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Abstract: Synergistic effects during hybrid laser-arc welding may cause increased process efficiencies.
However, the basic interactions behind these effects are still being discussed, with some contradictory
reports. In this study, particular welding parameters of interest were systematically varied to further
the understanding of involved phenomena. The experimental trials are evaluated regarding their
synergistic achievements in terms of process efficiency, melting efficiency and energy coupling
efficiency using a factorial two-level Design-of-Experiment (DoE) approach. The results show that
the growth in process efficiency can be attributed to a dramatic increase in melting efficiency whereas
the energy coupling efficiency is only moderately increased. Thus, the synergistic effect is mainly
caused by secondary mechanisms that change the energy usage inside the workpiece while direct
interactions between the two heat sources can be excluded as a reasonable cause for increased process
efficiencies. It is concluded that the different sizes of the heat sources change the heat and mass flow
positively and consequently lead to a higher performance level.

Keywords: hybrid welding; laser welding; plasma arc welding; process efficiency; interaction
mechanisms; synergistic effects

1. Introduction

Hybrid laser-arc welding techniques have gained further importance in the recent years. However,
the lack of knowledge about the basic interactions hinders the development of new technologies and the
further optimization of existing ones. Thus, it is of utmost importance to study and clarify the involved
effects. During laser-assisted arc welding two effects are of particular interest. Fuerschbach [1] observed
a focusing of the plasma arc in the presence of a laser beam while Mahrle et al. [2] demonstrated a
stabilization of a plasma arc at high welding speeds and a less fluctuating arc voltage. Therefore
the first effect refers to a more stable processing regime. Second, the weld performance of hybrid
processes is notably increased compared to conventional processes. Both, Fuerschbach [3] and Mahrle
et al. [4] achieved deeper and wider fusion zones through the combination of a laser beam and a
plasma arc, Hu and den Ouden [5] noted a higher melting efficiency during hybrid welding and Liu
et al. [6] observed a melting efficiency of more than 50% dependent of the positioning of and the
distance between the two heat sources. Steen [7], who first combined a laser beam and a welding arc
with the aim of augmenting the performance of a low power CO2-laser beam, has already reported
synergistic effects for the combination of the two heat sources. He found that the laser beam is able
to stabilize the Tungsten Inert Gas (TIG) arc and that the feed rate for full penetration welds can be
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increased. These results stimulated a lot of experimental and theoretical work aimed at an explanation
of these effects. Based on calculations, Paulini and Simon [8] concluded that these achievements
can result from an increased concentration of metal vapor escaping from the laser induced keyhole
into the arc region. Due to their lower ionization potential the metal atoms were thought to be
responsible for a decrease of the electrical resistance of the arc discharge path and thus an increase
of the power density and the stability of the arc. This argumentation seemed to be reasonable and
was later taken over by several other researchers [9–12]. The studies of Chen et al. [13] and Liu and
Chen [10], both showing a higher metal atom concentration during the combined process compared
to the conventional arc welding, were interpreted as an evidence for this hypothesis. However, the
experiments of Fuerschbach [1] showed, that synergistic effects are only achievable under certain
process conditions and that some process regimes do not show any synergistic effects during the
combination of the two heat sources. Mahrle et al. [14] further revealed that the stabilization effect for
their applied setup was more pronounced at lower laser intensities—where a keyhole formation and
an extensive metal vapor evaporation is unlikely—and concluded that the metal vapor can only play a
secondary role for arc root and arc column stabilization. The numerical calculations of Schnick et al. [15]
revealed a decreasing arc core temperature in regions with high metal vapor concentrations due to
increased radiation losses, which was interpreted as a disproof of the chain of reasoning of the metal
vapor theory. Mahrle et al. [16] then hypothesized that the preheating of the material by the welding
arc can be considered as another possible reason for the synergistic effect. It was proposed that a
possible initiation of a keyhole at low laser intensities is favored because the laser beam already strikes
pre-heated molten material whereby heat conduction losses into the surrounding area of the laser spot
are effectively reduced. Stute et al. [17] suggested another hypothesis and explained synergistic effects
in laser-arc processing as a result of the optogalvanic effect. They stated that the laser radiation is
partially absorbed by the arc plasma giving rise to increased arc temperatures, a higher conductivity
and thus a higher melting capability [18].

