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Abstract: The current miniaturization trend of microelectronic devices drives the size of solder joints to
continually scale down. The miniaturized joints considerably increase intermetallic compounds (IMCs)
volume fraction to trigger mechanical reliability issues. This study investigated precise relationships
between varying IMC volumes and mechanical properties of Ni/Sn(20um)/Ni micro-joints. A designed
method that followed the IMC volume as the only variable was used to prepare micro-joint samples
with different IMC volumes. The continuously thickened NizSny IMCs exhibited a noticeable
morphology evolution from rod-like to chunky shape. The subsequent tensile tests showed unexpected
tensile strength responses as increasing Ni3Sny volume, which was strongly associated with the Ni3Sny
morphological evolutions. Fractographic analysis displayed that the ductile fracture dominates the
20%—40% IMC micro-joints, whereas the brittle fracture governs the 40%-80% IMC micro-joints.
For the ductile fracture-dominated joints, an abnormal reduction in strength occurred as increasing
IMCs volume from 20% to 40%. This is primarily due to severe stress concentrations caused by the
transformed long rod-typed morphology of the Ni3Sny. For the brittle fracture-dominated joints,
the strength appeared a monotonous increase as the NizSny volume increased. This may be attributed
to the increased crack resistance resulting from continuous coarsening of the chunky NizSny without
any voids. Moreover, the finite element analysis was provided to further understand the joint
failure mechanisms.

Keywords: micro-joints; intermetallic compounds; mechanical properties; failure mechanisms;
reliability

1. Introduction

To date, micro solder-joints are regarded as critical components to realize vertical interconnections
for chips stacking in three-dimensional (3D) through-silicon via (TSV) packaging [1,2]. With a sustained
miniaturization for 3D TSV packaging, the micro solder-joints are being scaled down to be less than
twenty microns from the current one hundred microns [3,4]. Such a dramatical reduction in size tends
to result in the evolution of microstructure and mechanical properties of the micro-joints, and thereby
triggering mechanical reliability issues [5,6]. The interfacial intermetallic compounds (IMCs) layer with
a suitable thickness is an excellent indication of metallurgical bonding in solder joints [7]. However,
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due to totally different mechanical properties from the bulk solder, their excessive volume and growth
may trigger mechanical property changes of solder joints [8]. Moreover, the morphology and phase
stability of the IMCs were known to also affect the joints” mechanical properties [9,10]. These effects
will be severely identified as the IMCs volume increased in miniaturized solder joints. Therefore,
it is of significance to investigate a precise dependence of IMCs growth on mechanical properties of
micro solder-joints.

Micro solder-joints in 3D TSV packaging are commonly subjected to mechanical loading during
serving [11]. It was well documented that the interfacial IMCs play an important role in the joint
reliability because of their different mechanical properties [12,13]. However, the mechanical property
effects dominated by higher volume fraction of the IMCs are not very well known. Currently,
substantial literature is available to address impacts of IMC thickness on the joint mechanical properties.
The varying thickness of the IMCs was commonly achieved by adjusting the reflowing temperature or
isothermal aging time [14-16]. Hu et al. [14] studied the influences of IMC thickness on the tensile
strength of Sn-based solder/Cu solder joints by changing reflow temperature. They observed that
raising reflow temperature can induce a CugSns thickness increase to cause an obvious reduction in the
joint tensile strength. An et al. [15] investigated the influences of IMC thickness on the tensile strength
and failure mode of Sn3.0Ag0.5Cu/Cu solder joints by isothermal aging. Their experiment results
showed that prolonging aging time can increase the IMC thickness to result in a joint strength drop as
well as a failure mode transition from the ductile fracture to the brittle fracture. It should be pointed
out that these investigations ignore grains coarsening of the bulk solder that is extremely sensitive to
the cooling rate of soldering and thermal aging. Such a grain coarsening phenomenon was reported
to significantly weaken the joint mechanical property [16]. Furthermore, their experimental results
generally showed that the bulk solder occupied much higher volume than the IMCs in the joint. As the
IMCs dominated the miniaturized solder joints, the mechanical properties and failure mechanisms of
these joints are anticipated to display a dramatic change.

