempts to assess for what length of beam this impact is
the most important. In the authors’ opinion, the literature includes adequate information about the
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influence of the secondary global distortional-lateral mode on the interactive buckling and assessment
of the load carrying capacity of LC-beams of various lengths. The aim of this investigation is to
determine what values of length of the beam influences on the load carrying capacity.

In the present study, Lagrange’s description, full Green’s strain tensor for thin-walled plates and
second Piola–Kirchhoff’s stress tensor, and the exact transition matrix method and the numerical method
of the transition matrix using Godunov’s orthogonalization are used. The shear lag phenomenon,
an effect of cross-sectional distortions, as well as coupled conditions between all the walls of structures
are included. The most important advantage of this method is that a complete range of behavior of
thin-walled structures can be described [14].

The coupled buckling of thin-walled steel LC-beams under bending in the web plane from short
ones through medium-long to long beams is analyzed here.

2. Formulation of the Problem

Prismatic thin-walled steel (i.e., isotropic) beams built of plates connected along longitudinal edges
and under the uniform major-axis bending moment were considered. The beams were simply supported
at their ends [13,14]. In order to account for all modes of global, local, and coupled buckling, a plate model
(i.e., 2D) of thin-walled structures was applied. Moreover, it was assumed that the material of the structure
is obeyed Hooke’s law. Details can be found in References [13,14] or see Appendix A.

3. Analysis of the Calculations Results

Detailed numerical calculations for interactive buckling were conducted for three steel LC-section
beams of the cross-section dimensions identical to those in Reference [19]. The beam geometrical
dimensions under consideration together with the assumed notations are presented in Figure 1 and
Table 1. The ratios of the main central moments of inertia Imax/Imin, which range from 3.6 to 6.0,
are included there as well.
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Table 1. Geometrical dimensions considered lipped channel (LC)-beams.

Type of the Beam
b1 b2 b3 t Imax/Imin

[mm] [mm] [mm] [mm] -

LC-1 125 75 10 3 3.67

LC-2 190 90 10 3.08 5.94

LC-3 175 100 13 3.6 4.04
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The following material constants: E = 210 GPa, ν = 0.3 were assumed for the steel lip channels [19].
In the pre-buckling state, the beams were subjected to linearly variable loading (Figure 1) resulting in
bending in the web plane (i.e., the upper flange was tensioned, the lower one was compressed).

3.1. Example of LC-1 Beams

In this example, lip channel LC-1 beams of the dimensions listed in Table 1 were analyzed.
Alternations in values of the critical moment Mr as a function of the buckling half-wavelength Lb in a
wide variability range 100 ≤ Lb ≤ 10,000 mm are presented in Figure 2.
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Figure 2. Buckling moments Mr as a function of the buckling half-wavelength Lb for LC-1.

The lower curve (denoted as curve 1) corresponds to the lowest values of buckling loads, often
referred to as primary buckling loads. The upper curve (marked as curve 2) refers to higher critical
values, which can be called secondary buckling loads.

The value of the critical moment Mr (curve 1) for the variability range under consideration attains
its maximum at Lb = 100 mm and the minimum at Lb ≈ 350 mm, and then it grows monotonously up to
Lb ≈ 1000 mm, where it reaches the local maximum. Within the range 1000 ≤ Lb ≤ 10,000 mm, values of
the moment decrease monotonously. The critical values corresponding to curve 2 grow in the range 100
≤ Lb ≤ 350 mm and attain the maximal value at Lb ≈ 350 mm. Next, in the range 350 ≤ Lb ≤ 1000 mm,
they decrease drastically to attain the minimal value for Lb ≈ 1000 mm. Within the range 1000 ≤ Lb
≤ 4000 mm, curve 2 grows slowly, and at Lb > 4000 mm, it is constant in practice. While comparing
curves 1 and 2, one can state that for Lb ≈ 350 mm the lower curve attains its minimum, whereas the
upper one attains its maximum, and then at Lb ≈ 1000 mm, an opposite relation takes place. At Lb >

4000 mm, the drop gradient of curve 1 is significantly lower than for 1000 ≤ Lb ≤ 4000 mm, whereas the
values corresponding to curve 2 are actually constant.