All previously mentioned explanations of synergistic effects in hybrid laser-arc processing imply
an increase in net energy transfer from the heat sources to the material. Consequently, as a result of
those effects, pronounced improvements of the process efficiency should be caused by an increased
energy coupling efficiency of those processes. In this context the thermal efficiency or overall process
efficiency ηT corresponds to the ratio of power PU which is needed to melt the weld material per unit
time (without losses) to the total applied power PA. This quantity can be split according to Equation (1)
in the melting efficiency ηM (energy usage inside the base material) and the energy coupling efficiency
ηC (energy input from the heat sources) by using the power PT which is transferred from the heat
sources to the workpiece [19].

ηT =
PU

PA
= ηM × ηC =

PU

PT
×

PT

PA
(1)

Contrarily, some researchers also stated a more efficient energy usage inside the workpiece and
therefore a higher melting capability as a reason for the increased performance level in laser-arc
processing. Corresponding mechanisms should be referred to secondary effects since they are not
related to direct interactions between laser radiation and arc plasma. For example, Matsuda and
Utsumi [20] proposed that a surface depression occurs under the action of the arc pressure, which
Beyer et al. [21] used to formulate the hypothesis of a possible reduction of the effective sheet thickness
leading to an increase in process performance. In addition, the consideration of the characteristic sizes
of the two heat sources can provide other arguments. Since the size of the welding arc root typically
exceeds the size of the laser beam spot by more than one order of magnitude, heat conduction losses
from the laser-irradiated area to the base material are reduced. Therefore the strongly focused energy
of the laser can be more efficiently used to melt the material under the conditions of the superposition
of both heat sources.
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It is concluded that a carefully conducted experimental efficiency analysis of laser-arc processes
will allow for a more profound discussion of the most vital interaction mechanisms. Hu and den
Ouden [5] compared in their study the energy coupling efficiency and the melting efficiency of a laser
beam and a TIG welding arc to the performance of the combined laser-TIG process. The results indicate,
that the energy coupling efficiency of the combined process remains on the same level while the melting
efficiency drastically increases compared to the separate processes. However, only dependencies
on the welding current as the main welding parameter were studied. As pointed out before, the
occurrence of synergistic effects might strongly depend on process parameters [1,14] wherefore further
experiments are needed to allow a valid interpretation of the results. This study uses a factorial
Design-of-Experiments (DoE) approach with consideration of four factors to systematically evaluate
the influence of the secondary welding parameters laser power, laser beam radius, plasma gas flow
and working distance during laser-assisted plasma arc welding (LaPAW) on the process efficiency. In a
DoE approach the input factors are systematically varied and the effect on the target values defined
beforehand is quantitatively estimated. Therefore it is possible to identify individual significant factors
and furthermore, the interactions among them. Thus, it is the perfect tool to identify parameter sets
with the highest efficiency. Through the evaluation of the dependence of the efficiency values on
process parameters, the clarification of the synergistic effects during LaPAW can be further approached
with the results of the DoE.

The results of this study will contribute to the question for the unresolved physical explanation of
the synergistic effects occurring during hybrid laser-arc welding. The statistical efficiency analysis
will hopefully shed light on selected hypotheses postulated in literature. This will result in a more
profound process understanding and can be applied for further process developments and process
performance increases.

It should be noted that the considered process of LaPAW differs in many aspects from common
hybrid laser-arc welding [22,23]. Current applications of hybrid laser-arc welding mostly involve setups
with different interacting zones of laser beam and electrical arc as well as consumable electrodes [24–28],
while LaPAW is conducted in a coaxial arrangement with a non-consumable tungsten electrode.

2. Materials and Methods

For the welding experiments a plasma torch with a non-consumable hollow tungsten cathode
was combined with a low-power laser beam optic (Figure 1). With this setup the laser beam and the
plasma arc are operating in the same processing zone in a coaxial arrangement.
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Figure 1. Experimental setup of the Laser assisted Plasma Arc Welding (a) and internal embodiment (b).

