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Abstract: In this study, we created a new model to determine strain fatigue characteristics obtained
from a bending test. The developed model consists of comparing the stress and strain gradient
surface ratio for bending and tensile elements. For model verification, seven different materials
were examined based on fatigue tests we conducted, or data available in the literature: 30CrNiMo8,
10HNAP, SM45C, 16Mo3 steel, MO58 brass, and 2017A-T4 and 6082-T6 aluminum alloys. As a result,
we confirmed that the proposed method can be used to determine strain fatigue characteristics that
agree with the values determined on the basis of a tensile compression test.
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1. Introduction

Almost every type of industry has been considered in research on the analysis and, ultimately, the
prevention of risk, especially in terms of occupational safety. As such, estimating the fatigue limit is one
of the most important aspects of strength analysis of structural components. To examine the fatigue
limit of various materials, tests must be performed under tension–compression or oscillatory bending,
and the test results for the specimens of the occurrence of stresses and strains must be subsequently
analyzed. However, the origin of these stresses is not usually considered, although the terms normal
or shear stress appears in the analysis of fatigue life. The amplitude of the normal stress σa can be
derived, for example, from tension–compression, oscillatory bending with restraint, three-point and
four-point bending, or rotary bending.

It is important to note that in the case of bending, we always have a linear distribution of the
strain gradient, which in the case of elasticity corresponds to the same stress distribution. The situation
changes dramatically in the event of plastic deformations. Here, even if the sheet is rolled, the stress
distribution is not linear due to various elastic and plastic deformations in the cross-section [1].
Therefore, the problem is much more complicated for bent elements. Plastic deformations appear on
the surface, which disappear as they approach the bending plane. The greater these deformations, the
more the stress distribution has a gradient that is more and more perpendicular to the surface. In the
extreme case of a plastic joint, this distribution approaches the rectangular one in the tension and
compression parts, respectively. In addition, in the case of the mesoscopic scale, the plastic deformation
gradient significantly affects the corresponding stress gradient [2].

Few studies have paid attention to differences in fatigue resulting from the load [3–12]. A different
fatigue life may correspond, as a result, to the same strain or stress curve. Dorr T. et al. [12] proved
that changing the bending plane during tests by π/2 changes the fatigue life as well. None of the
cited works have thoroughly analyzed this phenomenon. Although there are theories that consider
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stress and strain gradients in material fatigue in general, for example, of Gil-Sevillano et al. [13], there
are none that use it to better predict fatigue life according to the oscillatory bending tests. Therefore,
determining the characteristics using tests at different loads for the same materials is required.

The effect of the stress gradient, and thus the strain gradient, is rarely directly included in fatigue
life estimation models. The gradient method is one of the methods of forecasting fatigue limit discussed
in the literature [14], where, when using a gradient method, the stress is modified with a relative or
absolute stress gradient.

Few attempts have been made to discuss or use the gradient in the literature. In one of the latest
publications [15], a strain gradient was used to predict the influence of the microstructure on the
initiation of failure, in addition to initial works considering the stress gradient [16–18]. The reported
results can be used to calculate stress for failures with sharp notches and to assess the fatigue limit of
notched components. These works showed that fatigue is significantly influenced by both the load
method and geometry, e.g., the notch, where these relationships can be described based on the stress
gradient using a dimensionless coefficient, given by:

x =
1

σmax

∂σy

∂x
(1)

where x is the distance from the bending plane, σmax is the maximum stress. The gradient changes
with the change in the specimen size. This model was used in previous studies [19].

In this study, seven different materials were used based on selected fatigue tests available in the
literature, along with tests conducted by us: 10HNAP, 30CrNiMo8, SM45C, 16Mo3 steel, MO58 brass,
and 2017A-T4 and 6082-T6 aluminum alloys.

Fatigue life determined from fatigue tensile–compressing tests indicates lower or comparable
values for fatigue life obtained under oscillatory bending [20]. Therefore, let us assume the theory
that when using the tensile–compressing model for calculations of fatigue life for oscillatory bending,
correct and safe results can be expected [21–23].