Additionally, most of the related investigations were primarily concentrated on the Cu/Sn-based
solder/Cu interconnections. With the joints continually downsized, the Ni/Sn/Ni micro-joint should be
favorable to be adopted as interconnection structure in 3D TSV packaging because of slow interfacial
reactions and a unique reaction product (i.e., NizSny intermetallic) [17,18]. More significantly, this
intermetallic possesses better mechanical performance and higher fracture toughness compared to
typical IMCs (i.e., CugSns and CusSn) [12,19,20]. However, to the author’s best knowledge, quite a few
literature works investigated the influence of IMC volume variations on mechanical properties and
failure mechanisms of Ni/solder/Ni solder joints, and especially no literature was found to really take
the IMC effect alone into account.

Previous approaches to increase the IMC volume by raising the reflowing temperature or
prolonging the aging time may be debatable since bulk solder grains tend to coarsen accompanied with
the IMC growth. To emphasize IMC volume effects alone, these two phenomena must be decoupled in
a designed method. A practicable method that extends the soldering time at a constant cooling rate
enables the IMCs growth without changing bulk solder microstructural characteristics. This method
was utilized in this study to prepare the Ni/Sn(20 um)/Ni micro-joint samples with varying IMC
volumes. The emphasis of this study was placed on a precise dependence of the IMCs volume on
tensile properties and failure mechanisms of Ni/Sn/Ni micro-joints with a constant stand-off height of
20 um using a tensile test.

2. Experimental and Numerical Procedures

2.1. Experimental Procedures

The experiment was designed to make the IMC volume as the only variable affect joint tensile
responses. It was known that the factors such as varying stand-off heights of the joint, reflowing
profile, and cooling rate commonly induced microstructure changes of the bulk solder and IMCs,
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leading to variations in joint tensile responses. Consequently, a reflow process was designed to
fabricate micro-joint samples with varying IMC volumes by adjusting bonding times at a homogeneous
temperature and a constant cooling rate. Simultaneously, a two-step method was designed to control a
constant stand-off height of 20 um for all the fabricated final samples. Firstly, a specially designed
fixture was utilized to control the Sn interlayer height, and a stable solder reflow process at a maximum
temperature of 250 °C for 40 s above the melting-point temperature of Sn was used to obtain the initial
joint samples. The cross-sectional structure of the initial joint sample was provided in Figure 1, in which
the IMC volume occupied about 10% in the joint. Based on the requirement for a constant stand-off
height in the final samples with various IMCs volumes, the stand-off height in each initial sample is
determined by the IMC volume contained in the final joint sample. Secondly, the initial Ni/Sn/Ni joint
samples were fixed on the ceramic blocks to keep the initial joint stand-off height during the following
reflow. A reflowing profile, with varying soldering times at a uniform soldering temperature of 265
°C and a constant cooling rate 2.5 °C/s, was employed to fabricate the joint samples with 20%, 40%,
60%, and 80% IMC volume fraction. All the samples were divided into two groups with each group
containing the joint samples with different IMC volume fractions. The samples in one group were
mounted in epoxy resin, and then ground and polished to characterize IMC microstructure evolutions.
The tensile tests were carried out to examine tensile stress responses of the joints using the samples in
another group. Backscattered electron (BSE) mode in a scanning electron microscope (SEM, Ultra-60,
Zeiss, Oberkochen, Germany) was used to characterize microstructure evolutions of the micro-joints,
and energy-dispersive X-ray spectrometry (EDS, 50mm-SDD, Oxford, Abingdon, UK) was utilized to
examine the composition and elemental distribution of the IMCs. A common method was adopted
to compute the IMC volume fraction in the micro-joint samples. In this method, the area fraction
is assumed to represent the volume fraction, and a detailed description can be found in Ref. [21].
In the current study, Image]J software (version, Manufacturer, City, US State abbrev. if applicable,
Country) was used to measure the interfacial IMC area according to the cross-sectional image of the
micro-solder joints.

(a) (b) Load

A
Fixed support

Figure 1. (a) cross-sectional SEM image of Ni/Sn/Ni samples after a standard reflow; (b) schematic
diagram of constraints and loading conditions for a sample during tensile testing.