A single mode fiber laser with a wavelength of 1.07 µm and a maximum output power of
600 W was used as a beam source. The laser beam was guided through the hollow electrode using a
collimating and focusing lens and resulting in a laser beam radiusω0 (1/e2) of between 50 and 100 µm.
To generate the plasma arc a hollow tungsten electrode was used. The arc operated in the Direct Current
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Electrode Negative (DCEN) mode. The partitioning of the plasma torch and the laser beam optics
was realized through a particularly constructed adapter which isolates the two components from each
other (thermally and electrically) and closes the plasma chamber with the inserted protective window.

The process window was determined in preliminary test series to cover a maximum area of
settings while still ensuring a stable welding process for the combined as well as the separate processes.
The main welding parameters, welding current and welding speed, were kept constant at 120 A and
0.4 m/min to ensure nearly comparable levels of linear welding energy for all performed welding trials.
Pure Argon was used as plasma gas as well as shielding gas (flow rate = 10 L/min). The exit diameter
of the plasma nozzle amounted to 3 mm. For the DoE approach the commercially available software
Design Experts 10 was used and a two-level full factorial design with four factors and one center point
was chosen. Since the effect of the welding current as the main factor influencing process outcome
of LaPAW was already studied in literature [5], in this study the varied factors were the remaining
important parameters of LaPAW namely (A) Laser beam radiusω0, (B) Laser power PL, (C) Plasma
gas flow rate QP and (D) Working distance dw between the plasma nozzle and the workpiece. The
evaluated factor levels are given in Table 1, the individual combination of process parameters can be
found in Table A1 in the Appendix A. The experimental design consisted of 24 = 16 principal runs.
Additionally, the center point (level 0) was repeated five times for a better estimation of the variance.

Table 1. Process parameters for level “−1” and “1” as well as additional center points (level 0) in the
Design of Experiments approach.

Level: −1 1 0

(A) Laser beam radiusω0 (µm) 50 100 75
(B) Laser power PL (W) 100 200 150

(C) Plasma gas flow QP (L/min) 1.2 1.8 1.5
(D) Working distance dw (mm) 3 5 4

The method for determining the energy coupling, melting and thermal efficiency is described
in detail by Hipp et al. [19] and consists of a contactless thermographic measurement of surface
temperatures inside defined measuring areas during the process and the cooling regime. Instead of
measuring the maximum temperature inside the molten pool, which is highly sensitive to errors [29],
this technique measures the temperatures in areas located outside the processing zone. The resulting
time-dependent temperature profiles inside the measuring areas are then aligned with a corresponding
heat flow computation model. Using these data, the heat flux to the workpiece and therefore the energy
coupling efficiency ηc can be inversely computed. Then, for the determination of the thermal efficiency
value ηT, the evaluated weld seam cross sections are used in combination with Equation (2) [19]:

ηT=
PU

PA
=

vx·AS·ρ·
(
cp·(ϑs − ϑ∞) + hs

)
UArc·IArc+PL

(2)

where vx is the welding speed, AS the weld seam area, ρ the density of the probe, cp the specific heat
capacity, ϑS and ϑ∞ the melting and the ambient temperature, hs the enthalpy of fusion, PL the laser
power, UArc and IArc the arc voltage and current, respectively. The melting efficiency ηM then results
from applying Equation (1). The efficiency determination method and the used computational model
were evaluated regarding their accuracy by Hipp et al. [19].

The efficiency values were used as dependent variables (responses) for the statistical analysis.
The arc voltage was recorded during the weld trials for the proper determination of the overall arc
input power and considered as a dependent variable. All runs were conducted on 200 × 60 × 3
mm3 AISI 304 (X5CrNi18-10) stainless steel sheets. After the experiments, the weld specimen were
cut, ground, polished and etched with Adler solution to measure the weld cross section area using
optical microscopy. During all experiments the molten pool was observed using a high speed camera
(see Figure 1). The camera was inclined to visualize a possible formation of a surface depression or a
laser keyhole.
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3. Results and Discussion