The results obtained under oscillatory bending conditions represented by the determined secant
modulus based on the ratio of the stress gradient and the strain gradient at the critical location, i.e.,
on the surface, are significantly similar to the results obtained during tension–compression.

2. Materials and Methods

2.1. Stress and Strain Gradient

Basquin [24] proposed a fatigue graph depicting the dependence of the number of cycles to failure
from the stress amplitude in a double logarithmic system log(σa) − log

(
N f

)
and a formula expression

for tension–compression in exponential notation can be represented as [6]:

σa = σ f
(
2N f

)b
(2)

or in the form of:
log N f = A + m log σa, (3)

where Nf is the fatigue life in cycles, σa is the stress amplitude for tension–compression or bending,
and a and m are constants in the regression model.

The basic fatigue characteristic for tension–compression is the Manson–Coffin–Basquin modulus
(MCB) [24,25]:

εa,t = εa,e + εa,p =
σ′ f

E

(
2N f

)b
+ ε′ f

(
2N f

)c
(4)

where εa,t is the amplitude of the total strain expressed by the sum of the amplitudes of the elastic εa,e

and plastic εa,p strain; 2Nf is the number of loading reversals (semi-cycles); E is Young’s modulus; σ’f
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and c are the coefficient and exponent of the fatigue limit, respectively; and ε’f and c are the coefficient
and exponent of the plastic fatigue strain.

For tension–compression, the uniaxial distribution of strains and stresses is as presented in
Figure 1.
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distribution of normal strains in the cross-section for bending was linear [21], and we assumed that 
this is a geometric condition that must be met first to obtain fatigue values under bending conditions 
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where x is the distance from the bending plane, and R is the maximum height. 
The second condition to be met is a physical condition, i.e., a bending moment that must be 

balanced by the normal stresses: 𝑀 = 𝜎 (𝑥, 𝑦)𝑥𝑑𝑆 (6) 
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Figure 1. The distribution of (a) ε strains and (b) σ stresses under tension–compression.

In the case of an elastic body model for bending, the distribution of strains and corresponding
stresses are linear, as presented in Figure 2.
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In the literature, no simple model exists for determining strains and stresses according to the
model of the elastoplastic body for specimens without notches when bending. For small strains,
the distribution of normal strains in the cross-section for bending was linear [21], and we assumed that
this is a geometric condition that must be met first to obtain fatigue values under bending conditions
in the elastoplastic model.

εa(x) = εa max
X
R

(5)

where x is the distance from the bending plane, and R is the maximum height.
The second condition to be met is a physical condition, i.e., a bending moment that must be

balanced by the normal stresses:

Mb =

∫
S
σ(x, y)xdS (6)

The Ramberg–Osgood equation combines the stress amplitude with the strain amplitude and is
described as [26]:

εa,t = εa,e + εa,p =
σa

E
+

(
σa

K′

) 1
n′

(7)
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where εa is the stress amplitude, K’ is the coefficient of cyclic strength, and n’ is the exponent of
cyclic strengthening.

In total, the system of equations consisting of conditions in Equations (5)–(7) must be met; on
this basis, the elastoplastic strains and appropriate stresses can be determined. The distribution of
strains and stresses was shaped as presented in Figure 3. The linear strain gradient corresponded to a
non-linear stress gradient.
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Using the strain derivative after x from Equation (6), we obtained a derivative for strains:

dε
dx

=
εamax

R
(8)

In the elastic range, the stress derivative after x for bending has the form:

dσ
dx

=
σamax

R
(9)

By using the assumptions in Equations (7) and (8), we obtained the ratio of stress and strain
derivatives: (

dσ
dx

)(
dε
dx

) =

(
σa max

R

)(
εa max

R

) =
σamax

εamax
= E (10)

which in effect, corresponds to Young’s modulus of elasticity.
According to Equations (3) and (4), for a model of the elastoplastic body:

ε(x) = εamax
x
R

=
σa(x)

E
+

(
σa(x)

K′

)1/n′

(11)

Counting the derivative on both sides after x from Equation (10), we obtained:

εamax

R
=

1
E

dσa(x)
dx

+
( 1

K′

)1/n′( 1
n′

)
σa(x)

