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Abstract: The cost effective synthesis of electroactive polyaniline (PANI) while retaining its desirable
properties is one of the most debatable and challenging tasks for researchers in the field. Herein, we
report a cost effective inverse emulsion polymerization pathway for the synthesis of soluble and
processable PANI salt by using diesel as a novel dispersion medium. Different reaction parameters
and their effects on the properties and yield of polyaniline were optimized. The polymer exhibited
a highly porous morphology and was found to be stable up to 417 °C. The PANI salt showed
good solubility in common solvents, such as chloroform, N-Methyl-2-pyrrolidone (NMP), dimethyl
sulphoxide (DMSO) and in a 1:3 mixtures by volume of 2-propanol and toluene. The coating of the
synthesized PANI salt on stainless steel has shown good corrosion resistant behavior in marine water
by reducing the corrosion rate to 67.9% as compared to uncoated stainless steel.

Keywords: polyaniline; inverse emulsion polymerization; diesel; corrosion protection; stainless steel

1. Introduction

Polyaniline (PANI) has been under intense investigation for the last few decades [1], in its different
redox states, including pernigraniline, lecuemeraldine, emeraldine base and emeraldine salt. It has
been synthesized by different methods including electrochemical [2], chemical oxidative [3] including
emulsion [4], and inverse emulsion polymerization techniques [5]. Among these, inverse emulsion
polymerization is reported to be more effective because PANI obtained by this method possesses
enhanced conductivity [6], solubility in common organic solvents [7], thermal stability, and good
processability [8].

The properties of the final product considerably rely on different reaction parameters such as the
type of oxidant, dopant, non-aqueous phase and vice versa. Particular attention has been paid to the
type of organic phase by employing different types of organic dispersion media. Table 1 shows the
effects of employing different dispersion media on the properties of PANI. PANI-bearing composites,
having good electrical conductivity and good mechanical properties, were synthesized through inverse
emulsion polymerization using a toluene and iso-octane mixture as the dispersion medium [9]. Rao,
PS. et al. used chloroform as the dispersion medium and benzoyl peroxide as the oxidant and obtained
a thermally stable and soluble PANI [6].
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A mixture of toluene and 2-propanol, was used by Shreepathi, S. and Holze, R. for polymerization of
aniline, soluble in chloroform, 2:1 mixture of toluene and 2-propanol, NMP and dichloromethane [7,10].
Later on, pure toluene was used as a dispersion medium but the solubility was reduced [11]. Bang et al.
synthesized highly bolometric Near Infra Red (NIR) sensitive PANI composites with carbon nanotubes
in hydrochloric acid media [12]. Similarly, Sun et al. [13], have used perchloric acid as a medium for
the fabrication of PANI nanofibers coated with platinum for applications in fuel cells. The synthesis of
PANI/DBSA salt using a DBSA-CTAB mixture as surfactant and toluene as a dispersion media was
reported by Calheiros et al. [14]. The synthesized materials were reported to have good electrical
conductivity and effectiveness at electromagnetic interference shielding.

Several other methods using different media have been employed to obtain processable and soluble
PANI for various applications but the main problem of production costs associated with these methods,
particularly in terms of dispersion mediums, persists. For example the cost of the commonly used
but not easily available dispersion mediums such as chloroform (13 USD/L), 2-propanol (25 USD/L),
2-butanol (22 USD/L), toluene (22 USD/L), n-hexane (12 USD/L) and iso-octane (158 USD/L) makes the
production of PANI a difficult task from commercial point of view. In recent years, we have reported
sophisticated methodologies for the synthesis of PANI salts with desirable properties [4,15]. Herein, as
further improvement, we report a cost effective and facile synthetic route for the synthesis of PANI
salt with improved solubility, good electrochemical activity and excellent corrosion protection ability
by using diesel (0.83 USD/L) as a cost effective and novel dispersion media. It can be observed from
Table 1 that the use of diesel can not only reduce the cost of production, but also that the synthesized
polyaniline exhibits superior properties.

Table 1. Price of solvents in USD/L (2018/2019) and its effect on product properties.