In Table 2, critical values of the moments Mr for the LC-1 subject to bending for selected four
values of the total length L are presented. The following index notations are introduced: 1—the lowest
value of the buckling moment corresponding to the local buckling mode for m , 1, 2—the value of the
primary global buckling mode for m = 1 (curve 1 in Figure 2), 3—the value of the secondary global
buckling mode for m = 1 (curve 2 in Figure 2). For the local moment M1, a number of half-waves m
along the longitudinal direction is quoted additionally in the brackets.
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Table 2. The buckling moments Mr with the corresponding number of half-waves m of buckling along
the longitudinal direction of the LC-1 and the dimensionless ratio of load carrying capacities Ms/Mmin

for different lengths L.

L M1 M2 M3 Ms1/Mmin Ms2/Mmin

mm MNcm MNcm MNcm - -

2050 1.575 (6) 1.587 11.64 0.675 0.680

1500 1.574 (5) 2.525 10.13 0.773 0.791

500 1.683 (2) 1.962 21.07 0.768 -

250 1.683 (1) - 23.42 - -

For the lengths of LC-1 under consideration, the values of the critical moment M1 do not alter
significantly (less than 10%). The values of M3 are at least sixfold higher than M1. At the length L ≈
2050 mm, the value M1 ≈M2, whereas, at L = 1500 mm, we have M2/M1 = 1.6, and for L = 500 mm it is
M2/M1 = 1.16. At the length L = 250 mm, the lowest critical value was attained for the local mode M1

and for one buckling half-wave (m = 1). Therefore, the critical value M2 corresponding to the global
mode was not given. The value M3 is almost 14 times higher than M1 and also occurs for m = 1.

In Figure 3a–d, for the lengths of LC-1 beams considered in Table 2, the buckling modes
corresponding to the three modes under analysis, except L = 250 mm, for which only two modes (i.e.,
mode 1 and mode 3) are considered, are shown.
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Figure 3. (a) Buckling modes for LC-1 beam lengths L = 200 mm, (b) Buckling modes for LC-1 beam
lengths L = 500 mm, (c) Buckling modes for LC-1 beam lengths L = 1500 mm, (d) Buckling modes for
LC-1 beam lengths L = 2050 mm.
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For the three shortest lengths, the local mode 1 (r = 1) is the same (Figure 3a–c). The upper
corner connecting the flange under tension with the web and the edge reinforcement does not displace
practically. The maximal deflection corresponds to the compressed flange corner with the edge
reinforcement. At the length L = 2050 mm (Figure 3d), the local mode is different. The maximal
deflection occurs for the lower part of the web under compression, and both corners of the compressed
flange displace. Local modes correspond to distortional-local buckling modes.

At L = 500 mm (Figure 3b), the lowest global mode (at r = 2) is identical to the local mode. For the
lengths L = 1500 mm and L = 2050 mm (Figure 3c,d), the global mode represents distortional-lateral
buckling because right angles are not maintained in the corners of cross-sections of the elements under
compression. The secondary global mode (r = 3) is subject to alternations with an increase in the length
of LC-1. For L = 200 mm, the maximal deflection occurs for the web. Only the corner connecting
the lower edge reinforcement with the flange under compression displaces (Figure 3a). For other
lengths, the lower corner connecting the flange with the web also displaces and there is a slight
displacement of the corner connecting the web with the flange under compression. At L = 500 mm
(Figure 3b), the maximal displacement corresponds to lower corners, whereas, at L = 1500 mm and
L = 2050 mm (Figure 3c,d), the modes differ slightly. The secondary global modes correspond more to
the distortional-global modes than the distortional-lateral ones.

In the nonlinear analysis of interactive buckling, the signs of complex absolute values of
imperfections of each mode were selected in the safest way, i.e., to attain the lowest value of the limit
load carrying capacity Ms [11–14] in (A4). For actual LC-section beams, post-buckling equilibrium
paths were determined on the assumption in (A4) that ζ∗1 = |0.1|, ζ∗2 = |1.0|, ζ∗3 = |1.0|.

