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Abstract

:

Increasing use of cement in the construction industry is causing an alarming increase in carbon dioxide (CO2) emissions, which is a serious environmental threat, it can be reduced by the addition of supplementary cementitious materials (SCMs). The commonly used SCMs like ground granulated blast furnace slag (GGBS), metakaolin (MK) and fly ash (FA) have been successfully used to replace the cement partially or completely. Polysilicon sludge obtained from the photovoltaic industry is also a type of waste material that can be used as SCM because it has high content of reactive SiO2. This study investigates the effects of replacing cement with polysilicon sludge in concrete. Different concrete specimens were made by replacing varying proportions of cement with polysilicon sludge and their properties, such as, fresh properties, compressive strength, heat release, chloride penetration, freeze/thaw resistance and microstructural investigations were determined. The results demonstrate that the polysilicon sludge can be used effectively to replace cement, and environmental threats associated with its disposal can be reduced.
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1. Introduction


Rapid increase in use of concrete throughout the world has become a serious menace to the green environment. Cement is one of main constituents of concrete, and its manufacture is linked with the emission of greenhouse gases, specifically CO2. Approximately, 0.8 kg CO2 is emanated in the atmosphere during the production of 1.0 kg of cement clinker [1,2,3], with cement production accounting for 6–7% of worldwide CO2 emissions [1,3]. Hence, many efforts have been made to diminish excessive utilization of cement in the concrete industry to minimize the greenhouse gas emissions [4]. For this purpose, researchers have suggested to increase the incorporation of SCMs as possible replacement of cement. The frequently recycled SCMs, like, silica fume [5], FA [6], and MK [7] have been effectively added to substitute cement partially or completely. These materials exhibit pozzolanic activity; the compounds making up these materials react with hydration products of cement, resulting in the development of surplus calcium-silicate-hydrate (C-S-H) gel. This behavior improves the overall performance of cementitious composites. Previously, various types of discarded/waste materials have been considered as partial replacement of cement in concrete [8,9,10]. In terms of environmental and economic aspects, they are attractive solutions for energy savings and waste minimization in the construction industry [11]. The use of silica-rich materials is another potential solution to partially replace cement [12,13]. Recent studies also reveal that waste glass powder, rich in silica, can be used as cement replacement too [14]. Silica fines, such as micro-silica, fumed silica, silica flour, and nano-silica are primarily composed of high content of pure SiO2 with extremely small particle sizes [12].



In the photovoltaic (PV) industry, the solar cell technology is well-known, and is a viable and reliable source for clean electrical energy [15]. It accounts for over 1 billion (US Dollars) in yearly worldwide sales. The PV industry is anticipated to increase production capacity by tens of gigawatts (GW) per year [16]. Solar-grade silicon i.e., polysilicon (PS) is most comprehensively used material in the photovoltaic industry, which is experiencing large growth [17,18,19,20]. The PS sludge produced during refining of PV solar panels is another possible source of nano-silica powder [21]. In the Republic of Korea, 50,000 tons of PS sludge is being produced annually [12]. Inappropriate discarding of the enormous quantities of PS sludge generated annually in South Korea is catastrophic. The dumping places are near to reservoirs or groundwater sources. Thus, PS nano-particles could contaminate drinking water and resulting in heart and lung-related diseases. Humans are susceptible to diseases related to the nano-particles existing in PS sludge; hence, methods for disposal of hazardous sludge by immobilization and consolidation within a useful resource are highly required. In addition, interest in sustainable development and awareness of eco-friendly concrete is increasing with global population growth. The use of PS sludge thus can result in environmentally-friendly and sustainable construction material.



PS is the basic component of crystalline silicon modules. Various techniques are used to solidify and melt PS for production of ingots with different degrees of crystallinity [22]. The most important crystallization technology is the directional solidification process. Single silicon crystals are developed by the Czochralski (Cz) process, and polycrystalline silicon is produced by casting [22,23]. Ingots manufactured by both techniques are sliced into thin wafers using a wire saw and processed into solar cells. During wafer processing, a silicon layer approximately 250 µm thick is wasted per wafer [22].



The feasibility for using waste sludge from the semiconductor industry in cement systems has been investigated by various researchers [24,25,26,27,28]. However, utilization of waste sludge from PV panels has not been thoroughly investigated. It is imperative to explore PV waste sludge to address environmental concerns related to human health. For this purpose, this investigation was conducted to study the possibility of using PS sludge as a SCM. Concrete specimens were fabricated by substituting varying proportions of cement with polysilicon sludge, and investigated for fresh properties, compressive strength, heat flow, chloride penetration and freeze/thaw resistance and microstructural characteristics. The microstructure of pastes and concretes was investigated by X-ray diffraction, infrared spectroscopy and scanning electron microscopy.