The efficiency values were evaluated as described before under the usage of Equation (2), the
results of a computational model and the weld seam cross sections. The results of all weld trials can be
found in Table A1 in the Appendix A. Although the cross sections are in this context only an expedient
for the efficiency analysis, the interpretation of them is of special interest. Therefore in Figure 2 the
characteristic weld seam cross sections of laser beam and plasma arc welding trials as well as of the
combined LaPAW process are presented. While the laser beam with a power of 200 W and a focus
spot diameter of 200 µm barely melts the material, the plasma arc welding process with an arc power
of about 2 kW achieves a weld penetration of about 2/3 of the workpiece thickness for the applied
parameter constellation. The combination of both processes produces a full penetration weld. The
corresponding efficiency values indicated in Figure 3 and Table A1 confirm the results of Hu and den
Ouden [5]. Whereas the coupling efficiency is only moderately increased by about 10% in comparison to
the arithmetical coupling efficiency of the individual processes, the melting efficiency of the combined
process is about 1.5 times higher than the melting efficiency of the pure plasma arc process. This finding
obviously indicates that the increased weld cross section area must be ascribed to the more beneficial
usage of energy inside the probe. These results are in line with the results of an efficiency analysis
with 1 mm standard type 304 stainless steel presented by Hipp et al. [19], despite the increase being
less pronounced. This leads to the assumption that the heat flow inside the probe—driven either by
conductive and/or convective transfer mechanisms—is beneficially changed to generate the resultant
weld seam cross-section with increased penetration by more favorable thermal and/or fluiddynamical
boundary conditions. This is further considered as clear evidence for the hypothesis that secondary,
i.e., thermal, effects are responsible for synergistic performance benefits in laser-arc processing.
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1.8 L/min; dW = 5 mm) and the laser-assisted plasma arc welding (LaPAW) process (PL = 200 W;ω0 =

200 µm; QP = 1.8 L/min; dW = 5 mm) with corresponding efficiency values.

The measured values of the energy transfer efficiency are consistent with values reported in
literature. The laser beam welding process obviously operates in the heat conduction mode where
multiple reflections are absent and the energy transfer efficiency is in the range of the averaged
absorptivity of the material of A = 27% [30]. The coupling efficiency of plasma arc welding is high and
outreaches some reported values of ηc = 47± 3% by DuPont and Marder [31]. However, Evans et al. [32]
stated that the plasma arc efficiency strongly correlates to the particular process setup and reported
achievable energy coupling efficiencies in the range of 50–67%. Also the determined melting efficiencies
of the LaPAW are comparable to literature values, for example, from Hu and den Ouden [5].
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The results of the statistical analysis for the evaluated process parameters are illustrated in Figure 3
as a half-normal probability plot. The abscissa presents the estimated effect in terms of absolute
values. If there is no correlation between the dependent variable and the factors (i.e., the varied process
parameters), the estimated effect is zero. Under the assumption that all observed effects are normally
distributed, the half-normal probability of one factor equals the area under this normal distribution up
to the estimated effect of this factor. This is presented on the ordinate of the plot. Thus the half-normal
probability plot can perfectly serve as a visual tool to identify the significant parameters since their
estimated effect is greater than zero and the half-normal probability is high, wherefore they appear in
the far right top in the diagram. Factors that do not have any influence on the dependent variable
appear close to zero located on a line. In this study only effects with a significance threshold of a = 0.01
in the corresponding Analysis of Variance (ANOVA) are selected as significant.
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3.1. Arc Voltage

The half-normal probability plot of the plasma arc voltage (Figure 3a) as well as the graph showing
the dependences between the process parameters and the arc voltage (Figure 4) reveal that the voltage
strongly depends on the plasma gas flow rate and the working distance (both positive) while there is a
weak dependence on the laser beam radius (negative). During the experiments a mean value of the arc
voltage of UARC,mean = 27.8 V with a standard deviation of σ = 0.6 was observed. The applied linear
model in the ANOVA fits well with an R2 = 0.933 and an adjusted R2 = 0.92. Therefore, more than 90%
of the observed effects can be explained by the applied model, leading to reliable conclusions.

The observed dependencies of the arc voltage on working distance, i.e., arc length, and plasma
gas flow rate are widely validated in literature [33]. More complex is the interpretation of the change
of arc voltage with the laser beam radius. The negative sign of this effect indicates that greater spot
diameters lower the arc voltage. Mahrle et al. [16] already extensively studied the influence of the
laser beam size and location on the arc voltage. The study revealed the main reason for a measured
drop in arc voltage to be a positioning effect of a displaced arc root spot back to the coaxial axis of the
torch by the laser beam. Therefore the effective arc length is shortened causing a smaller arc voltage.
The rise of the arc voltage by smaller laser beam radii can be a consequence of the already mentioned
cooling effect of metal vapor on the arc plasma [15]. Since the intensity of the laser beam is indirectly
proportional to the squared spot size diameter, those effects are more pronounced at smaller spot sizes
and—as the case may be—higher evaporation rates.
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3.2. Energy Coupling Efficiency