For the lengths L under consideration, Table 2 also lists values of the limit load carrying capacity
referring to the lowest value of the critical moment Mmin = M1, and accounts for Ms1/Mmin for
a three-mode approach (i.e., J = 3 in (A4)) and Ms2/Mmin for a two-mode approach (i.e., J = 2).
At L = 250 mm, due to the fact that both modes occur for m = 1, it was assumed on the contrary that
ζ∗3 = |0.1|. For this length, interaction between buckling modes (denoted by indices r = 1 and r = 3)
does not take place within the loading range M/Mmin under analysis.

In Figure 4, on the basis of Equation (A6), a plot of M/Mmin versus the angle α/αmin is presented.
Curve 1 corresponds to a one-mode analysis, that is to say, when only the mode J = r = 1 is considered,
whereas curve 2 corresponds to a two-mode analysis for J = 2 (for r = 1 and r = 3).
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These curves overlap in the range of variability of M/Mmin under analysis. At L = 500 mm (Table 2
and Figure 5), when the interaction of the three modes is taken into account, we have the limit value of
Ms1/Mmin, whereas, for an interaction of two modes (i.e., J = 2 for r = 1 and r = 2), the theoretical limit
load carrying capacity was not obtained.
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As shown in Figure 5, curve 1 corresponds to the interaction of three modes, whereas curve
2 corresponds to the interaction of two modes, respectively. For L = 1500 mm, Ms1/Mmin is approximately
2% lower than for Ms2/Mmin. The lowest values of load carrying capacity were attained at L = 2050 mm
and they are practically the same for the two- and three-mode approach.

The strongest interaction of the local mode (r = 1) with the global one (r = 2) occurs for the case
when the critical loads are close to each other, i.e., when the relationship 0.8 ≤ M2M1 ≤ 1.2 holds.
When M2/M1 ≈ 1, as known from the literature, the load carrying capacity often satisfies the relation
0.6 ≤MsM1 ≤ 0.7. For L = 2050 mm, M2/M1 = 1.007 and Ms1/M1 ≈ 0.675 occur and, for L = 1500 mm,
M2/M1 = 1.60 and Ms1/M1 = 0.773 occur, correspondingly, whereas, for L = 500 mm, M2/M1 = 1.16 and
Ms1/M1 ≈ 0.768 occur, respectively. As can be expected, an interaction of three modes yields lower
values of the load carrying capacity than an interaction of two modes.

An interaction of buckling modes [11,12] takes place via the coefficients of cubic terms apqrζpζqζr

in the expression for total potential energy (A3). Thus, values of the coefficients apqr for all lengths L
under study were analyzed. For a short beam of L = 250 mm, the terms including the coefficients ζ2

1ζ3

in (A3) are very low and buckling can be treated as uncoupled (i.e., one-mode) for the loads M/Mmin
under consideration. It is also due to very considerable differences in values of critical loads, because
M3/M1 ≈ 14. At L = 500 mm, the terms ζ2

1ζ3, ζ2
2ζ3 decide the interaction, whereas, for L = 1500 mm and

L = 2050 mm, these are the terms ζ2
1ζ2, ζ2

1ζ3.
In Reference [19], local imperfections were taken as in the present work, whereas global

imperfections were assumed for selected buckling modes, and their level was close to that assumed
here. In Reference [19], for various global imperfections and at L = 2050 mm, Ms/Mmin = 0.864 was
attained, and, in this work, Ms1/Mmin = 0.675 was attained.

3.2. Example of LC-2 Beams

The geometrical dimensions of the LC-2 beam are listed in Table 2. Figure 6 shows a change in the
critical bending moment Mr [MNcm] as a function of the buckling half-wavelength Lb in the range 100
≤ Lb ≤ 10,000 mm.
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Figure 6. Buckling moments Mr as a function of the buckling half-wavelength Lb for LC-2.