2. Materials and Methods


2.1. Materials


Ordinary Portland cement (OPC) in compliance to ASTM C150, and polysilicon sludge cake from wet waste acquired from O Ceramic Company (Gunsan, Korea) were used as binders to make concrete specimens. After drying the wet samples at 105 °C for 24 h, refined PS was obtained by pulverization. The chemical composition of PS was determined by X-ray fluorescence (XRF) technique. The detailed chemical composition, expressed in terms of oxides and physical characteristics of OPC and PS are given in Table 1. Aggregates were obtained from Gunsan, Korea, and their physical properties are presented in Table 2. In addition, a poly-carboxylic superplasticizer (SP) and air entraining admixture (AE) (properties presented in Table 3) were used. Air entraining admixture was added in order to improve the resistance of concrete mixes in a freezing/thawing environment [29].




2.2. Mix Proportions and Methodology


The particle size distribution (PSD) of PS was investigated with a particle size analyzer (Malvern Mastersizer 2000, Malvern, Malvern, UK). The mineralogical composition of PS was determined by X-ray diffractometer (model: RINT D/max 2500, 40 Kv, 30 Ma, Rigaku, Tokyo, Japan). To detemine the morphology of PS, a scanning electron microscope (SEM) analysis was done with a SEM analyzer (model: Philips XL30ESEM, FEG, Hillsboro, OR, USA).



The concrete mixes were designed with a mean target strength of 35.0 MPa and 120 mm slump. Six different mix proportions were produced by replacing 0.0, 5.0, 10.0, 15.0, 20.0, and 25.0% of OPC with PS by weight, whereas, the water/binder (W/B) ratio sand/total aggregate (S/A) ratio were fixed at 0.40 and 0.48 as shown in Table 4, respectively. Fresh properties i.e., air content and slump of the concrete mixes were examined. Paste specimens were made using a W/B ratio of 0.40 and investigated for heat flow using a semi-adiabatic calorimeter [30,31]. For Fourier transform infrared spectroscopy(FTIR) and XRD analyses, paste specimens were made using a W/B ratio of 0.4 and cured for 3, 7, and 28 days. After each curing age, powder specimens were obtained, treated with acetone and dried before analysis. The cylindrical concrete specimens of sizes (ϕ 100 × 200 mm2) were prepared, covered with plastic sheets and kept in room temperature for 24 h, and after 24 h, they were demolded and were submerged in water at 20 ± 2 °C for curing for 3, 7 and 28 days curing.



The compressive strength of three replicate specimens from each mix were determined after curing of 3, 7 and 28 days according to ASTM C 109, with a universal testing machine (model: CCM-200A; Shimadzu Corporation, Kyoto, Japan). Moreover, after 28 days, chloride penetration and accelerated freeze/thaw tests were conducted according to NT BUILD 492 [32] and ASTM C 666 [33], respectively. Dynamic modulus of elasticity of concrete specimens exposed to accelerated freeze/thaw test were evaluated following ASTM C 215. Relative dynamic modulus of elasticity was calculated using the equation:


Pc = (nc2/n2) × 100



(1)




where: Pc = relative dynamic modulus of elasticity, after c cycles of freezing and thawing, percent; n = fundamental transverse frequency at 0 cycles of freezing and thawing, and nc = fundamental transverse frequency at c cycles of freezing and thawing.



For FTIR, (Nicolet Is50, Thermo Fisher Scientific, Waltham, MA, USA) and X-ray diffraction (XRD) analyses, acetone-treated and desiccated/dried powder samples were obtained after 3, 7, and 28 days of hydration from the paste specimens. In addition, thin samples for SEM analysis were acquired and engrossed in alcohol for 24 h before drying them in an oven at 60 °C, as previously described by [34].





3. Results and Discussion


3.1. Properties of Polysilicon Sludge


The particle size distribution (PSD) of the PS sludge and OPC are shown in Figure 1. As can be seen the PS sludge have finer particles than the OPC specimen. Table 1 summarizes the chemical compositions of the OPC and PS specimens. The major components of PS were SiO2 (96%) and Fe2O3. The high silica content and high specific area suggest pozzolanic properties. Figure 2 shows the morphology of PS particles obtained by SEM. Particle size distribution of PS can be witnessed with micro- and nano-size range particles, which are agglomerated with angular, irregular, and of spherical shapes. Figure 3 exhibits the XRD patterns of the PS particles, showing that the silica is present in the PS specimens in amorphous form.