Dispersion Price of Maximum % Thermal
ME dium Solvents in Yield ° Stability Solubility Reference
USD/L (@)
NMP, DMSO,
Chloroform 13 52.4 480 dimethylformamide [6]
(DMF)
Toluene 22 - - Toluene, Xylene [11]
Toluene & iso 22 & 158 108-194 320-499 DMSO [16]
octane
Tol & Chlorofrom, 2:1 mixture of
2_0 uene 1 22 & 25 61 - toluene & 2-propanol, 7]
propano NMP, Dichloromethane.
2:1 mixture of toluene +
C};%rl‘;tf:ﬁ & 13 & 22 25-30 500 2-propanol, chloroform, [10]
° DMSO & DMF.
n-hexane 12 81.97 320 - [17]
Chloroform, NMP, DMSO, Present
Diesel 0.83 87.6 417 1:3 Mixture of toluene & ijrek

2-propanol

2. Material and Methods

2.1. Materials

Analytical grade aniline (Acros organic, Morris, NJ, USA) was double distilled under vacuum
and stored under a cold environment. Commercial diesel obtained from Pakistan State Oil (PSO), as a
complex mixture of hydrocarbons with carbon numbers in the range C9 and higher, having boiling
range 160 to 366 °C, specific gravity of 0.828 and viscosity 3.11 cst at 20 °C, was used as received.
Other chemicals like benzoyl peroxide (BPO) (Merck, Kenilworth, NJ, USA), dodecylebenzensulphonic
acid (DBSA) (Acros organic, Morris, NJ, USA) and acetone (Sigma Aldrich, St. Louis, MO, USA)
were also used as received. Ultra pure (Millipore, Burlington, MA, USA) and natural water of
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Indian Ocean having an average of 3.5% salinity were used, respectively, for solution preparation and
corrosion studies.

2.2. Synthesis of Polyaniline Salt

The Polyaniline salt was synthesized following an inverse emulsion polymerization protocol [18].
In a typical experiment 30 mL of diesel, employed as a novel dispersion medium, was taken in a round
bottom flask and 2.9 mmol of benzoyl peroxide was added to it followed by addition of 1.5 mmol
DBSA and 2.2 mmol of aniline. A white milky emulsion was formed by addition of 30 mL of distilled
water to this reaction mixture. The reaction mixture was kept on stirring for 24 h at room temperature.
Afterwards, the mixture was put into a separating funnel and 30 mL acetone was added to it. Organic
and inorganic phases were separated. Organic phase containing PANI was washed with distilled water
several times. After washing with water, 30 mL acetone was added to it in order to break emulsion
and green colored PANI was precipitated at the bottom. Then PANI was washed with acetone several
times and the obtained product was dried in oven at 60 °C for 4 h.

2.3. Optimization

A number of reactions were carried in the same manner but varying different reaction parameters
in order to check the effect of monomer, DBSA, oxidant and solvent on the properties and percentage
yield of PANIL The product obtained was further processed for characterization and applications.
Different samples synthesized with varying amounts of monomer, dopant, oxidant, and solvents were
coded as mentioned in Tables 2-5. Percentage yield in terms of aniline concentration was calculated by
using the following formula [4].

Weight of PANI

%o yield of PANI = Weight of aniline

x 100 (1)

2.4. Characterization

Since it is important to know about the properties of a material before subjecting it to some
applications, different tools were utilized to characterize the synthesized PANL

UV/Visible spectra of samples were recorded in chloroform in the range of 300-900 nm by using a
Perkin Elmer (Buckinghamshire, UK) spectrophotometer.