The results of the statistical analysis for the dependence of the energy coupling efficiency are
presented in Figure 3b, the dependencies between the energy coupling efficiency and the significant
process parameter are shown in Figure 5. Only the plasma gas flow rate (C) is identified as a significant
factor. The mean of the absolute value of the energy coupling efficiency in the studied process
parameter range is ηC,Mean = 70.1% with a standard deviation of σ = 2.7%. The highest measured
value is ηC,Max = 74.1% and the lowest ηC,Min = 65.3%. One should mention here, that the fit of the
linear model through the ANOVA is pretty poor resulting in an R2 = 0.47 and an adjusted R2

adj = 0.44.
In other words, only about 50% of the observed effects can be explained by the applied linear regression
model. The test of curvature is insignificant, wherefore quadratic dependences can be excluded. This
indicates that the dependency of the energy coupling efficiency on the plasma gas flow might be of a
higher order. However, due to the fact that the overall thermal efficiency is much more affected by the
melting capability, detailed investigations of those relationships were not further pursued in this study.
Moreover, since the factor plasma gas flow is found to be significant to a significance level of α = 0.01,
the statements concerning this dependency and the consequent indications still hold true even for a
low model quality.

Concerning relationships between dependent variables (responses) it is found that the energy
coupling efficiency correlates to the arc voltage (correlation coefficient = 0.7) which in turn was
dependent on working distance, plasma gas flow rate and beam radius. This finding indicates that the
increase in arc voltage with arc length (working distance) and the corresponding increase in arc power
must be compensated by higher energy losses through the increased lateral surface of the arc to the
environment and consequently does not contribute to a higher amount of transferred energy to the
workpiece. Additionally, the discussed probability of higher evaporation rates with a more intense
laser beam does also increase the losses (as metal vapor), and consequently shows no influence on the
energy coupling efficiency.

It is worthwhile to emphasize that the energy coupling efficiency does not depend on any of the
studied laser parameters. This is considered as an indication that direct interactions between laser
radiation and arc plasma—whether they are present or not under the conditions of the performed
study—are not capable of improving the energy coupling efficiency of the process. In other words,
it can be stated that direct interactions between laser radiation and arc plasma are not a stringent
necessity for the synergistic effect of increased process efficiency.



Materials 2019, 12, 1460 8 of 14

Materials 2019, 12, x FOR PEER REVIEW 8 of 13 

 

 
Figure 5. Dependencies between the energy coupling efficiency and the significant process parameter. 
For the values of the varied process parameters (coded factors) see Table 1. 

3.3. Melting Efficiency 

As can be seen in Figure 3c and in Figure 6, vital factors for the melting efficiency are the plasma 
gas flow (C, positive), the working distance (D, negative) and the laser power (B, positive), while the 
laser beam radius (A, negative) only plays a minor part. Hence, a higher plasma gas flow rate and a 
higher laser power offer beneficial conditions for the energy usage inside the workpiece while a 
higher working distance decreases it. The laser beam radius is not discussed at this point, since the 
related effect is negligible. The mean value in the descriptive statistical analysis of the melting 
efficiency is ηM,Mean = 13.9% with a standard deviation of σ = 2.3%. The highest value of the observed 
melting efficiency is ηM,Max = 18.4% and the lowest is ηM,Min = 10.1%. The fit of the data through the 
ANOVA with an R² = 92.8 and an adjusted R²adj = 91.5 is good, leading to reliable conclusions about 
the impact of the investigated factors. 

 
Figure 6. Dependencies between the melting efficiency and the significant process parameters. For 
the values of the varied process parameters (coded factors) see Table 1. 

The highest efficiency was observed at high plasma gas flows and low working distances. In 
combination these factors obviously lead to a higher arc pressure on the surface of the molten pool. 
The high speed image in Figure 7a reveals, that this causes a pronounced depression of the molten 
pool surface of the conventional plasma welding process. Through the measurement of the solidified 
end crater size of the welding process (see Figure 7b) it is supposed, that this cavity is about 2 mm in 

Figure 5. Dependencies between the energy coupling efficiency and the significant process parameter.
For the values of the varied process parameters (coded factors) see Table 1.