3.2. Fresh Concrete Properties


Figure 4 displays the results of slump and air content with each mix design. The addition of PS particles caused a reduction in the slump values. It may be due to the reason that the specific surface area of PS particles is higher than that of the cement particles. On the other hand, the air content of all the specimens were similar, indicating that PS does not have a greater impact on air entrainment of the concrete matrix.




3.3. Compressive Strength


The results of compressive strength test after 3, 7, and 28 days are presented in Figure 5. Pozzolanic activity index (PAI) was calculated following ASTM C 311 and summarized in Table 5. At 3 days, the strengths of the plain sample and PS samples are nearly the same. Compressive strength of the plain specimens at 7 and 28 days increased by 4 and 17%, respectively, compared to that of the specimens at 3 days. On the other hand, the PS sample with 5% replacement showed an increased strength of 12 and 20% after 7 and 28 days, respectively, in comparison with that at 3 days. Similar trend was observed for other specimens. Generally, an increase of 2–9% and 6–14% in compressive strength was observed for the specimens containing PS particles compared to that of the plain specimen at 7 and 28 days, respectively. The relatively lower compressive strength of PS samples at early stage may be attributed to the low pozzolanic activity of PS particles at the early age. Table 5 indicates that all the concrete mixes demonstrated a PAI value greater than 75%, which is the least limit for pozzolanicity of a material according to ASTM C 618. The chemical reaction of OPC can be described as follows [35]:


2C3S + 6H2O (H) → C-S-H + 3Ca(OH)2 (CH),

2C2S + 4H2O (H) → C-S-H + Ca(OH)2 (CH),



(2)







Whereas, the pozzolanic reaction is defined as below [5,36,37]:


Ca(OH)2 (CH) + SiO2 + H2O (H) → C-S-H gel.



(3)







As presented by the above reactions, calcium hydroxide (CH) is produced by the hydration reaction of OPC and contributes to pozzolanic reactions. The pozzolanic reaction is secondary reaction which occurs only after onset of hydration of the OPC [35]. However, PS reacts with CH in secondary reaction. This pozzolanic reaction can improve the microstructure by increasing density with consumption of CH and development of C-S-H phases [38,39]. Thus, these characteristics of PS could have led to the improvement in compressive strength with time. It is important to note here that the specimens which presented considerable variations in the compressive strength test results (Plain, PS 10%, and PS 20%) were selected for further analyses.




3.4. Heat Release Profiles


The heat flow measurements of samples containing PS are shown in Figure 6. The typical stages of early hydration of cementitious systems consist of preliminary dissolution of cement, dormant period, main hydration due to C3S reaction, sulfate depletion, and accelerated aluminate activity [40]. The initial peak, with considerably high heat flow, corresponds to early dampening and termination of raw materials, whereas the subsequent peak is accredited to quickening of the reaction development and formation of substantial C-S-H gel [41]. It can be seen in Figure 6 that the plain specimens demonstrated highest peak for heat flow curves compared to the specimens containing PS particles. This can be accredited to the dilution effect of cement. Additionally, the low heat evolution for the PS containing specimens may be attributed to the slow pozzolanic reaction of PS particles at the early age. Figure 7 displays the total heat profiles for various specimens. The total heat released by PS 10% and PS 20% decreased by 3.6% and 9.7%, respectively, compared to that of the plain sample.




3.5. Chloride Penetration


Figure 8 depicts the results of chloride penetration test in terms of diffusion coefficients. The results showed a similar tendency to that of the compressive strength test. The incorporation of PS particles enhanced the chloride penetration resistance of the specimens. The increased chloride penetration resistance of the specimens containing PS is attributed to microstructure enhancement due to the secondary pozzolanic reaction [42]. In addition, the interfacial transition zone (ITZ) could have become denser than that of the plain sample due to addition of PS and the subsequent pozzolanic reactions. There are three well-known diffusion paths of chloride ions into concrete: interlocked pores in cement pastes, interconnected pores in aggregates, and connected pores in the ITZ [43,44]. The permeability within the aggregate is considerably inferior to those of the hydrated paste and ITZ. Therefore, the main diffusion paths exist in the concrete paste and ITZ. PS with fine particles and pozzolanic properties could induce greater production of C-S-H phases near the ITZ [45].