1/n′−1
(

dσa(x)
d(x)

)
(12)

and after transformation, we obtained:

εamax

R
=

[
1
E
+

( 1
K′

)1/n′( 1
n′

)
σa(x)

1/n′−1
]
·

dσa(x)
d(x)

(13)

In other words,
dσ(x)
d(x)

=

εamax
R

1
E +

(
1

K′
)1/n′ 1

n′ σ(x)
1/n′−1

(14)
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Assuming that the secant modulus at a given point includes plastic strains, it is defined as:

Ep =
dσ
dx
dε
dx

(15)

by introducing Equations (8) and (14) into (15), we obtained:

Ep =
1

1
E +

(
1

K′
) 1

n′ 1
n′ σ(x)

1
n′ −1

(16)

Eventually, by dividing the sides of Equations (10) and (16), we obtained:

E
Ep

= 1 + E
( 1

K′

)1/n′ 1
n′
σa(x)

1/n′−1 (17)

where K’ is the coefficient of cyclic strength and n’ is the exponent of cyclic strengthening.
We proposed the following relationship between the amplitude for oscillatory bending according

to the elastoplastic model and the amplitude including the gradient:

σa,grad = σa,e−p

( E
EP

)a
(18)

where E is Young’s modulus, a is the exponent of fatigue stress, and σa,e−p is the stress amplitude for
bending according to the full elastic model.

In the proposed model, we assume that a in Equation (18) is:

a =
n′

5
(19)

Eventually, by substituting Equation (17) into Equation (18), we obtained:

σa,grad = σa,e−p

1 + E
( 1

K′

) 1
n′ 1

n′
σa(x)

1
n′ −1


1

5n′

(20)

We obtained the maximum stress on the surface; in other words, for x = R, σa(x) = σa,e−p or:

σa,grad = σa,e−p

1 + E
( 1

K′

) 1
n′ 1

n′
σa,e−p

1
n′ −1


1

5n′

(21)

Calculating the maximum stress provided the basis for calculating the strain gradient:

εa,grad =
(σa,grad

E

)
+

(σa,grad

K′

) 1
n′

(22)

Eventually, after introducing Equation (21) into Equation (22), we obtained:

εa,grad =


σa,e−p

[
1 + E

(
1

K′
) 1

n′ 1
n′ σa,e−p

1
n′ −1

] 1
5n′

E

+

σa,e−p

[
1 + E

(
1

K′
) 1

n′ 1
n′ σa,e−p

1
n′ −1

] 1
5n′

K′



1
n′

(23)
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2.2. Experimental Tests

The analysis was conducted on 7 materials from different material groups. A part of the
research data was obtained from the available literature, and some data were obtained from our
own research. The analyzed and tested materials were 10HNAP, based on our research under
tension–compression [27] and under bending [28]; 16Mo3, based on data from the literature for
tension–compression [29] and on the basis of our own tests for bending [30]; 30CrNiMo3, based on
data from the literature for bending [30] and tension–compression [31]; MO58, on the basis of our own
tests for bending [32] and for tension–compression [33]; SM45, based on data from the literature for
bending [34] and for tension–compression [29]; 2017A-T4, based on our own tests under bending [35]
and tension–compression [36]; and 6082-T6, also on the basis of our own tests under bending [37] and
tension–compression [38]. Table 1 presents the chemical composition of tested materials, and Table 2
presents the mechanical properties of these materials.

Table 1. Chemical composition of the tested materials (%).