2.2. Numerical Procedures

Finite element (FE) method was implemented to deeply explain fracture mechanisms of the
micro-joints subjected to tensile loading. Considering large difference in size between Sn interlayer and
Ni/Sn/Nistructure as well as an axial symmetry of the joint, a method in combination of two-dimensional
axisymmetric model with a sub-model containing the IMCs was developed according to SEM images
of the 20%—40% IMCs joints in Figure 2. Furthermore, a 3D 1/4 symmetric model combined with
a sub-model was established to understand impacts of the chunky IMC size on crack propagation
resistance in the joints. A pre-existing semi-elliptical crack with a length of 0.5 um was introduced into
this sub-model as shown in Figure 3b. In the FE models, Ni and Ni3Sny were assumed to be linearly
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elastic, and Sn was taken to be linearly elastic up to a yield point. After the yield point, the solder
followed plastic properties as presented in Table 1. The linearly elastic properties of the materials
used in the FE analysis were listed in Table 2. Boundary constraints and tensile loading were applied
depending on our experimental conditions, as seen in Figure 1b.

(b)

Location of
sub-model

Symmetrical
axis

Figure 2. FE model of Ni/Sn/Ni micro-joints. (a) 2D axisymmetric global model; (b) sub-model
containing rod-shaped IMCs.

(@) (b)

Sn

Location of

submodel
Location of crack

Figure 3. FE model of Ni/Sn/Ni micro-joints for (a) 3D 1/4 symmetric global model and (b) sub-model
with a pre-existing crack at the chunky IMC surface.

Table 1. Plastic constants for Sn solder.

Material Yield Strength (MPa) Flow Region

Stress o = 37 X €9075 where ¢ is
Sn [22] 215 the strain from 0.001 to 0.016.

Table 2. Elastic material properties of the materials used in FE analysis.

Material Elastic Modulus (MPa) Poisson’s Ratio
Sn [22] 48 0.36
Ni [23] 207 0.312
NizSny [24] 134 0.33

3. Results and Discussion

3.1. Microstructure Characterization of the IMCs

Figure 4 shows the cross-sectional SEM images of Ni/Sn/Ni micro-joint samples with varying
soldering times. At 7 min soldering time, a thin IMC layer with a short-rod shape was observed
to form at the Ni/Sn interface from Figure 4a, and several small chunky IMCs also emerged at the
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interface. The IMC volume occupied around 20% in the joint. The EDS result in Table 3 combined
with Ni-Sn binary phase diagram identified these IMCs as NizSny intermetallic. At 21 min soldering
time, the interfacial NizSny grew obviously, and its volume fraction is approximately 40%. Moreover,
the Ni3Sny morphology exhibited a remarkable change, i.e., the rod shape became significantly longer,
the small chunky shape became larger. As the soldering time reached 50 min, the total interfacial
Ni3zSny thickness continually increased, and the corresponding volume fraction increased up to 60%.
It was worth noting that the contribution to the total Ni3Sny thickness increase is mainly attributed
to the coarsened chunky Ni3Sny since the rod-shaped NizSny thickness remains nearly unchanged.
This particular phenomenon can be explained by the Ostwald Ripening theory. The large chunky
NizSny preferentially coarsened since the thickened NizSny hindered the Ni atoms diffusion to cause no
adequate Ni atoms for the rod-shaped NizSny growth. When the soldering time increased up to 87 min
as presented in Figure 4d, the continuously coarsened NizSny intermetallic penetrated the whole joint
cross-section to bridge the two opposite interfaces. The penetrating intermetallic was recently reported
to have better electrical conductivity, thermal conductivity, and mechanical property [25]. Furthermore,
a small number of voids were found to exist inside the rod-shaped IMCs. The formation of these voids
is strongly related to the continuous growth of rod-shaped Ni3Sny IMCs, and the detailed explanation

can be found in previous study [26].
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Figure 4. Cross-sectional SEM microstructure of Ni/Sn/Ni micro-joints as varying soldering times:
(a) 7 min, (b) 21 min, (c) 50 min, and (d) 87 min.

Table 3. EDS compositional analysis of IMC phases formed in Ni/Sn/Ni micro-joints.