3.6. Freeze/Thaw Resistance


Figure 9 presents the relative dynamic modulus of elasticity of samples after 300 freezing and thawing cycles. A relative dynamic modulus value greater than 60% was considered satisfactory. However, values under 60% indicated very low frost resistance. The plain sample had a relative dynamic modulus of elasticity of 85.76%, however, the PS samples showed improved frost resistance relative to the plain sample. In particular, the PS 20% sample had a relative dynamic modulus value of 90.12% after 300 cycles. The relative dynamic modulus of the plain sample decreased by 44% more than that of the PS 20% sample. When concrete is exposed to frost conditions, ice development in the capillary pores of the concrete usually generates expansion stress. The presence of entrained air can reduce the expansion stress that is caused by the creation of ice capillary pores [46,47,48,49]. Therefore, to protect damage by freezing and thawing, it is important to control the entrained air. This could cause reduced capillary pore volumes. For this purpose, it can be presumed that the capillary pores in PS samples are reduced or that the entrained air in PS samples increased the frost resistance of PS samples. It was shown that PS samples had sophisticated resistance to freezing-thawing than plain sample. As aforementioned in the compressive strength section, the PS samples showed higher compressive strength at later stages due to pozzolanic reactions and the fine particle size of PS. Figure 10 displays the comparison of compressive strength at 28 days and relative dynamic modlus of elasticity after 300 cycles for plain, PS 10%, and PS 20% concrete specimens. It can be seen that increasing that the specimens which presented higher compressive strength resulted in higher relative elastic modulus. Thus, it could be inferred that the capillary pores in samples were filled by C-S-H phases. In addition, the fine particles of PS could result in a relatively dense cement matrix compared to the plain sample. Therefore, introduction of PS into concrete cement systems could improve frost resistance.




3.7. X-Ray Diffraction Analysis


Figure 11, Figure 12 and Figure 13 present the XRD patterns of three different mixes, which include the plain, PS 10%, and PS 20% samples after 3, 7, and 28 days, respectively. Various peaks emerged at various ages. The intensity peaks of CH can be found at 18.02° and 34.04° in the XRD patterns, which is one of the leading hydration products. The intensity of the peaks for CH decreased with increasing curing time. With all the samples, the highest peak intensity of CH was present at 3 days. Additionally, inclusion of PS caused a reduction in CH peak height while increasing the peak for C-S-H, indicating the consumption of CH in the secondary reaction with PS to produce C-S-H phases.




3.8. Fourier-Transform Infrared Spectroscopy


The IR spectra for various mix specimens at 28 days are presented in Figure 14. All the spectra seem identical, however, the intensity and position of the peaks are different. The FTIR bands at 3642, 3400–3100, 640 cm−1are indorsed to O–H stretching of CH, v1 and v2 stretching of the water molecules, v2 bending of the water molecules, respectively. Whereas, the bands at 970 and 870 cm−1 are associated with Si–O stretching of polymeric C-S-H, and v2-stretching of carbonate, respectively [42,50,51].



Apart from this, the doublet bands at 1680 and 1432 cm−1 are liked with the C–O stretching of the CO32− [51]. Whereas, the absorption bands can be witnessed in the range 1100–1200 cm−1 that are because of the v3 stretching vibrations of SO42−, signifying the existence of ettringite and gypsum [52]. The magnitude of the sharp absorption peak at 3642 cm−1 diminished as the cement was partially substituted with PS particles. This demonstrates the degree of ingesting of portlandite due to dilution or pozzolanic effects. The IR bands for a number of specimens emerged at the equivalent locations with varying intensities, which are primarily associated to development of hydration products, like, CH and C-S-H [42]. The wide-ranging bands due to water molecules are positioned at 3450 cm−1 that became smaller and wider with inclusion of PS particles. This phenomenon indicates decreases in bonded –OH groups and free water [53]. The IR bands around 876, 1432 and 1480 cm−1 specify carbonation in the paste samples [42].




3.9. Scanning Electron Microscopy


Microstructures of the plain specimen and the specimens containing 20% PS were investigated using SEM at various ages, as shown in Figure 15 and Figure 16. The plain specimens demonstrated a relatively porous microstructure compared to the specimens containing 20% PS at their respective ages. CH crystals were large and plate-like, while the dark areas represent voids. In contrast, incorporation of PS particles densified the microstructure owing to the pozzolanic effect [54]. These results clearly prove that integration of PS particles improved the microstructure of concrete specimens.





4. Conclusions


This study explored the effects of replacing cement with polysilicon sludge particles on physical, mechanical, and chemical properties of concrete. Based on the obtained consequences, following conclusions are made.



	
Polysilicon sludge particles are finer than cement particles and contain a large amount of SiO2 in amorphous form.



	
The incorporation of PS particles as a cement replacement material reduced the early heat of hydration, suggesting a slower reaction rate of PS particles.



	
Compressive strength at 28 days, chloride penetration resistance, and freeze/thaw resistance increased with incorporation of PS particles up to a 20% replacement level.



	
Polysilicon sludge particles consumed calcium hydroxide and produced additional calcium silica hydrate resulting in an improved microstructure of the concrete specimens.