Material
Chemical Composition

C Si Mn P S Cr Ni Mo Cu Fe Mg Zn Zr + Ti Pb Sn Al

10HNAP 0.115 0.41 0.71 0.082 0.028 0.81 1.90 0.30 - The
rest - - - - - -

30CrNiMo8 0.3 0.27 0.49 0.019 0.009 3.89 1.90 0.30 - The
rest - - - - - -

SM45C 0.45 0.35 0.64 0.011 0.012 - - - - The
rest - - - - - -

16Mo3 0.19 0.28 0.69 0.019 0.024 - - 0.33 - The
rest - - - - - -

MO58 - - - - - - Max
0.2 - 56–60 Max

0.5 - The
rest - 1–3.5 Max

0.5
Max

1

2017(A) - 0.2–0.8 0.4–1.0 - - <0.10 - - 3.5–4.5 <0.7 0.4–1.0 <0.25 <0.25 - - The
rest

6082 - 0.7–1.3 0.4–1.0 - - <0.25 - - <0.1 <0.5 0.6–1.2 <0.2 <0.1 - - The
rest

Table 2. Mechanical properties of the tested and analyzed materials, such as offset yield point (Rp0.2),
ultimate tensile strength (Rm), relative elongation (A5), and Poisson’s ratio (ν).

Material Rp0.2 (MPa) Rm (MPa) A5 (%) ν

10HNAP 464 566 32 0.29
30CrNiMo8 795 1014 6.3 0.29

SM45C 430 680 15 0.29
16Mo3 335 481 24 0.30
MO58 399 484 - 0.32

2017-T6 395 545 21 0.32
6082-T4 365 385 27.2 0.32

Tensile–compression tests were performed under standard conditions on solid round specimens.
In fatigue tests, diabolo-type cylindrical specimens with no geometric notch were used, as presented in
Figure 4. The tests under cyclic bending conditions at the controlled moment (Figure 5a) were conducted
for 10HNAP steel, Mo58 brass, and 2017(A)-T4 and 6082-T6 aluminum alloys. However, cyclic bending
tests with controlled strains (Figure 5b) were conducted for 16Mo3 steel and 6082-T6 aluminum.



Materials 2020, 13, 173 7 of 15

Materials 2019, 12, x FOR PEER REVIEW 6 of 14 

 

and on the basis of our own tests for bending [30]; 30CrNiMo3, based on data from the literature for 
bending [30] and tension–compression [31]; MO58, on the basis of our own tests for bending [32] and 
for tension–compression [33]; SM45, based on data from the literature for bending [34] and for 
tension–compression [29]; 2017A-T4, based on our own tests under bending [35] and tension–
compression [36]; and 6082-T6, also on the basis of our own tests under bending [37] and tension–
compression [38]. Table 1 presents the chemical composition of tested materials, and Table 2 presents 
the mechanical properties of these materials. 

Table 1. Chemical composition of the tested materials (%). 

Material 
Chemical Composition 

C Si Mn P S Cr Ni Mo Cu Fe Mg Zn Zr + Ti Pb Sn Al 

10HNAP 0.115 0.41 0.71 0.082 0.028 0.81 1.90 0.30 - 
The 
rest 

- - - - - - 

30CrNiMo8 0.3 0.27 0.49 0.019 0.009 3.89 1.90 0.30 - 
The 
rest 

- - - - - - 

SM45C 0.45 0.35 0.64 0.011 0.012 - - - - 
The 
rest 

- - - - - - 

16Mo3 0.19 0.28 0.69 0.019 0.024 - - 0.33 - 
The 
rest 

- - - - - - 

MO58 - - - - - - 
Max 
0.2 

- 
56–
60 

Max 
0.5 

- 
The 
rest 

- 
1–
3.5 

Max 
0.5 

Max 1 

2017(A) - 
0.2–
0.8 

0.4–
1.0 

- - <0.10 - - 
3.5–
4.5 

<0.7 
0.4–
1.0 

<0.25 <0.25 - - 
The 
rest 

6082 - 
0.7–
1.3 

0.4–
1.0 

- - <0.25 - - <0.1 <0.5 
0.6–
1.2 

<0.2 <0.1 - - 
The 
rest 

Table 2. Mechanical properties of the tested and analyzed materials, such as offset yield point (Rp0.2), 
ultimate tensile strength (Rm), relative elongation (A5), and Poisson’s ratio (ν). 