3.3. Melting Efficiency

As can be seen in Figure 3c and in Figure 6, vital factors for the melting efficiency are the plasma
gas flow (C, positive), the working distance (D, negative) and the laser power (B, positive), while the
laser beam radius (A, negative) only plays a minor part. Hence, a higher plasma gas flow rate and a
higher laser power offer beneficial conditions for the energy usage inside the workpiece while a higher
working distance decreases it. The laser beam radius is not discussed at this point, since the related
effect is negligible. The mean value in the descriptive statistical analysis of the melting efficiency is
ηM,Mean = 13.9% with a standard deviation of σ = 2.3%. The highest value of the observed melting
efficiency is ηM,Max = 18.4% and the lowest is ηM,Min = 10.1%. The fit of the data through the ANOVA
with an R2 = 92.8 and an adjusted R2

adj = 91.5 is good, leading to reliable conclusions about the impact
of the investigated factors.
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Figure 6. Dependencies between the melting efficiency and the significant process parameters. For the
values of the varied process parameters (coded factors) see Table 1.

The highest efficiency was observed at high plasma gas flows and low working distances.
In combination these factors obviously lead to a higher arc pressure on the surface of the molten pool.
The high speed image in Figure 7a reveals, that this causes a pronounced depression of the molten pool
surface of the conventional plasma welding process. Through the measurement of the solidified end
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crater size of the welding process (see Figure 7b) it is supposed, that this cavity is about 2 mm in depth
(From the High Speed Images of the process end, it follows that the real depth should be deeper than
the measured solidified craters. A re-flux of molten material into the crater was observed). The laser
beam spot then hits the ground of this cavity during LaPAW and the effective workpiece thickness,
which the laser has to fuse for achieving a full penetration weld, is drastically reduced to only 1 mm.
Therefore the energy of the laser is supposed to be used more effectively to melt the remaining material
with increased overall melting efficiency.
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crater (b,d) at process end for conventional plasma arc welding (1) and Laser assisted Plasma Arc
Welding (2).

An explanation for the significance of the laser power can be as follows. The laser hits the surface
of the workpiece which is already at melting temperature. In this case the whole energy of the laser is
available to melt additional material [16] and also the molten pool characteristics are changed. This
is clearly demonstrated in Figure 7c,d. The high speed image reveals a more deepened cavity of the
LaPAW process compared to the conventional plasma welding (Figure 7c). Interestingly, the built
up cavity is in the size of the plasma arc, while a laser keyhole is evidently not observable. It is
believed that the further energy of the laser beam causes higher temperatures of the molten material
and thus reduces its viscosity and its surface tension. This affects the dynamics of the melt pool heat
and mass flow positively, resulting in an increased melting efficiency. Another possible effect is the
suppression of heat conduction losses from the center of the molten pool—where the laser hits the
material—to the surrounding base material through the characteristic size of several millimeters of the
plasma arc. The heat conduction then primarily takes places in one direction, namely in line with the
workpiece thickness.

3.4. Thermal Efficiency

For the observed process parameter range the thermal or overall process efficiency of the LaPAW
process strongly depends on the plasma gas flow (C, positive) and moderately on the working distance
(D, negative), the laser power (B, positive) and the laser beam radius (A, negative) (see Figures 3d
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and 8). As is the case for the melting efficiency, all studied process parameters have an influence on
the thermal efficiency. Since the thermal efficiency is directly coupled with the other efficiency values
through Equation (1) it is not surprising that all the factors which have an influence on either the energy
coupling efficiency (C) or melting efficiency (C, D, B, A) are significant. Independent of the acting
physical phenomena, it can be stated at this point, that for achieving high process efficiencies, high
plasma gas flow rates and low working distances are needed. Furthermore, although only subsidiary
welding parameters were analyzed, the estimated thermal efficiency lies in the range of 7 and 13.3%.
Thus, almost a doubling of the thermal efficiency between the least and most beneficial configurations
was observed.
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4. Summary and Conclusions