Composition (at. %)

Analysis Sites Phase
Ni Sn

A 42.78 57.22 NizSny

B 42.99 57.01 NizSny

3.2. IMC Growth Kinetics

Substantial researchers have investigated NizSny growth kinetics during the reflowing process.
An empirical power law was commonly used to describe IMC growth kinetics [27]:

x = kt", 1)
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where x is the IMC layer thickness at time ¢, n is the time exponent; n = 0.5 indicates that the reaction
is controlled by bulk diffusion, and n = 0.33 indicates a reaction controlled by diffusion along grain
boundaries. Equation (1) can be rewritten as:

Inx =Ink+nint. 2)

In the current study, the calculated average NizSny thickness in the joints with various soldering
times was presented in Figure 5a. Using Equation (2), Inx versus Int is plotted in Figure 5b to calculate
time exponent (11). The value of n was determined by the slope of linear regression, as seen in Figure 5b.
According to such a fitting, the kinetics parameter n was determined as 0.53. This value indicated that
the bulk diffusion dominated the NizSny growth at longer soldering times. Similar results were found
in other studies [28,29]. Gorlich et al. [28] reported that the Ni3Sny growth was controlled by grain
boundary diffusion during the very early stages of the soldering, and the growth was transformed to
be controlled by bulk diffusion at longer soldering times. Therefore, this growth mechanism is likely
because the thickened Ni3Sny IMC layer hinders the Ni atoms diffusion to limit the interfacial reaction.
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Figure 5. IMC layer thickness in one interfacial side vs. soldering time (a) x-t and (b) Inx-Int.

3.3. Influences of IMC Microstructure Evolution on Tensile Mechanical Properties of the Micro-Joints

The tensile testing was performed to understand relationships of varying IMC volumes and joint
mechanical properties; the tensile data were plotted in Figure 6. The ultimate tensile strength was
observed to first increase to 96 MPa, and then drop to 75 MPa followed by a monotonous rise to a
maximum value of 142 MPa as increasing IMC volume. Such a strength change is not agreed with
other reports that showed a continuous drop in strength as increasing IMC volume. The detailed
explanation with respect to this discrepancy would be given below.

160

140 | L

100

8o "

60

Ultimate tensile strength (MPa)
-

20 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80

IMCs volume fraction (%)

Figure 6. Ultimate tensile strength as a function of IMC volume fraction.
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Figure 7 shows representative fracture surfaces of micro-joints with various IMC volumes after
tensile testing. As presented in Figure 7a and b, the fracture surfaces were completely composed of
equiaxed dimples in the 10% and 20% IMC micro-joints, indicating that the fracture mode is typical
ductile fracture occurred into the bulk solder. Furthermore, the dimples size in the 10% IMC joint was
visible to be larger than that in the 20% IMC joint; such a difference in dimples size is strongly related to
the dimensional constraint. Clearly, the mechanical properties of these two joints are governed by the
bulk solder. It was known that the joint mechanical properties dominated by the bulk solder primarily
depends on the solder microstructure and dimensional constraint [20,30]. In the current study, the
bulk solder microstructure in every sample nearly keeps identical as mentioned in Section 2. Therefore,
the strength increase in the 20% IMC micro-joints is due to the enlarged dimensional constraint induced
by the thinned solder layer, which can also rationalize the presence of smaller dimples in the 20%
IMC micro-joints.

Figure 7. Fracture morphology of micro-joints with (a) 10%, (b) 20%, and (c) 40% IMC after tensile tests.