Fourier-transform infrared spectroscopy (FTIR) analysis of powder PANI salt was carried out
in the range of 400-4000 cm™! by using a IRAffinity-1S Shimadzu Fourier Transform Infrared
Spectrophotometer (Shimadzu, Tokyo, Japan). XRD (X-ray diffractometer) patterns of PANI were
achieved by using Cu Ko radiations (A = 1.5405 A) JEOL JDX-3532 (JEOL, Tokyo, Japan). SEM
micrographs were taken by using a JSM-6490 (JEOL, Tokyo, Japan) electron microscope. Thermal
stability of PANI samples were determined by using Perkin Elmer, Diamond series (Waltham, MA,
USA) at heat rate of 10 °C/min under nitrogen atmosphere. Electrochemical properties were studied by
ALS/DY 2323 Biopotentiostate (ALS, Tokyo, Japan). Cyclic voltammograms were recorded in a glass
cell containing three electrode assembly and 0.5 M H,SO4. PANI salt was dip-coated onto a gold sheet
working electrode. Optimum care was made to make sure that every time same amount of polymer is
loaded on the electrode. For this purpose, 5.8% PANI salt solutions were always prepared in mixture
of chloroform and 2-propanol and gold sheet electrode was dipped into it for one minute. Saturated
calomel electrode (SCE) and another gold sheet served as reference electrodes and counter electrode,
respectively. Corrosion studies were performed by using Reference 3000 Zero Resistance Ammeter
(ZRA) potentiostat/galvanostat (Gamry, Warminster, PA, USA).

2.5. Application

Selected PANI salts samples were tested for their corrosion protection ability for stainless steel
electrode against SCE in water samples from Indian Ocean. Prior to this experiment, the disc of
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stainless steel was thoroughly polished with an abrasive paper and washed with acetone, followed by
ethanol and water in order to remove any soluble impurities. Due to the physical shape of the steel
disc electrode, polymer loading was done through drop coating. PANI solution was prepared in the
manner mentioned above for gold sheet electrode and a clear glass rod was dipped in the solution and
used to put a drop on disc electrode. After putting only one drop the solvent was allowed to evaporate
leaving PANI salt in the form of a smooth thin layer on electrode.

After drying, the working electrode was transferred to the three electrode cell containing water
sample from the Indian Ocean. Tafel plot was plotted using ZRA potentiostat/galvanostat Reference
3000 Gamry (USA). DC105 DC corrosion software was used for this study. Potentiodynamic current
density measurements were performed at 25 °C by scanning the potential from —400 mV to +400 mV
at a scan rate of 3 mV/s. Corrosion current (icory), corrosion potential (Ecorr), B, Bc and corrosion
rate (CR, mm/year) was determined by extrapolation of Tafel plot. The experiments were carried out
under the same conditions in triplicate for each sample. In order to see the effect of film thickness on
corrosion protection performance, PANI films with different number of drops coated on the electrode
were studied.

3. Results and Discussion

3.1. Effect of Different Parameters on % Yield

The % yield of PANI salt was found to be greatly affected by changing different parameters like
amount of monomer, oxidant, dopant and solvents. Additional details are given below.

3.1.1. Effect of Amount of Monomer

Figure 1a shows the % yield of PANI in terms of amount of aniline in the feed. At a very small
amount of aniline, no formation of the PANI occurred and instead some oligomers were formed.
The maximum yield was obtained at 2.20 mmol of aniline in the reaction mixture, beyond this a
decrease in the % yield of reaction was observed, which can be attributed to the high monomer to
oxidant ratio that caused a decrease in the efficiency of the oxidant [19] (Table 2). The sample with
maximum yield was labeled as PANI A4.

Table 2. Effect of amount of monomer (aniline) on percent yield of PANIL

SerialNo mmol of Aniline Weight of the PANI (g) % yield Sample Code
1 0.55 0.000 0.00 PANI A1
2 1.10 0.004 4.00 PANI A2
3 1.60 0.023 15.64 PANI A3
4 2.20 0.065 31.90 PANI A4
5 2.74 0.060 24.40 PANI A5
6 3.30 0.071 24.10 PANI A6
7 3.83 0.054 15.12 PANI A7

3.1.2. Effect of Amount of Oxidant

Figure 1b shows the effect of amount of oxidant on the % yield of PANI. At a very low amount
of oxidant (0.21 mmol) no polymerization of aniline occurs, presuming that this amount was not
sufficient to initiate the oxidation of aniline monomer. Increasing the amount of oxidant causes a
gradual increase in the % yield of PANI and maximum yield was obtained at 2.90 mmol of oxidant,
after which there was a decrease in the % yield as shown in Table 3. The % yield was found to decrease
after a further increase in the amount of oxidant, which could be attributed to the production of excess
of radical cations which may result in shorter polymer chain called oligomers. These oligomers were
soluble in acetone and removed from the PANI product during the washing [20]. The sample having
maximum yield was labeled as PANI B9.
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Table 3. Effect of amount of oxidant (Benzoyl peroxide) on percent yield PANI.