The present study tried to address the still unresolved questions about the phenomena occurring
during laser-arc hybrid welding leading to synergistic effects. Therefore the energy coupling, melting
efficiency and thermal efficiency were measured in dependence on the process parameters spot diameter,
laser power, plasma gas flow and working distance. The results show, compared to the individual
plasma arc welding process, a small increase in energy coupling efficiency but a considerable increase
in melting efficiency of the LaPAW process. It can be concluded that no direct interactions between
the two heat sources enhance the energy transfer into the workpiece. Instead, the improved process
performance is a result of a more efficient energy usage inside the molten pool. The significance of the
laser power in the analysis of the melting efficiency demonstrates that a positively changed heat and
mass flow inside the material is capable of producing the mentioned synergistic effects. Furthermore, it
is concluded that because of the significant correlation between the melting efficiency and the plasma
gas flow (positive) as well as the working distance (negative), a strong surface depression occurs.
The high speed images reveal a surface deformation of about 2 mm in depth. With this knowledge,
further process optimizations should concentrate on the improvement of heat and mass flow inside
the workpiece.

Author Contributions: E.B. and U.F. initiated the project, A.M. and D.H. designed the experimental trials, D.H.
and S.J. conducted the experiments, A.M., D.H., S.J. and M.H. analyzed the results. The data were discussed by all
authors, D.H. and A.M. wrote the manuscript while all authors reviewed the manuscript.
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Appendix A

Table A1. Results of the experiments for the statistical analysis as well as the corresponding trials with laser and plasma only.

A-Beam
Radius (µm)

B-Laser
Power (W)

C-Plasma Gas
Flow (L/min)

D-Working
Distance (mm)

Weld Seam Cross
Section (mm2) Arc Voltage (V) Coupling

Efficiency
Melting

Efficiency
Thermal

Efficiency

200 100 1.8 5 5.87 28.5 0.686 0.137 0.094
200 200 1.8 3 7.88 27.6 0.686 0.184 0.126

200 200 1.8 5 7.28 28.5 0.716 0.158 0.113
100 200 1.2 3 6.46 27.1 0.667 0.157 0.105

200 100 1.8 3 6.84 27.7 0.733 0.153 0.112
100 200 1.8 3 8.50 28.2 0.726 0.183 0.133

100 100 1.2 5 4.80 28.1 0.665 0.117 0.078
100 200 1.2 5 5.38 28.1 0.703 0.119 0.084

100 100 1.8 5 6.62 28.5 0.741 0.142 0.105
200 100 1.2 3 4.83 26.8 0.653 0.126 0.082

100 100 1.2 3 5.70 26.9 0.665 0.144 0.096
200 100 1.2 5 4.31 27.8 0.692 0.101 0.070

100 100 1.8 3 7.01 28.0 0.705 0.162 0.114
200 200 1.2 3 5.90 26.9 0.665 0.146 0.097

200 200 1.2 5 5.32 27.7 0.699 0.122 0.085
100 200 1.8 5 7.46 29.3 0.731 0.155 0.113

Laser only

100 100 - - 0.04 - 0.250 0.088 0.022
100 200 - - 0.17 - 0.310 0.155 0.048

200 200 - - 0.06 - 0.295 0.058 0.017
200 100 - - 0.02 - 0.292 0.038 0.011

Plasma only

- - 1.2 3 4.91 27.2 0.631 0.133 0.084
- - 1.8 3 6.00 28.4 0.717 0.138 0.099

- - 1.8 5 4.46 29.5 0.672 0.106 0.071
- - 1.2 5 3.38 28.2 0.558 0.100 0.056
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Table A1. Cont.

A-Beam
Radius (µm)

B-Laser
Power (W)

C-Plasma Gas
Flow (L/min)

D-Working
Distance (mm)

Weld Seam Cross
Section (mm2) Arc Voltage (V) Coupling

Efficiency
Melting

Efficiency
Thermal

Efficiency

Center point

150 150 1.5 4 5.38 27.9 0.699 0.123 0.086
150 150 1.5 4 5.36 27.9 0.697 0.123 0.086

150 150 1.5 4 5.38 28.0 0.723 0.119 0.086
150 150 1.5 4 5.55 28.0 0.731 0.122 0.089

150 150 1.5 4 5.48 28.1 0.735 0.118 0.087

Fixed parameters

Welding Speed: 0.4 m/min; Diameter plasma nozzle: 3 mm;
Welding current: 120 A; Flow rate of shielding gas; 10 L/min
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