Author Contributions


Conceptualization, H.G.K. and A.Q.; methodology, I.K.J. and H.G.K.; validation, H.G.K., A.Q. and S.S.K.; formal analysis, J.B.L.; investigation, A.Q. and I.K.J.; data curation, I.K.J.; writing—original draft preparation, H.G.K. and A.Q.; writing—review and editing, A.Q. and I.K.J.; visualization, H.G.K.; supervision, H.G.K. and S.S.K. All authors have read and agreed to the published version of the manuscript.




Funding


This research was funded by the Korea Institute of Energy Technology Evaluation and Planning (KETEP), Grant number 20183010025510 and supported by the research fund of Hanyang University (HY-201900000000319).




Conflicts of Interest


The authors declare no conflict of interest.




References


	



Shen, W.; Cao, L.; Li, Q.; Zhang, W.; Wang, G.; Li, C. Quantifying CO2 emissions from China’s cement industry. Renew. Sustain. Energy Rev. 2015, 50, 1004–1012. [Google Scholar] [CrossRef]

	



Kajaste, R.; Hurme, M. Cement industry greenhouse gas emissions–management options and abatement cost. J. Clean. Prod. 2016, 112, 4041–4052. [Google Scholar] [CrossRef]

	



Huang, L.; Krigsvoll, G.; Johansen, F.; Liu, Y.; Zhang, X. Carbon emission of global construction sector. Renew. Sustain. Energy Rev. 2018, 81, 1906–1916. [Google Scholar] [CrossRef]

	



Li, B.; Ling, T.-C.; Yu, J.-G.; Wu, J.; Chen, W. Cement pastes modified with recycled glass and supplementary cementitious materials: Properties at the ambient and high temperatures. J. Clean. Prod. 2019, 241, 118155. [Google Scholar] [CrossRef]

	



Papadakis, V.; Tsimas, S. Supplementary cementing materials in concrete: Part I: efficiency and design. Cem. Concr. Res. 2002, 32, 1525–1532. [Google Scholar] [CrossRef]

	



Poon, C.S.; Lam, L.; Wong, Y.L. Effects of fly ash and silica fume on interfacial porosity of concrete. J. Mater. Civil Eng. 1999, 11, 197–205. [Google Scholar] [CrossRef]

	



Mardani-Aghabaglou, A.; Sezer, G.İ.; Ramyar, K. Comparison of fly ash, silica fume and metakaolin from mechanical properties and durability performance of mortar mixtures view point. Constr. Build. Mater. 2014, 70, 17–25. [Google Scholar] [CrossRef]

	



Gupta, L.K.; Vyas, A.K. Impact on mechanical properties of cement sand mortar containing waste granite powder. Constr. Build. Mater. 2018, 191, 155–164. [Google Scholar] [CrossRef]

	



Usman, M.; Khan, A.Y.; Farooq, S.H.; Hanif, A.; Tang, S.; Khushnood, R.A.; Rizwan, S.A. Eco-friendly self-compacting cement pastes incorporating wood waste as cement replacement: A feasibility study. J. Clean. Prod. 2018, 190, 679–688. [Google Scholar] [CrossRef]

	



Aliabdo, A.A.; Elmoaty, A.E.M.A.; Aboshama, A.Y. Utilization of waste glass powder in the production of cement and concrete. Constr. Build. Mater. 2016, 124, 866–877. [Google Scholar] [CrossRef]

	



Pahlevani, F.; Sahajwalla, V. From waste glass to building materials–An innovative sustainable solution for waste glass. J. Clean. Prod. 2018, 191, 192–206. [Google Scholar]

	



Quercia, G.; Van der Putten, J.; Hüsken, G.; Brouwers, H. Photovoltaic’s silica-rich waste sludge as supplementary cementitious material (SCM). Cem. Concr. Res. 2013, 54, 161–179. [Google Scholar] [CrossRef]

	



Kalaw, M.; Culaba, A.; Hinode, H.; Kurniawan, W.; Gallardo, S.; Promentilla, M. Optimizing and characterizing geopolymers from ternary blend of Philippine coal fly ash, coal bottom ash and rice hull ash. Materials 2016, 9, 580. [Google Scholar] [CrossRef] [PubMed]

	



Du, H.; Tan, K.H. Properties of high volume glass powder concrete. Cem. Concr. Res. 2017, 75, 22–29. [Google Scholar] [CrossRef]

	



Lin, Y.-C.; Wang, T.-Y.; Lan, C.-W.; Tai, C.Y. Recovery of silicon powder from kerf loss slurry by centrifugation. Powder Technol. 2010, 200, 216–223. [Google Scholar] [CrossRef]

	



Billiet, R.L.; Nguyen, H.T. Photovoltaic cells from silicon kerf. U.S. Patent 20,030,041,895A1, 6 March 2003. [Google Scholar]