Serial No mmol of Oxidant Weight of PANI (g) % yield Sample Code
1 0.21 0.000 0.00 PANI B1
2 0.41 0.001 0.49 PANI B2
3 0.83 0.005 2.45 PANI B3
4 1.03 0.008 3.92 PANI B4
5 1.24 0.026 12.74 PANI B5
6 1.65 0.065 31.86 PANI B6
7 2.06 0.080 40.8 PANI B7
8 248 0.124 60.7 PANI B8
9 290 0.178 87.6 PANI B9
10 3.30 0.123 60.4 PANIB10

3.1.3. Effect of Amount of Dopant

The effect of amount of dopant on the % yield of PANI is shown in Figure 1c. An increase of %
yield was observed when the amount of DBSA was changed from 0.91 mmol to 1.52 mmol which could
be due to the insertion of more DBSA into polymer chain, hence increasing its weight. The sample with
maximum yield was named as PANI D2. After 1.52 mmol there was a decrease in the yield which may
be due to the formation of more micelle having limited number of monomer particles, which results in
limited growth of the polymer chain. As a result, small chain polymer formation occurs. This product
was soluble in acetone and removed during washing [21]. The filtrate was further analyzed using
UV/Visible spectroscopy. The UV/visible spectrum of filtrate is given in Figure le. The appearance of
peaks in 445 and 279 nm regions supported the formation of oligomers [22,23].

Table 4. Effect of amount of dopant (DBSA) on percent yield of PANI.

Serial No mmoles of DBSA Weight of PANI (g) % yield Sample Code
1 091 0.065 31.86 PANI D1
2 1.52 0.116 56.86 PANI D2
3 2.13 0.112 54.90 PANI D3
4 3.04 0.096 47.05 PANI D4
5 3.65 0.045 22.05 PANI D5
6 4.56 0.084 41.17 PANI D6

3.1.4. Effect of Amounts of Solvents

Figure 1d shows the effect of amounts of solvents (diesel and water) on the % yield of PANI.
The quantity of both the solvents was varied from 10 mL to 50 mL and maximum yield was obtained
for 1:1 ratio (30 mL diesel and 30 mL water). The sample obtained at 1:1 ratio of solvents was labeled
as PANI S3. Increasing the amount of water as inorganic phase did not favor the inverse emulsion
polymerization [10], whereas a further increase in the amount of diesel could reduce the chances of
collision between monomer and oxidant particles to produce PANI due to the denser nature of diesel.

After optimizing all the reaction conditions necessary for the synthesis, an experiment was
conducted in which all optimized conditions were applied and the polymer obtained was labeled as
PANI salt.



Materials 2019, 12, 1527 6 of 19

Table 5. Effect of amount of solvents (diesel/water) on percent yield of PANIL.

. Amount of Organic Amount of Weight of o v
Serial No Solvent (mL) Water (mL) PANI () % Yield Sample Code
1 50 10 0.026 12.574 PANI S1
2 40 20 0.042 20.58 PANI S2
3 30 30 0.043 21.07 PANI S3
4 20 40 0.030 14.70 PANI S4
5 10 50 0.036 17.64 PANI S5
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Figure 1. Effect of different reaction parameters on % yield of PANI (a) Amount of monomer, (b)
Amount of Oxidant, (¢) Amount of dopant in mmol, (d) Amount of solvent in mL, and (e) UV/Visible
spectrum filtrate from product washing indicating the presence of oligomers.

