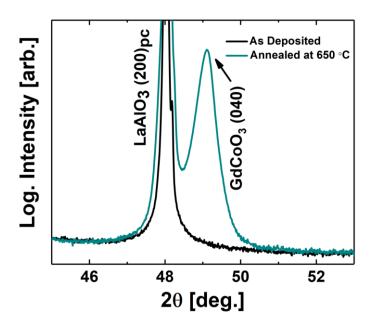
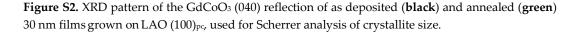

Supplementary Materials Atomic Layer Deposition of GdCoO3 and Gd0.9Ca0.1CoO3

Marion Duparc, Henrik Hovde Sønsteby, Ola Nilsen, Anja Olafsen Sjåstad and Helmer Fjellvåg


Centre for Materials Science and Nanotechnology, Department of Chemistry, University of Oslo, 0315 Oslo, Norway; m.j.l.duparc@smn.uio.no (M.D.); h.h.sonsteby@kjemi.uio.no (H.H.S.); ola.nilsen@kjemi.uio.no (O.N.); a.o.sjastad@kjemi.uio.no (A.O.S.); helmer.fjellvag@kjemi.uio.no (H.F.)


* Correspondence: helmer.fjellvag@kjemi.uio.no

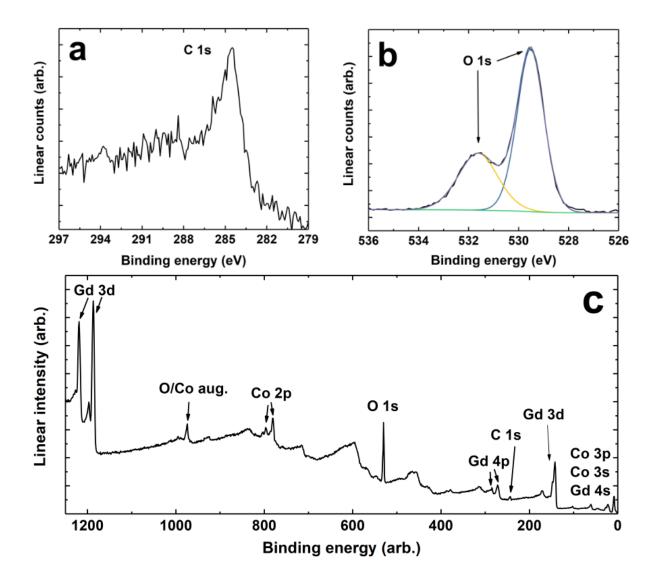

Received: 16 November 2019; Accepted: 16 December 2019; Published: date

Figure S1. XRD patterns of 30 nm Gd_{0.9}Ca_{0.1}CoO₃ films grown on (**a**) YAP(100) and (**b**) YAP(001), postannealed for 30 minutes at 650 °C. Identified Bragg-reflections originating from the substrate are marked with a star.

Figure S3. (a) XPS of C 1s, showing very weak signal pointing towards a very low carbon content. The carbon peak seems to stem from one species at 284.8 eV, attributed to adventitious carbon. (b) XPS of O 1s, showing a split peak which is attributed to the two distinct oxygen species in the GdCoO₃ structure. It is possible that some O is bonded to C on the surface as carbonate. (c) Survey spectra showing identification of Gd, Co, O and carbon species.

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).