	



Green, M.A. Silicon solar cells: evolution, high-efficiency design and efficiency enhancements. Semicond. Sci. Technol. 1993, 8, 1. [Google Scholar] [CrossRef]

	



Wang, T.; Lin, Y.; Tai, C.; Sivakumar, R.; Rai, D.; Lan, C. A novel approach for recycling of kerf loss silicon from cutting slurry waste for solar cell applications. J. Crystal Growth 2008, 310, 3403–3406. [Google Scholar] [CrossRef]

	



Meng, K.; Guo, H.; Wang, Z.; Li, X.; Su, M.; Huang, B.; Hu, Q.; Peng, W. Self-assembly of porous-graphite/silicon/carbon composites for lithium-ion batteries. Powder Technol. 2014, 254, 403–406. [Google Scholar] [CrossRef]

	



Ding, H.; Li, J.; Gao, Y.; Zhao, D.; Shi, D.; Mao, G.; Liu, S.; Tan, X. Preparation of silica nanoparticles from waste silicon sludge. Powder Technol. 2015, 284, 231–236. [Google Scholar] [CrossRef]

	



Yamamoto, Y.; Yamada, T.; Satou, T.; Ishizuka, M.; Kinoshita, T.; Yasunaga, N. Development of Polishing Technique for Silicon Wafer; Advanced Materials and Optoelectronics, 3rd Technical report; Sumitomo Osaka Cement Co. Ltd.: Tokyo, Japan, 2002. [Google Scholar]

	



Drouiche, N.; Cuellar, P.; Kerkar, F.; Medjahed, S.; Boutouchent-Guerfi, N.; Hamou, M.O. Recovery of solar grade silicon from kerf loss slurry waste. Renew. Sustain. Energy Rev. 2014, 32, 936–943. [Google Scholar] [CrossRef]

	



Sinke, W.C.; Ballif, C.; Bett, A.; Dimmler, B.; Dimova-Malinovska, D.; Fath, P.; Mason, N.; Ferrazza, F.; Gabler, H.; Hall, M. A Strategic Research Agenda for Photovoltaic Solar Energy Technology; OPOCE: Brussels, Belgium, 2007. [Google Scholar]

	



Lee, T.-C.; Liu, F.-J. Recovery of hazardous semiconductor-industry sludge as a useful resource. J. Hazardous Mater. 2009, 165, 359–365. [Google Scholar] [CrossRef] [PubMed]

	



Lee, T.-C. Recycling of municipal incinerator fly-ash slag and semiconductor waste sludge as admixtures in cement mortar. Constr. Build. Mater. 2009, 23, 3305–3311. [Google Scholar] [CrossRef]

	



Lee, T.-C.; Lin, K.-L.; Su, X.-W.; Lin, K.-K. Recycling CMP sludge as a resource in concrete. Constr. Build. Mater. 2012, 30, 243–251. [Google Scholar] [CrossRef]

	



Chang, C.-J.; Tseng, L.; Lin, T.-S.; Wang, W.-J.; Lee, T.-C. Recycling of modified MSWI ash-mix slag and CMP sludge as a cement substitute and its optimal composition. Indian J. Eng. Mater. Sci. 2012, 19, 31–40. [Google Scholar]

	



Yang, Z.; Zhang, Y.; Liu, L.; Seetharaman, S.; Wang, X.; Zhang, Z. Integrated utilization of sewage sludge and coal gangue for cement clinker products: promoting tricalcium silicate formation and trace elements immobilization. Materials 2016, 9, 275. [Google Scholar] [CrossRef] [PubMed]

	



Du, L.; Folliard, K.J. Mechanisms of air entrainment in concrete. Cem. Concr. Res. 2005, 35, 1463–1471. [Google Scholar] [CrossRef]

	



Moon, H.; Ramanathan, S.; Suraneni, P.; Shon, C.-S.; Lee, C.-J.; Chung, C.-W. Revisiting the effect of slag in reducing heat of hydration in concrete in comparison to other supplementary cementitious materials. Materials 2018, 11, 1847. [Google Scholar] [CrossRef]

	



Jeon, I.K.; Ryou, J.S.; Jakhrani, S.H.; Kim, H.G. Effects of Light-Burnt Dolomite Incorporation on the Setting, Strength, and Drying Shrinkage of One-Part Alkali-Activated Slag Cement. Materials 2019, 12, 2874. [Google Scholar] [CrossRef]

	



492, NT Build. Concrete, Mortar and Cement-Based Repair Materials: Chloride Migration Coefficient from Non-Steady-State Migration Experiments; Nordtest: Espoo, Finland, 1999. [Google Scholar]

	