3.2. Solubility of the Polymer

The solubility of PANI salt was checked in different common solvents and was found to be soluble
in chloroform, NMP, DMSO and in a 1:3 mixture by volume of 2-propanol and toluene. Better solubility
(5.8%) was observed in chloroform. The solubility of PANI in NMP and DMSO can be attributed
to the polar nature of these solvents while solubility in chloroform might be due to the fact that the
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attachments of three electronegative chlorine atoms to carbon makes hydrogen more electropositive
which in turn form a hydrogen bond with PANI [4]. The PANI salt was insoluble in pure ethanol,
2-propanol, and toluene but was soluble in 1:3 mixture of 2-propanol and toluene, which may be due to
presence of polar and non polar end in 2-propanol. Perhaps the non polar end of 2-propanol interacts
with the non polar toluene resulting in a big non polar group which in turn interacts with long non
polar alkyl group of DBSA while the polar end of 2-propanol form hydrogen bonds with PANI [24]. The
appearance of green color in chloroform and 1:3 mixture of 2-propanol and toluene confirms the doping
of DBSA into PANI. The blue color of other PANI solutions suggests its transformation to the base
form. This behavior could be due to the solvatochromic effect of PANI and its interaction with solvents
characterized by different polarity. Solvatochromism is the property of a chemical substance to change
color with the change of solvent polarity. The solvatochromic shift of a chromophore reflects a strong
relation between solvent polarity with the absorption and emission spectra [25,26]. The solutions of
PANI in different solvents are shown in Figure 2.

1:3 Mixture of DMSO NMP Chloroform
2-propanol & Toluene

Figure 2. Solutions of PANI salt in different solvents as indicated.

3.3. UV)Visible Spectroscopy

The doping effect of DBSA on PANI was investigated through UV/Visible spectroscopic analysis,
where chloroform is used as a solvent. The UV/Visible spectra of PANI salts, having different
concentrations of monomer, oxidant, dopant and solvent are given in Figure 3a—d, respectively. All the
samples give rise to three characteristics absorption bands, with slight variation in the band position,
in the range of 341-349, 411417, and 761-800 nm, which correspond, respectively, to —m* transition of
the benzenoid ring, polaron-7* transition of the quinoid ring and n-polaron transition [16,27,28].

The differences in the peak positions and intensities in the UV/Visible spectra of these samples might
be a consequence of the extent of doping and different conjugation length of polymer chains [11,15,29].
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Figure 3. UV/Visible Spectra of different PANI samples indicated in Tables 1-4. (a) Monomer optimized
samples (b) Oxidant optimized samples (c¢) DBSA optimized samples (d) Solvents optimized samples.

For ready comparison, the UV/Visible spectra of selected samples synthesized with varying
amounts of monomer, oxidant, DBSA and solvent are shown in Figure 4. From these spectra it is
indicated that PANI has been successfully prepared in the salt form. The presence of two peaks in the
visible region for all samples indicates that the samples are collected in the doped form [8]. PANI A4,
PANI B9, PANI D2, and PANI S3 showed almost same UV/Visible spectra, however, a blue shift can be
seen in the red region peak of PANI B9. This might be due to over oxidation of aniline due to presence
of more oxidant units which resulted in shorter polymer chain. Due to smaller chain formation, steric
hindrance between dopant and polymer chain increases and hence transition may become difficult [30].

149 —— PANI A4

—— PANID2

1.2 PANI B9

1 ——PANI S3
1.0

0.8 1

0.6

Absorbance (a.u.)

0.4 1

0.2 1

0.0 1
T T T T T T T T T T T 1
300 400 500 600 700 800 900
Wavelength (nm)

Figure 4. UV/Visible spectra of PANI A4, PANI D2, PANI B9 and PANI S3.

The UV/Visible spectrum of optimized PANI salt (Figure 5) exhibit all featured characteristics of
good quality PANL
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Figure 5. UV/Visible spectrum of PANI salt.

3.4. Extent of Doping

The extent of doping was calculated from the UV/Visible absorption spectra and is shown in
Table 6. The level of doping is the ratio between exciton (m-polaron transition)/benzenoid (m—m*
transition) [17]. A very slight difference has been observed in the extent of doping for different samples
synthesized at different conditions. These results suggest that the extent of doping into PANI chain is
not influenced by changing the amounts of monomer, dopant and solvent, however PANI B9 shows
lower level of doping which might be a result of over oxidation of PANI due to more oxidant providing
less chance to the dopant to enter into a polymer chain [31].