Curve 1 corresponds to the lowest critical values of the bending moment, i.e., the primary buckling
moments, whereas curve 2 corresponds to the secondary buckling moments. Curve 1 decreases
in the range 100 ≤ Lb ≤ 400 mm, and then it increases up to the maximal value at Lb = 1500 mm.
For higher lengths Lb, the critical moment decreases monotonously. On the other hand, curve 2 grows
monotonously for 100 ≤ Lb ≤ 500 mm to attain its maximal value at Lb = 500 mm. At 500 ≤ Lb ≤

1500 mm, it decreases sharply to grow next in the range 1500 ≤ Lb ≤ 4000 mm, and then the critical
values remain constant for Lb ≥ 4000 mm in point of fact.

To sum up, curve 1 attains its local minimum at Lb ≈ 400 mm, curve 2 has its maximum at Lb ≈

500 mm, curve 1 attains its maximum and curve 2 its minimum at Lb ≈ 1500 mm.
In Table 3 the results for the assumed four total lengths of LC-2 beams are collected. The index

notations were the same as in example 3.1 (LC-1). For the assumed lengths, values M1 are lower
and are actually the same except for the shortest beam of the length L = 250 mm. At L = 250 mm
and L = 400 mm, the moment M1 corresponds to the number of half-waves m = 1. Thus, as for LC-1,
the values of M2 corresponding to the global mode are not given. On the other hand, the values of M3

for the secondary mode, at which m = 1, are given. For the assumed lengths L, we have M3/M1 > 6,
and, for two longest beams, it is M2/M1 ≥ 1.5. Hence, for the lengths under consideration, sensitivity to
imperfections decreases in comparison to example 3.1 (LC-1).

Table 3. The buckling moments Mr with the corresponding number of half-waves m of buckling along
the longitudinal direction of the LC-2 and the dimensionless ratio of load carrying capacities Ms/Mmin

for different lengths L.

L M1 M2 M3 Ms1/Mmin Ms2/Mmin

Mm MNcm MNcm MNcm - -

2000 2.413 (5) 4.807 18.94 0.803 0.816

700 2.423 (2) 3.625 34.48 0.867 1.077

400 2.413 (1) - 38.91 - -

250 2.913 (1) - 20.13 - -

In Figure 7a–d, buckling modes for LC-2 are shown. The local buckling mode (mode 1) for the
four assumed lengths is the same.
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Figure 7. (a) Buckling modes for LC-2 beam lengths L = 250 mm, (b) Buckling modes for LC-2 beam
lengths L = 400 mm, (c) Buckling modes for LC-2 beam lengths L = 700 mm, (d) Buckling modes for
LC-2 beam lengths L = 2000 mm.

The deflection maximum lies in the corner of the compressed flange and reinforcement.
The secondary global mode (mode 3) for L = 250 mm and L = 400 mm is the same. The maximal
deflection takes place in the web. At L = 2000 mm, mode 3 is similar to the local mode. Additionally, only
displacements of the corner connecting the web with the flange under compression can be observed.
At L = 700 mm and mode 3, the maximal deflection of the web is slightly higher than the displacement
of lower corners. For this length, the global mode (curve 2) is identical to the local mode (curve 1),
while for L = 2000 mm, mode 2 corresponds to the distortional-lateral buckling mode, as there are no
right angles in lower corners. Thus, all buckling modes (curves 1, 2, 3) are distortional modes.

In Table 3, the values of the ratio of the limit load carrying capacity to the minimal critical value
for two- (J = 2) and three- (J = 3) mode approaches, Ms2/Mmin and Ms1/Mmin, respectively, are given.
Like in example 3.1, the same values of imperfections were assumed.

For the lengths L = 250 mm and L = 400 mm, limit values were not attained. For these lengths
as for LC-1, it was assumed that ζ∗3 = |0.1|, as m = 1. For the remaining two lengths, the limit load
carrying capacity is lower for the three-mode approach than for the two-mode approach, identically as
for LC-1.