ASTM, C., 666/C666M-03. Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing; ASTM International: West Conshohocken, PA, USA, 2008. [Google Scholar]

	



Walker, H.N.; Lane, D.S.; Stutzman, P.E. Petrographic Methods of Examining Hardened Concrete: A Petrographic Manual; Virginia Transportation Research Council: Charlottesville, Virginia, July 2006. [Google Scholar]

	



Neville, A.M. Properties of Concrete; Longman London: London, UK, 1995; Volume 4. [Google Scholar]

	



Mehta, P.K. Pozzolanic and cementitious byproducts as mineral admixtures for concrete-a critical review. Spec. Publication 1983, 79, 1–46. [Google Scholar]

	



Memon, A.; Radin, S.; Zain, M.F.M.; Trottier, J.-F. Effects of mineral and chemical admixtures on high-strength concrete in seawater. Cem. Concr. Res. 2002, 32, 373–377. [Google Scholar] [CrossRef]

	



Deboucha, W.; Oudjit, M.N.; Bouzid, A.; Belagraa, L. Effect of incorporating blast furnace slag and natural pozzolana on compressive strength and capillary water absorption of concrete. Procedia Eng. 2015, 108, 254–261. [Google Scholar] [CrossRef]

	



Cerny, R.; Rovnaníková, P. Transport. Processes in Concrete; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]

	



ASTM Standards. Standard Practice for Measuring Hydration Kinetics of Hydraulic Cementitious Mixtures Using Isothermal Calorimetry; ASTM, C. 1679-08; Annual Book of ASTM Standards: West Conshohocken, PA, USA, 2008. [Google Scholar]

	



Long, W.-J.; Tan, X.-W.; Xiao, B.-X.; Han, N.-X.; Xing, F. Effective use of ground waste expanded perlite as green supplementary cementitious material in eco-friendly alkali activated slag composites. J. Clean. Prod. 2019, 213, 406–414. [Google Scholar] [CrossRef]

	



Qudoos, A.; Kim, H.G.; Ryou, J.-S. Effect of mechanical processing on the pozzolanic efficiency and the microstructure development of wheat straw ash blended cement composites. Constr. Build. Mater. 2018, 193, 481–490. [Google Scholar] [CrossRef]

	



Leng, F.; Feng, N.; Lu, X. An experimental study on the properties of resistance to diffusion of chloride ions of fly ash and blast furnace slag concrete. Cem. Concr. Res. 2000, 30, 989–992. [Google Scholar] [CrossRef]

	



Kong, Y.; Wang, P.; Liu, S.; Zhao, G.; Peng, Y. SEM analysis of the interfacial transition zone between cement-glass powder paste and aggregate of mortar under microwave curing. Materials 2016, 9, 733. [Google Scholar] [CrossRef]

	



Fraj, A.B.; Bonnet, S.; Leklou, N.; Khelidj, A. Investigating the early-age diffusion of chloride ions in hardening slag-blended mortars on the light of their hydration progress. Constr. Build. Mater. 2019, 225, 485–495. [Google Scholar] [CrossRef]

	



Mehta, P.K.; Monteiro, P.J. Concrete Microstructure, Properties and Materials; McGraw-Hill Education: New York, NY, USA, 2017. [Google Scholar]

	



Coussy, O.; Monteiro, P.J. Poroelastic model for concrete exposed to freezing temperatures. Cem. Concr. Res. 2008, 38, 40–48. [Google Scholar] [CrossRef]

	



Valenza, J.J.; Scherer, G.W. Mechanism for salt scaling. J. Am. Ceram. Soc. 2006, 89, 1161–1179. [Google Scholar] [CrossRef]

	



Valenza II, J.J.; Scherer, G.W. A review of salt scaling: II. Mechanisms. Cem. Concr. Res. 2007, 37, 1022–1034. [Google Scholar] [CrossRef]

	



Ramachandran, V.S.; Beaudoin, J.J. Handbook of Analytical Techniques in Concrete Science and Technology: Principles, Techniques and Applications; Elsevier: Amsterdam, The Netherlands, 2000. [Google Scholar]

	



Fernández-Carrasco, L.; Torrens-Martín, D.; Morales, L.; Martínez-Ramírez, S. Infrared spectroscopy in the analysis of building and construction materials. Infrared Spectrosc.—Mater. Sci. Eng. Technol. INTECH 2012, 369–382. [Google Scholar] [CrossRef]

	



Mollah, M.; Yu, W.; Schennach, R.; Cocke, D.L. A Fourier transform infrared spectroscopic investigation of the early hydration of Portland cement and the influence of sodium lignosulfonate. Cem. Concr. Res. 2000, 30, 267–273. [Google Scholar] [CrossRef]

	