Table 6. The extent of doping of DBSA into PANI Chain.

Serial No Sample E/B
01 PANI A4 2.21
02 PANI D2 2.25
03 PANI B9 2.14
04 PANI S3 2.22

3.5. FTIR Spectroscopy

The FTIR spectra of different PANI samples, i.e., PANI A4, PANI B9, PANI D2 and PANI S3 are
shown in Figure 6, where as the FTIR spectra of the PANI salt is shown in Figure 7. The peak positions
of PANI along with their assignment are given in Table 7, where the 503 and 573 cm™~! band can be
assigned to the absorption of -SOs;H and SO;71[16,18].

The peak at 798 cm~! represents the C-H bending vibrations [20], 1002 cm™ is because of the
absorption of -SOsH which is a prominent peak in all these samples [32]. The presence of bands at
503, 573 and 1002 cm™! indicate the presence of DBSA. The peak at 1122 cm™! is due to the in-plane
bending vibration of C-H [33], while the 1298 cm™! is because of C-N stretching of the benzenoid
ring of PANI [34]. The band at 1467 cm™! and 1565 cm™! are assigned to benzenoid and quinoid ring
vibration [14]. The presence of a peak at 3232 cm™! confirmed the presence of N-H and NH,, which
give rise to symmetric and asymmetric stretching [6]. The C-H stretching vibrations of the aromatic
aniline ring are observed in the range of 2853 and 2916 cm™! [8]. The appearance of all these typical
peaks of PANI and DBSA provides the evidence for formation of PANI doped with DBSA.
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Figure 6. FTIR spectrum of different PANI samples as indicated.
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Figure 7. FTIR spectrum of PANI salt.

Table 7. Peak assignments in the FTIR spectra of PANI salt.

Serial No Peak Positions (cm™1) Peak Assignment
01 503 and 573 -SO3H and SO;~! of DBSA
02 798 Out of plane C-H bending vibration
03 1002 -SO3H of DBSA
04 1122 In-plane bending vibration of C-H
05 1298 C-N stretching of benzenoid ring
06 1467 Benzenoid ring
07 1565 Quinoid ring C-N strecting
08 2853 and 2916 C-H stretching vibrations of aromatic aniline ring
09 3232 Symmetric and asymmetric stretching of NH, and NH

3.6. X-Ray Diffraction Analysis

The X-ray diffraction (XRD) technique is used to find the crystallinity of polymers in both the
microcrystal and powder form. The XRD patterns of PANI A4, PANI B9, PANI D2, PANI S3 are
given in Figure 8a—d, respectively, and that of PANI salt is presented in Figure 9. All these samples
show a sharp peak at 25° and a broad peak at 19°, which are the characteristic peaks of PANI [35]
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The broad peak at 19° shows the amorphous nature of PANI which has strong correlation with the
already reported one [15]. This peak clarifies the doping of polymer with DBSA. The intense peak at
25° indicates the presence of polymer crystallinity, which is due to the Vander Waal’s distance among
the stacks of phenylene ring of PANI chain [9]. The crystallinity of PANI, due to repetition of quinoid
and benzenoid rings in the polymer chain [36] leads to high conductivity of PANI salt.
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Figure 8. X-ray diffractograms of (a) PANI A4 (b) PANI B9 (c) PANI D2 (d) PANI S3.
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Figure 9. X-ray diffractogram of PANI salt.
3.7. Cyclic Voltammetry