In the two next figures (Figures 8 and 9), a relationship of M/Mmin versus the angle α/αmin is
presented according to formula (A6) for the length L = 250 mm and L = 400 mm.
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Figure 9. M/Mmin versus α/αmin for LC-2 and L = 400 mm.

Curve 1 corresponds to the case of one-mode buckling (r = J = 1), while curve 2 corresponds to
two-mode buckling (J = 2, r = 1, r = 3). Both the curves overlap, which proves a lack of an interaction
between the modes in the range of loading under consideration. The dependence of α/αmin on M/Mmin
at L = 700 mm, for the two- (J = 2) and three-mode (J = 3) approach, correspondingly, is presented in
Figure 10. In the case of J = 3, the limit load carrying capacity is Ms1/Mmin = 0.867, whereas, for J = 2,
Ms2/Mmin cannot be determined.

In this case, a significant effect of the secondary global mode (r = 3) on the load carrying capacity
can be seen. At L = 2000 mm, the quantities Ms1/Mmin and Ms2/Mmin differ slightly, i.e., by less than 2%.

For L = 250 mm and L = 400 mm, the nonlinear coefficients (A3) ζ2
1ζ3, responsible for the interaction

of modes, are very low and, moreover, M3/M1 > 6; thus, we encounter one-mode buckling for the loads
M/Mmin under analysis. At L = 700 mm, the terms including the coefficients ζ2

1ζ3, ζ2
2ζ3, ζ2

3ζ2 play an
important role, whereas, at L = 2000 mm, the terms are ζ2

1ζ2, ζ2
1ζ3.

In Reference [19], for the length L = 2000 mm, the dimensional load carrying capacity is equal to
Ms/Mmin = 0.919, and, in this work, it is Ms1/Mmin = 0.803. One should remember that the values of
global imperfections were assumed differently. At L = 400 mm in Reference [19], the load carrying
capacity was not determined either.
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3.3. Example of LC-3 Beams

Like in earlier examples, detailed geometrical dimensions are listed in Table 2. In Figure 11,
alternations in critical bending moments Mr as a function of the buckling half-wavelength Lb
are presented.
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Figure 11. Buckling moments Mr as a function of the buckling half-wavelength Lb for LC-3.

Curve 1 corresponds to the lowest values of the critical moment, while curve 2 corresponds to
higher values for 100 ≤ Lb ≤ 10,000 mm. The plots of both curves are similar to the plots in Figure 2
(LC-1) and Figure 6 (LC-2). The minimal local value of the moment for curve 1 was attained at Lb ≈

450 mm, the local maximum was attained at Lb ≈ 1500 mm, whereas curve 2 attains the maximal value
of the moment for Lb ≈ 480 mm and the minimal value for Lb ≈ 1500 mm, respectively.

As in former examples, Table 4 lists values of critical loads for 4 selected lengths of beams L.
At L = 300 mm, the lowest local mode M1 occurs for m = 1. Thus, mode 2 was not considered. The value
M3 (for m = 1) is almost 10-times higher than M1. At L = 800 mm, we have M2/M1 = 1.4, and for
L = 2500 mm it is M2/M1 = 1.3, whereas, at L = 4500 mm, the global value M2 is lower than M1,
as M2/M1 = 0.5. The secondary value of M3 for the values of L under analysis is at least 7-times higher
than M1.
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Table 4. The buckling moments Mr with the corresponding number of half-waves m of buckling along
the longitudinal direction of the LC-3 and the dimensionless ratio of load carrying capacities Ms/Mmin

for different lengths L.

L M1 M2 M3 Ms1/Mmin Ms2/Mmin

mm MNcm MNcm MNcm - -

4500 3.499 (10) 1.765 31.23 0.770 0.774

2500 3.515 (6) 4.686 26.27 0.753 0.763

800 3.544 (2) 5.105 41.15 0.833 -

300 4.174 (1) - 40.87 - -

In Figure 12a–d, buckling modes for selected lengths L are presented. Local buckling modes
(mode 1) are practically the same for all lengths.