As shown in Figure 7c, as the IMCs volume increased to 40%, the dimples still occupied the
whole fracture surface, but their size reduced significantly. Correlating the cross-sectional image of
the interfacial IMCs in Figure 4b with Figure 7c, it is evident that many broken rod-shaped IMCs
were exposed at the bottom of each of all the dimples. These exposed IMCs were identified as NizSny
intermetallic by EDS results in Figure 8. This suggested the fracture was located near the interface of
the interfacial NizSny and bulk solder. Furthermore, based on the previous discussion, the thinned
solder layer can produce a larger dimensional constraint to strengthen the joint. However, the present
study showed an unexpected tensile strength response that is a marked decrease in the 40% IMC joint.
This abnormal response should be strongly associated with the NizSngs morphological transformation
from short rod-like to long rod-like shape. The severe stress concentration may generate around the
protruding tip of the long rod-shaped NizSny to break them. This broken behavior facilitated the
formation of substantial small broken dimples, and resulted in the strength reduction. As seen in
Figure 7c, the exposed broken IMCs at the dimples bottom and the broken dimples can rationalize
the above deduction. Figure 9 presents the von-Mises stress distribution in 20% and 40% IMC joints.
The stress concentration was observed to emerge around the protruding tip of the long rod-shaped
NizSny in the 40% IMC joint, while the stress into the bulk solder is significantly higher than that
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near the solder/NizSn4 interface in the 20% IMC joint. These simulative results can further verify the
previous deduction for the strength reduction in the 40% IMC joints.

Figure 8. EDS analysis for the exposed IMCs at the bottom of dimples marked as C in Figure 7c.
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Figure 9. von-Mises stress (in MPa) contour plot for micro-joints with (a) 20% and (b) 40% IMCs under
tensile loading. (For interpretation of the references to color in this figure legend, the reader was
referred to the web version of this article.).

Figure 10 shows the representative fracture surfaces of the 60% and 80% IMC micro-joints after
tensile testing. The broken rod-shaped and chunky IMCs were visible to cover the whole fracture
surface of these two joints, and the former dominates the 60% IMC joint while the latter is responsible
for the 80% IMC joint. Apparently, these two failure modes belong to the brittle fracture mode
happening in the IMCs. As seen in Figure 6, the ultimate tensile strength in the 40%-80% IMC joints
displayed a significantly continuous increase. This result appears to be inconsistent with many previous
investigations that demonstrated a strength reduction with increasing IMC volume [14,15]. Their
explanation was mainly concentrated on the IMCs” inherent brittleness. Actually, the IMCs were well
known to possess considerably higher tensile strength than Sn-based solder materials, i.e., 2.0-5.1 GPa
for NizSny intermetallic and 86.1-96.7 MPa for Sn-rich solder [30,31]. Ho et al. [32] and Glenn et al. [33]
reported that the presence of voids into the IMCs is a mainly influential factor in causing the joint rapid
fracture due to low fracture toughness of IMCs. Kang et al. [34] and Tseng et al. [35] reported that
a dual-layer IMC structure tends to cause premature joint failure. Consequently, the joint strength
reduction with increasing IMC thickness should be attributed to the voids that existed in the IMCs
as well as the dual-layer IMC structure. It is reasonable to suppose that the micro-joints composed
of more volume fraction of single-phase IMCs without any voids may have higher tensile strength.
In the current study, after 87 min soldering time, the chunky NizSn, intermetallic without any voids
showed a rapid coarsening phenomenon, and even some large chunky NizSny intermetallic coarsened
to cross the whole joint as seen in Figure 4d. It should be noted that the Ni3Sny intermetallic is a unique
reaction product between the molten Sn and solid-state Ni under 300 °C. As a result, the abnormal
increase in tensile strength should be attributed to the coarsened single-phase Ni3Sny intermetallic
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without containing any voids. These IMCs may hinder the crack propagation to enhance the joint
strength during the tensile process. In particular, the penetrating IMCs between the opposite interfaces
fully dominate the joint strength due to higher strength and lower strain than Sn solder in the 80%
IMCs joint; the corresponding joint strength was seen to reach the maximum value.

Figure 10. Fracture morphology of micro-joints with (a) 60% and (b) 80% IMCs after tensile tests.