Material Rp0.2 (MPa) Rm (MPa) A5 (%) ν 
10HNAP 464 566 32 0.29 

30CrNiMo8 795 1014 6.3 0.29 
SM45C 430 680 15 0.29 
16Mo3 335 481 24 0.30 
MO58 399 484 - 0.32 

2017-T6 395 545 21 0.32 
6082-T4 365 385 27.2 0.32 

Tensile–compression tests were performed under standard conditions on solid round 
specimens. In fatigue tests, diabolo-type cylindrical specimens with no geometric notch were used, 
as presented in Figure 4. The tests under cyclic bending conditions at the controlled moment (Figure 
5a) were conducted for 10HNAP steel, Mo58 brass, and 2017(A)-T4 and 6082-T6 aluminum alloys. 
However, cyclic bending tests with controlled strains (Figure 5b) were conducted for 16Mo3 steel and 
6082-T6 aluminum. 

 
Figure 4. The specimen’s geometry for fatigue testing, in mm. 

Figure 4. The specimen’s geometry for fatigue testing, in mm.Materials 2019, 12, x FOR PEER REVIEW 7 of 14 

 

  
(a) (b) 

Figure 5. Research stands for fatigue tests with (a) controlled moment and (b) controlled strain. 

2.3. Analysis 

For oscillatory bending, in the first stage, the stress amplitudes from the elastic body model were 
converted into the elastoplastic body model according to the description and Equations (5)–(7). Then, 
the calculated stress amplitudes were converted into the model proposed in this paper, which 
included the stress gradient, according to Equation (21) σa,grad, which was the basis for calculating the 
strain gradient using Equation (23). 

We interpreted the results by analyzing the fatigue life scatter, which was used with the help of 
the logarithm [39]: 𝐸 = 𝑓 log 𝜀𝜀  (24) 

where 𝜀 , with the use of the MCB in Equation (4). 
The literature [25] suggested determining MSE as: 

𝐸 = Σ 𝑙𝑜𝑔 𝜀𝜀𝑛  (25) 

Eventually, to determine the mean scatter, we used: 𝑇 = 10  (26) 

In the available literature, the subject of scattering has been discussed [14]. We used scattering 
as one of the methods for comparing models assessing fatigue life. 

The scattering was counted in the first stage for tension–compression, then for bending, as 
described by the strain amplitude according to the elastoplastic model 𝜀a,e-p, and then by including 
strain gradients 𝜀a,grad in relation to the base characteristic determined for tension–compression. 

Figures 6–13 depict the nominal strain amplitudes, amplitudes determined according to the 
elastoplastic body model, and, according to the proposed model, the strain gradient against the 
amplitudes obtained for tension–compression. The inclusion of the elastoplastic model resulted in 
the reduction of curves, illustrating the results obtained from tests under cyclic bending conditions 
and the approximation to the curves obtained from tensile–compression testing. On the other hand, 
considering the gradient effect for most of the analyzed materials led to cyclic bending and to 
tension–compression. 

For 10HNAP steel (Figure 6), the strain amplitude gradient for the results for bending was below 
the amplitude for the results obtained under bending according to the elastoplastic model. The 
amplitude of the strain almost coincided with that under tension–compression. 

The tests and calculations for 30CrNiMo8 (Figure 7) and SM45C steel (Figure 8) were similar. 

Figure 5. Research stands for fatigue tests with (a) controlled moment and (b) controlled strain.

2.3. Analysis

For oscillatory bending, in the first stage, the stress amplitudes from the elastic body model were
converted into the elastoplastic body model according to the description and Equations (5)–(7). Then,
the calculated stress amplitudes were converted into the model proposed in this paper, which included
the stress gradient, according to Equation (21) σa,grad, which was the basis for calculating the strain
gradient using Equation (23).

We interpreted the results by analyzing the fatigue life scatter, which was used with the help of
the logarithm [39]:

E = f
(
log

εa

εcal

)
(24)

where εcal, with the use of the MCB in Equation (4).
The literature [25] suggested determining MSE as:

ERMS =

√
Σlog2 εa

εcal

n
(25)

Eventually, to determine the mean scatter, we used:

TRMS = 10ERMS (26)

In the available literature, the subject of scattering has been discussed [14]. We used scattering as
one of the methods for comparing models assessing fatigue life.