At L = 300 mm and mode 3 (m = 1), maximal deflections occur in the web. At L = 800 mm, also
the global mode (mode 2) is identical to mode 1 (Figure 12b). The secondary global mode (mode 3)
has the maximal deflection for lower compressed corners of LC-3. Mode 2 (curve 2) for the length
L = 2500 mm and L = 4500 mm is a “pure” lateral buckling mode in principle. At L = 2500 mm and
mode 3, a slight displacement of the corner connecting the web with the compressed lower flange takes
place, whereas, for L = 4500 mm, displacements of both web corners occur.

Moreover, Table 4 also shows the dimensionless limit load carrying capacity for two- and
three-mode approaches, Ms2/Mmin and Ms1/Mmin, respectively. At L = 2500 mm and L = 4500 mm,
differences between both the approaches are inconsiderable.

In Figure 13, at the length L = 300 mm, curve 1 for the one-mode approach (J = 1) overlaps curve
2 for the two-mode approach (J = 2, r = 1, r = 3).

For the range of loadings under consideration, there is no interaction between the modes.
For L = 800 mm, in the case of the three-mode, we have Ms1/Mmin = 0.833, whereas, for the two-mode
approach, there is no limit load carrying capacity (Figure 14).

For L = 300 mm, the value of the coefficient at the term ζ2
1ζ3 is inconsiderable, but at L = 800 mm,

the terms ζ2
1ζ3, ζ2

2ζ3 play a significant role. At L = 2500 mm and at L = 4500 mm, the coefficients at the
terms ζ2

1ζ2, ζ2
1ζ3 are important.

For the length L = 4500 mm in Reference [19], the value of the load carrying capacity was
Ms/Mmin = 0.806, whereas, in the present analysis, it was Ms1/Mmin = 0.77.

For all the examples under analysis in Reference [19], higher values were attained than in the
present study. One should note once more that the values of local imperfections in Reference [19] were
assumed in a different way than here.
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The plots of variability in critical moments (curves 1 and 2) as a function of the half-wavelength
Lb shown in Figures 2, 6 and 11 as well as an analysis of buckling modes, the load carrying capacity
and the effect of nonlinear coefficients at the first-order approximation terms allow one to classify,
according to the conclusions expressed in Reference [13], the following lengths of LC-beams, namely:

(1) short beams (LC-1 − 100 ≤ Lb ≤ 350 mm; LC-2 − 100 ≤ Lb ≤ 500 mm; LC-3 − 100 ≤ Lb ≤ 450 mm);
(2) medium-long beams (LC-1 − 350 ≤ Lb ≤ 1050 mm; LC-2 − 500 ≤ Lb ≤ 1500 mm; LC-3 − 450 ≤ Lb ≤

1050 mm);
(3) long beams (LC-1 − 1050 ≤ Lb ≤ 3500 mm; LC-2 − 1500 ≤ Lb ≤ 4000 mm; LC-3 − 1050 ≤ Lb ≤

4000 mm);
(4) very long beams (LC-1 − 3500 mm ≤ Lb; LC-2 − 4000 mm ≤ Lb; LC-3 − 4000 mm ≤ Lb).

Compared to Reference [13], the term of very long beams, for which the secondary global mode
M3 is actually constant and the primary global mode M2 has a low gradient of the value drop in
comparison to long beams, is introduced additionally in the above-mentioned classification.

Particular attention was paid to the influence of secondary global distortional-lateral buckling
mode on the load carrying capacity for the LC-beams under bending. As demonstrated in the paper,
the most significant influence is for medium-long beams. In this case, disregarding the interaction
of three modes, including two global (i.e., primary and secondary) and local ones, may lead to an
incorrect assessment of the load carrying capacity of the two-mode approach for medium-long beams.