The redox nature of PANI salt was investigated through cyclic voltammetry, using gold as a
working electrode in a potential range of —0.2 to 0.9 V, scan rate of 50 mV/s in supporting electrolyte
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of 0.5 M H,SO;4. The cyclic voltammograms registered for PANI A4, PANI B9, PANI D2, PANI S3
and PANI salt are shown in Figures 10 and 11. These cyclic voltammograms indicate that almost all
samples have four peaks and two redox pairs. The first peak at around Egcg = 0.18 to 0.23 V is due to
the conversion of neutral leucoemeraldine form to partially oxidized emeraldine form of PANI. This
peak is shifted to 0.37 V in the PANI S3 sample. The peak at around Egcg = 0.77 to 0.82 V for all these
samples can be assigned to the conversion of emeraldine to pernigraniline state of PANI. This peak has
been shifted to 0.70 V in the PANI S3 sample. The shifting of these redox peaks may be due to the
high doping level of DBSA content. Doping has a direct relation with conductance of polymer to some
extent but beyond 50% doping, the excess of a long chain dopant such as DBSA causes steric hindrance.
Consequently the interaction of PANI chain with DBSA decreases, which reduces the delocalization of
7 electrons and hence results in a low charge transfer [17]. In the reverse process, the peak at around
Escg = 0.64 to 0.54V show the conversion of pernigraniline to emeraldine form of PANI. Similarly, the
appearance of peaks at Egcp = —0.007 V, 0.023 V, 0.0011 V, —0.0071V, and —0.035 V show the conversion
of emeraldine form of PANI back to the fully reduced leucoemeraldine [35]. All these discrete peaks
represent good electroactivity and reversibility of the material.
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Figure 10. CV of synthesized PANI samples coated on a gold sheet electrode, in 0.5 M H,SO; at a scan

rate of 50 mV/s (a) PANI A4 (b) PANI B9 (c) PANI D2 (d) PANI S3.
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Figure 11. Cyclic voltammogram of PANI salt coated on a gold sheet electrode, in 0.5 M H,SO4 at a
scan rate of 50 mV/s.

3.8. Application of the Synthesized PANI in Corrosion Protection of Steel

Literature studies reveal that electrochemically synthesized PANI has better corrosion protection
ability when coated on metal surface in acidic media but fails to do so in saline media [32,37]. Rout,
TXK. et al. used a formulated blend with polyaniline as a corrosion protecting material of steel and that
reduced the corrosion of steel up to 3.5 mm/year, however due to lower solubility they used different
materials for making blend which makes this material very expensive from an economic point of
view [38].

Chemically synthesized PANI has also been used as a corrosion protective material for stainless
steel [9].

Keeping in mind the usefulness of PANI for corrosion protection of steel, the samples synthesized
in present study were also tested for their corrosion protection ability. The Tafel plots of uncoated
stainless steel and PANI A4, PANI B9, PANI D2 and PANI S3 coated stainless steel are shown in
the Figure 12a. The corresponding values of icorr, Ecorr and corrosion rate per year is shown in the
Table 8. The Tafel plot of each optimized sample vs uncoated stainless steel shows corrosion protection
on stainless steel in water samples from the Indian Ocean. The Indian Ocean has an average of
3.5% salinity, mostly due to NaCL. Generally the ocean environment is considered as a complex
chemical system where the environment is more aggressive and corrosive than the laboratory prepared
electrolytes. It possesses salinity, complex biological activity, a number of minor ions, pollutants and so
on. However, it is the salinity which is considered as the major cause of corrosion in oceans. Yet it is not
uniform even in the same ocean and there might be different ions content at different places. Generally,
these ions of the dissolved salts, which mainly consist of NaCl, play a very important role in corrosion
by covering the steel surface with insoluble products and enhancing passivation of the surface [39,40].

From the Table 8 it can be observed that among all samples of PANI the PANI B9 sample shows a
remarkable positive potential shift and reduction in i¢orr value as compared to uncoated stainless steel.
The corrosion rate of uncoated stainless steel is 4.906 CR mm/year and that of PANI B9 is 1.575 CR
mm/year showing that PANI coating on stainless steel has greatly reduced the corrosion of steel.