The scattering was counted in the first stage for tension–compression, then for bending,
as described by the strain amplitude according to the elastoplastic model εa,e-p, and then by including
strain gradients εa,grad in relation to the base characteristic determined for tension–compression.
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Figures 6–13 depict the nominal strain amplitudes, amplitudes determined according to the
elastoplastic body model, and, according to the proposed model, the strain gradient against the
amplitudes obtained for tension–compression. The inclusion of the elastoplastic model resulted in the
reduction of curves, illustrating the results obtained from tests under cyclic bending conditions and the
approximation to the curves obtained from tensile–compression testing. On the other hand, considering
the gradient effect for most of the analyzed materials led to cyclic bending and to tension–compression.
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For 10HNAP steel (Figure 6), the strain amplitude gradient for the results for bending was
below the amplitude for the results obtained under bending according to the elastoplastic model.
The amplitude of the strain almost coincided with that under tension–compression.

The tests and calculations for 30CrNiMo8 (Figure 7) and SM45C steel (Figure 8) were similar.
For 16Mo3 steel (Figure 9), the strain amplitude was located below the amplitude of the results

obtained under tension–compression, and were almost parallel. For MO58 brass (Figure 10), the
amplitude according to the new model was also below that of the results obtained under bending
according to the elastoplastic model. However, when analyzing MO58 (Figure 10) as well as 2017A-T4
aluminum alloy (Figure 11), comparing the amplitudes obtained under cyclic bending according to all
the models with the tensile–compression amplitude was difficult, as the results were in different cycle
ranges. The results for 2017-T4 aluminum alloy overlapped each other, both for those obtained under
bending according to the elastoplastic and nominal model, as well as according to the new model
proposed in Equation (21) presented as εagrad.

For 6082-T6 aluminum alloy, we analyzed the strain performed for the results obtained under
bending at a controlled strain (Figure 12) and at a controlled moment (Figure 13). In both cases, the
strain amplitude that included the new solution was below both the results obtained under bending
and under tension–compression.

3. Discussion

When comparing different models, in order to select the one closest to reality, the fatigue life
scatter was analyzed for each of the examined materials. The results are presented in Tables 3–9. The
scatter for 10HNAP steel was the largest for the results obtained under bending. By comparing bending
according to the elastoplastic model (e-p) and by including the strain gradient (grad), we found that
the smallest scatter, and the closest to the tension–compression, were the results produced by the
model that included the gradients. When analyzing subsequent materials, we found that this was the
same situation for all steel and brass. Thus, for all analyzed steel and brass, satisfactory results were
obtained according to the proposed model. For aluminum alloys, no improvement in the scattering
was achieved, but the obtained results were acceptable. Scattering for 6082-T4 aluminum alloy also
remained in the trend as 2017A-T6 aluminum, but the difference was even smaller, especially between
bending under controlled strain and bending with the gradient.

Table 3. The cyclic properties of 10HNAP steel.

10HNAP

Testing Conditions

Material Constant

E
(GPa)

Ramberg–Osgood Basquin Manson–Coffin–Basquin (MCB) TRMS
K’ (MPa) n’ A m σ’f (MPa) ε’f b c

Bending

205

- - 35.96 11.39 - - - - -
Bending (e–p) - - 46.64 16.24 675 0.239 −0.052 −0.340 1.616

Tension–compression 853 0.156 29.07 9.57 685 0.245 −0.063 −0.399 1.114
Bending (grad) 58.51 21.41 501 0.0349 −0.039 −2569 1.152

Table 4. Cyclic properties of 30CrNiMo3 steel.

30CrNiMo8

Testing Conditions

Material Constant

E
(GPa)

Ramberg–Osgood Basquin MCB TRMS
K’ (MPa) n’ A m σ’f (MPa) ε’f b c

Bending

206

- - 25.57 7.35 - - - -
Bending (e–p) - - 52.07 17.30 911 0.602 −0.045 −0.548 1.229

Tension–compression 972 0.085 49.79 16.64 851 0.471 −0.043 −0.597 1.123
Bending (grad) - - 84.25 29.38 693 0.041 −0.027 −0.384 1.159
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Table 5. Cyclic properties of SM45C.