The FE simulation was used to quantify the crack growth resistance of the chunky NizSny
with various volumes. According to linear elastic fracture mechanics, the crack propagation can be
characterized by stress-intensity factors (SIFs, K;, Ky and Kjyp). A lower SIFs means a higher crack
growth resistance of the material. Given that the mode I (opening mode) fracture is inclined to happen
in the solder joints subjected to the tensile loading [30], this work can assess the mode I SIFs using an
interaction integral method. The interaction integral is expressed as [36]:

I=- f qi,j[aklffif Xéij—Ui}lxuk,i—akjuiffx]dV/ f 6qudS, ®)
% S

where ij, Eijs and uy; represent the stress, strain, and displacement components, respectively; ozi‘]?lx,
e?}“‘x, and u7"* are the stress, strain, and displacement components of the auxiliary field, respectively;
0jj is the Kronecker delta, and g; is the crack-extension vector. The interaction integral is associated

with the stress-intensity factors as [37]:
I=2(1-v?)K K™ /E, €y

where v and E are the Poisson’s ratio and elastic modulus of NizSny, respectively; K is the mode I SIFs,
and K{"™ is the auxiliary mode I SIFs. The value of K in the chunky NizSny can be obtained by the FE
simulation. The maximum value of K] in the larger and smaller chunky NisSny is 1.1 MPa-mm?2 and
1.5 MPa-mm!/?, respectively. It is apparent that increasing the chunky Ni3Sny size can enhance the
crack growth resistance and thus the joint strength. This can validate the strength enhancement of the
joint is primarily ascribed to the continuously coarsened chunky NizSny in the 40%-80% IMC joints.
Figure 11 summarizes the ultimate tensile strength and Ni3Sny morphologies as a function of
Ni3Sny volume fraction, where schematic diagrams of the possible fracture paths in the micro-joints
are also given. It is evident that the strength variations in the micro-joints are strongly linked to
the IMC morphological evolutions. The transformed long rod-shaped NizSny in the 40% IMC joint
produced the severe stress concentration around their protruding tip, resulting in their fracture and
the dimples rupture and thus the joint strength reduction. The fracture site transformed the interface
of the Ni3Sny layer and the bulk solder from the bulk solder of the 10%-20% IMC joints. As the Ni3zSny
volume increased, the thickened interfacial Ni3Sny significantly hindered the Ni atoms diffusion to
limit the rod-shaped Ni3Sny growth but promoted the chunky Ni3Sny coarsening. The coarsened
chunky NisSny without containing any voids may improve the crack growth resistance during the
tensile process, and thereby strengthen the joints. The corresponding fracture site transferred into the
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interfacial IMCs in the 60%-80% IMC joints, and thus the fracture mode converted to the brittle fracture
from the ductile fracture in the 10%—40% IMC joints. Consequently, one concluded that mechanical
properties of Ni/Sn/Ni micro-joints are primarily dependent on the volume and morphologies of the
interfacial NizSny intermetallic.
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Figure 11. Relationships between the IMC microstructure and the micro-joints’ tensile mechanical

properties, where schematic diagrams of the possible fracture path are also given.

4. Conclusions

The precise dependence of IMC microstructure evolutions on tensile mechanical properties of
Ni/Sn/Ni micro-joints with a constant stand-off height of 20 um was investigated. The main findings
can be summarized as follows:

(1) The NizSny IMC volume increased obviously upon soldering time from 20% at 7 min to 80% at
87 min, and the Ni3Sny IMCs growth was determined to follow the bulk diffusion mechanism based
on the kinetic parameter calculation. Simultaneously, the IMC morphology exhibited a noticeable
evolution from rod-like to chunky shape.

(2) The unexpected joints” strength occurrence is mainly due to the IMCs” morphology evolutions.
The transformed long rod-shaped NiszSns IMCs produced the severe stress concentration around their
protruding tip, causing a joint strength drop. The following coarsened chunky IMCs without any voids
may increase the crack growth resistance to enhance the joint strength.

(3) In 10%—40% IMC joints, the joints failure mode is the ductile fracture that occurred in the
bulk solder, while the brittle fracture occurred into the NizSng IMC layer in 60%—-80% IMC joints.
The dominated Niz;Sns IMCs morphology on the fracture surface switched to the chunky shape in 80%
IMC joint from a rod-like shape in 60% IMC joint.

The present results can provide a better understanding of IMC microstructure evolution
dependence of mechanical properties for Ni/Sn/Ni micro solder-joints. This can be beneficial to
evaluate the mechanical reliability of Ni/Sn/Ni micro-joints and promote the utilization of Ni/Sn/Ni
micro solder-joints in next generation 3D TSV packaging.
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