Figure 13 shows the Tafel plot of PANI salt coated stainless steel vs uncoated stainless steel, and
the corresponding icorr, Ecorr and CR mmy/year is shown in the Table 8. From the Table 8 it is clear that
the values of icorr, Ecorr and CR for uncoated stainless steel are 10.70 nA, —467.0 mV and 4.906 mm/year,
respectively while for PANI salt coated stainless steel these values are 0.859 pA, —295.0 mV and
0.3927 mm/year, which indicate a remarkable positive shift in potential, great reduction in i¢orr value
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and greater decrease in corrosion rate. These results indicate that diesel can effectively be used in the
synthesis of efficient and cost effective corrosion protection coating.

Tafel polarization of single layered coating (Single drop coating) have been checked and compared
with Tafel plots of many layered coatings (double and triple), as shown in the Figure 12b. A negligible
difference in corrosion has been observed among single layered, doubled and tripled layered. However,
it was found that sticking power of polymer was reduced in many layered coating as compared to a

single layer.
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Figure 12. (a) Tafel plot of uncoated and different PANI coated stainless steel with different samples, as
indicated. (b) Tafel plot of PANI coated via different no of drops on steel.
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Figure 13. Tafel plot of (a) uncoated and, (b) PANI coated stainless steel.
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Table 8. Values of icorr (LA), Ecorr (MV), Ba (V/decade), B¢ (V/decade) and CR (mm y_l) for different

samples of PANI salt.

Material icorr (LA) Ecorr (mV) Ba (V/decade) B¢ (V/decade) CR (mm y1)
Uncoated steel 10.70 —467.0 0.5304 0.2708 4.906

PANI A4 7.050 -231.0 0.1243 0.1818 3.223

PANI B9 3.450 —-184.0 0.959 0.2586 1.575

PANI D2 4.870 —400.0 0.272 0.221 2.226

PANI S3 4.380 320.0 0.2865 0.1875 2.000

PANI salt 0.859 —295.0 0.1086 0.1194 0.3927

3.9. Morphology of PANI

The morphology of PANI salt was studied at different magnification and is presented in Figures 14
and 15. The images show that PANI salt has a cauliflower like morphology, having good porosity [17].
The appearance of porosity in all micrographs make the PANI salt a good corrosion inhibiting material
having self healing ability due to presence of pores [41]. The material can also be used effectively for
the immobilization of bio components.

£ &

BOASCLTR Ak
ak \‘xk{“l'éﬁq ot I OR
» . "" v _ < .

Figure 14. Scanning electron micrograph (a) PANI A4 (b) PANI B9 (c) PANI D2 (d) and PANI S3.
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Figure 15. Scanning electron micrograph of PANI salt.

3.10. Thermogravimeteric Analysis

Kinetics of thermal decomposition along with the quantity of dopant inserted in the polymer
structural backbone is determined by thermogravimetric analysis (TGA). The thermograms of different
samples of PANI are shown in Figures 16 and 17. The sample was kept at 50 °C for one minute and
then subjected to heat at the rate of 10 °C/min. The TGA curves shows that PANI A4 is thermally stable
up to 305 °C, PANI D2 up to 293 °C, PANI B9 PANI up to 299 °C, PANI S3 PANI up to 300 °C and
PANI salt up to 417 °C. The thermogram of PANI salt shows a three-step degradation pattern. The first
weight loss occurs up to 293 °C which can be attributed to unbound moisture because PANI salt dried
at vacuum still absorbs moisture due to its hygroscopic nature [2]. The second weight loss occurs at
the range of 290417 °C, which corresponds to the loss of dopant [28]. After 417 °C, the loss in weight
occurs in a continuous way, which is due to the structural degradation of PANI backbone [42].
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Figure 16. Thermograms of different (a) PANI A4 (b) PANI B9 (c) PANI D2 and (d) PANI S3.
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Figure 17. TGA curve of PANI salt.
4. Conclusions

In conclusion, diesel can be effectively utilized for the cost effective synthesis of highly porous,
soluble, thermally stable and anticorrosive polyaniline. The synthesized polymer retains all the good
properties of PANI salt and hence make it a potential candidate for various technological applications.
The cost of synthesis of PANI salt with improved solubility, thermal stability and good corrosion
protection ability has been reduced to approximately 96% using diesel as a solvent instead of commonly
used organic solvents.
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