SM45C

Testing Conditions

Material Constant

E
(GPa)

Ramberg–Osgood Basquin MCB
TRMS

K’ (MPa) n’ A m σ’f (MPa) ε’f b c

Bending

201.5

- - 31.13 10.29 - - - -
Bending (e–p) - - 37.78 13.38 671 0.035 −0.071 −0.298 1.246

Tension–compression 1414 0.231 23.69 7.76 1140 0.406 −0.122 −0.53 1.067
Bending (grad) 44.02 16.18 527 0.009 −0.058 −0.224 1.168

Table 6. Cyclic properties of 16Mo3 steel.

16Mo3

Testing Conditions

Material Constant

E
(GPa)

Ramberg–Osgood Basquin MCB
TRMS

K’ (MPa) n’ A m σ’f (MPa) ε’f b c

Bending

210

- - 21.07 6.80 - - - -
Bending (e–p) - - 24.91 8.40 980 0.769 −0.116 −0.580 1.250

Tension–compression 1038 0.133 27.94 9.67 780 0.233 −0.096 −0.473 1.106
Bending (grad) 26.47 9.05 884 0.071 −0.107 −0.635 1.244

Table 7. Cyclic properties of MO58 steel.

MO58

Testing Conditions

Material Constant

E
(GPa)

Ramberg–Osgood Basquin MCB
TRMS

K’ (MPa) n’ A m σ’f (MPa) ε’f b c

Bending

96.9

- - 19.98 5.86 - - - -
Bending (e–p) - - 25.06 8.04 1175 4.71 −0.110 −0.717 1.169

Tension–compression 723.3 0.121 50.92 18.59 549 0.11 −0.049 −0.434 1.091
Bending (grad) - - 25.76 8.3380 936 0.01 −0.095 −0.265 1.155

Table 8. Cyclic properties of 2017A-T4 aluminum alloy.

2017A-T4

Testing Conditions

Material Constant

E
(GPa)

Ramberg–Osgood Basquin MCB
TRMS

K’ (MPa) n’ A m σ’f (MPa) ε’f b c

Bending at the
controlled moment

72
- - 25.59 8.65 738 1 −0.095 0 1.498

Tension–compression 617 0.066 35.55 12.54 553 0.193 −0.044 −0.678 1.158
Bending (grad) - - 25.59 8.65 738 1 −0.095 0 1.498
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Table 9. Cyclic properties of 6082-T6 aluminum alloy.

6082-T6

Testing Conditions

Material Constant

E
(MPa)

Ramberg–Osgood Basquin MCB
TRMS

K’ (MPa) n’ A m σ’f (MPa) ε’f b c

Bending at the controlled
moment

76.998

- - 23.7053 7.9930 905 0.0530 −0.116 −0.610 1.179

Bending at the controlled
moment (grad) - - - - 687 0.0419 −0.096 −0.516 1.183

Bending at the controlled
strain - - 25.1731 8.6950 768 0.2836 −0.105 0.649 1.150

Bending at the controlled
strain (grad) - - 26.47 9.28 696 0.0835 −0.098 −0.548 1.153

Tension–compression 616 0.099 37.5945 13.7902 533 0.185 −0.065 −0.634 1.050

4. Conclusions

This paper proposes a model that enables the conversion of strain fatigue characteristics obtained
on the basis of a cyclic bending test into equivalents, which coincides with the characteristics obtained
in the tensile–compression test. The proposed model is based on the ratio of the stress and strain
gradient at a critical location, i.e., on the surface.

From the analyzed materials, we found that the strain amplitudes obtained on the basis of the
oscillatory bending test with restraint for a given fatigue life were greater than or equal to those
obtained in the tensile–compression test.

For the analyzed materials, we concluded that the strain amplitudes obtained on the basis of
the proposed model during the oscillatory bending test with restraint for a given fatigue life were
comparable to those obtained from the tensile–compression test, with the exception of 16Mo3 steel.

From the use of scattering, we found that the most reliable calculation results for the oscillatory
bending were obtained when including the secant modulus considering plasticity, i.e., the ratio of the
stress gradient and the strain gradient.
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