4. Conclusions

The stability and interactive buckling of steel LC-beams under bending, for three different
cross-sections in a wide range of beam length variability, were investigated. Attention was paid
in particular to an effect of the secondary global buckling mode on an interaction between modes,
including distortional buckling modes. A classification of lengths of beams subjected to bending in the
web plane, starting from short to medium-long up to long, or even very long ones, is proposed. In the
cases under consideration, the influence of the secondary global mode on the load carrying capacity
is most evident for medium-long beams. It is advisable to extend this analysis onto an effect of the
length of edge reinforcements and the wall thickness of LC-beams on the interactive buckling and load
carrying capacity. It is important to conduct validation of the described and analyzed phenomenon,
using the semi-analytical method SAM through the use of more comprehensive modeling using FEM.
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Appendix A

For each plate component, precise geometrical relationships (i.e., full Green’s strain tensor) were
assumed in order to consider both out-of-plane and in-plane bending of the i-th plate [11–14]:

εxi = ui,x +
1
2 (w

2
i,x + v2

i,x + u2
i,x)

εyi = vi,y +
1
2 (w

2
i,y + u2

i,y + v2
i,y)

2εxyi = γxyi = ui,y + vi,x + wi,xwi,y + ui,xui,y + vi,xvi,y

, (A1)

and
κxi = −wi,xxκyi = −wi,yyκxyi = −2wi,xy, (A2)

where: ui, vi, wi—components of the displacement vector of the i-th plate along the xi, yi, zi axis
direction, respectively, and the plane xi − yi overlaps the central plane before its buckling.
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The nonlinear problem of stability was solved with Koiter’s theory [11–14]. The displacement fields
U and the sectional force fields N were expanded into power series with respect to the dimensionless
amplitude of the r-th mode deflection ζr.

For thin-walled structures with the geometric imperfections U (only the linear initial imperfections
determined by the shape of the r-th buckling modes, i.e., U = ζ∗rUr), the total potential energy has
the form:

Π = −
1
2

M2a0 +
1
2

J∑
r = 1

arζ
2
r

(
1−

M
Mr

)
+

1
3

J∑
p

J∑
q

J∑
r

apqrζpζqζr +
1
4

J∑
r

brrrrζ
3
r −

J∑
r

M
Mr

arζ
∗
rζr, (A3)

then, the equilibrium equations corresponding to (A3) are as follows:(
1−

M
Mr

)
ξr + apqrξpξq + brrrrξ

3
r =

M
Mr

ξ∗r, r = 1, . . . , J, (A4)

where, M is a magnitude of the applied bending moment, Mr, ζr, ζ∗r is the buckling moment of the
r-th buckling mode, the dimensionless amplitude of the r-th buckling mode and the dimensionless
amplitude of the initial deflection corresponding to the r-th buckling mode, respectively. The buckling
modes Ui are mutually orthogonal in the following sense σ0 · l11(UI, UK) = 0, (I, K) = [1, J], I , K
where J is all the relevant buckling modes that are believed to be important in the structural response.
Bifurcation mode imperfections can have positive and negative quantities. The signs of imperfections
were chosen for the most unfavorable fashion case (i.e., load carrying capacity would assume its
minimum value). The coefficients a0, ar, apqr and brrrr can be determined with the equations described
in the literature [11,12,14].

The following notations are introduced in (4):

apqr = apqr/arbrrrr = brrrr/ar, (A5)

In the semi-analytical method (SAM), one postulates to determine approximated values of the
brrrr coefficients (A4) on the basis of the linear buckling problem. This approach allows the values of
the apqr coefficients (A4) to be precisely determined, according to the applied nonlinear Byskov and
Hutchinson theory [11,12].

A relative angle of rotation of the girder in bending on the support as a function of the M/Mmin
load was determined through differentiation of the expression for potential energy (A3) with respect to
M/Mmin [11,12,14]:

α
αmin

=
M

Mmin

1 + Mmin

Ma0

J∑
r = 1

Mmin

Mr
arζr(0.5ζr + ζ∗r)

, (A6)

where αmin is the minimal critical angle of rotation of the beam under pure bending, corresponding to
the minimal value of the critical moment Mmin.

At the point where the load parameter M reaches its maximum value Ms (the so-called theoretical
load carrying capacity) for the initial geometrical imperfect structure with the amplitude ζ∗r, the Jacobian
of the nonlinear system of Equation (A4) is equal to zero.
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