Varas, M.; de Buergo, M.A.; Fort, R. Natural cement as the precursor of Portland cement: Methodology for its identification. Cem. Concr. Res. 2005, 35, 2055–2065. [Google Scholar] [CrossRef]

	



Cordeiro, G.; Toledo Filho, R.; Tavares, L.; Fairbairn, E. Pozzolanic activity and filler effect of sugar cane bagasse ash in Portland cement and lime mortars. Cem. Concr. Res. 2008, 30, 410–418. [Google Scholar] [CrossRef]








[image: Materials 13 00251 g001 550] 





Figure 1. Particle size distribution curves of polysilicon (PS) and ordinary portland cement (OPC) samples. 
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Figure 2. Morphology of PS particles. 
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Figure 3. XRD patterns of PS particles. 
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Figure 4. Results of slump and air content tests. 
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Figure 5. Compressive strength test results. 
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Figure 6. Heat flow of PS and OPC paste. 
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Figure 7. Total heat evolution of PS and OPC pastes. 
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Figure 8. Chloride diffusion coefficients for various specimens at 28 days. 
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Figure 9. Results of relative dynamic modulus of elasticity after 300 freezing and thawing cycles. 
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Figure 10. Relationship of compressive strength and relative dynamic modulus. 
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Figure 11. XRD patterns of plain samples. 
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Figure 12. XRD patterns of mix PS 10%. 
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Figure 13. XRD patterns of mix PS 20%. 
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Figure 14. FTIR spectra of specimens after 28 days. 
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Figure 15. SEM micrographs of plain sample at (a) 3 days, (b) 7 days, and (c) 28 days. 
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Figure 16. SEM micrographs of PS 20% sample at (a) 3 days, (b) 7 days, and (c) 28 days. 
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Table 1. Chemical composition and physical characteristics of ordinary portland cement (OPC) and polysilicon (PS).
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	Description
	OPC
	PS





	SiO2 (%)
	20.8
	96.44



	TiO2 (%)
	-
	0.01



	Al2O3 (%)
	6.3
	0.03



	Fe2O3 (%)
	3.2
	3.276



	CaO (%)
	62.0
	0.06



	Cl (%)
	-
	0.03



	CuO (%)
	-
	0.07



	ZnO (%)
	-
	0.03



	MgO (%)
	2.9
	-



	MnO (%)
	-
	0.007



	SO3 (%)
	2.1
	0.03



	Ignition loss (%)
	1.5
	-



	Specific gravity (g/cm3)
	3.15
	1.95



	Surface area (cm2/g)
	3410
	7122
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Table 2. Physical properties of the fine and coarse aggregates.
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	Description
	Fine Aggregate
	Coarse Aggregate





	Gmax (mm)
	4.75
	25



	Gmin (mm)
	0.075
	4.75



	Density (g/cm3)
	2.62
	2.66



	Absorption rate (%)
	1.05
	0.72



	Fineness modulus (FM)
	2.70
	6.91



	Abrasion rate (AR) (%)
	-
	25.1



	Unit volume mass (g/cm3)
	-
	1.564










[image: Table] 





Table 3. Properties of chemical admixtures.
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	-
	Specific Gravity
	pH

(25 °C)
	Cl− Content (%)
	Alkali Content (%)
	Color/Type
	Usage





	SP
	1.06 ± 0.05
	6.5 ± 1.0
	< 0.01
	< 0.02
	Brown/liquid
	C × 0.5%



	AE
	1.04 ± 0.01
	-
	-
	-
	Translucent/liquid
	C × 0.2%
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Table 4. Mix proportion of concrete with PS.
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Types

	
W/B (%)

	
S/A (%)

	
Unit Weight (kg/m3)




	
Water

	
OPC

	
Sand

	
Gravel

	
PS

	
AE

	
SP






	
Plain

	
40.0

	
48

	
175

	
337

	
859

	
919

	
-

	
0.68

(C × 0.2%)

	
1.69

(C × 0.5%)




	
PS 5%

	
320

	
17




	
PS 10%

	
303

	
34




	
PS 15%

	
286

	
51




	
PS 20%

	
270

	
67




	
PS 25%

	
253

	
84
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Table 5. Pozzolanic activity index (PAI) of concrete mixes.
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Concrete Mix

	
Pozzolanic Activity Index (PAI)




	
3 days

	
7 days

	
28 days






	
Plain

	
100

	
100

	
100




	
PS 5%

	
96.2

	
93.0

	
107.6




	
PS 10%

	
94.7

	
91.3

	
106.5




	
PS 15%

	
95.7

	
95.3

	
110.4




	
PS 20%

	
98.1

	
100.9

	
116.0




	
PS 25%

	
95.7

	
97.9

	
107.5
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