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Abstract: Compaction of Hot Mix Asphalt (HMA) is a process aimed at obtaining the desired performance
properties. Attainment of the required compaction can be hampered by external factors, which includes
the presence of water. Water is known to cause quick lowering of the HMA temperature. The bottom
face of the asphalt layers of a pavement is a sensitive point from the fatigue life point of view. In the
site conditions, it is often difficult to obtain the required air void content at the bottom of an asphalt
layer and excessive moisture content in the base course lying beneath the asphalt layer can be one of
the causes. This article presents the results of tests carried out on a test section on which HMA was
placed on an unbound aggregate base layer of varying moisture content. The material used for the
binder course was asphalt concrete mixture composed of aggregate of minus 16 mm grading and
35/50 bitumen. Being relatively hard it is the most often specified bitumen for binder courses and
also base courses. One of its characteristics is a considerable increase of viscosity with decreasing
temperature, which hampers the process of compaction. The bulk specific gravity was measured to
determine the variations in the air void content through the specimens. The complex modulus of
elasticity and fatigue life were the other parameters which were determined on the specimens with
different air void contents. The test results show worsening of the properties which have a decisive
bearing on the service life of pavement.
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1. Introduction

The Hot Mix Asphalt (HMA) micro-structure and performance characteristics are determined
during the compaction process. The effectiveness of this process depends on the applied compaction
effort, which is closely related to the mixture temperature [1–3]. The compaction effort is defined
by the number of passes and speed of travel of the employed compacting roller on one path and on
the compaction technique (defined by type of roller). The second parameter, namely temperature,
depends on the rate of heat transfer inside the HMA layer and the dissipation of heat to the outside
environment [4]. One of the environmental factors facilitating dissipation of heat from the mixture is the
presence of water and this is owing to the properties of this substance, which include high specific heat
(in the order of 4.186 kJ/kg·K) and the heat of vaporization (2257 kJ/kg at 100 ◦C) [5]. Water, which comes
from precipitation or from wetting the steel drums of compacting rollers, can be present as moisture or
even pools, present inside and/or on the surface of the underlying layer. Precipitation can also occur
during the process of HMA placement. If it is only a light rain the contractor often takes a risk and,
ignoring any prohibitions, decides to place the already delivered HMA anyway. After a direct contact
of HMA with water occurs, the viscosity of the bitumen increases abruptly and reduces the temperature
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of the layer [6,7]. This is particularly harmful in the case of hard, i.e., low penetration binders with
high softening point. This group of hard bitumens includes the 35/50 bitumen, commonly used in
Poland for production of the asphalt mixtures used for binder course and road base layers for roads of
KR3 to KR7 traffic service levels (according to the Polish classification system [8]). Rapid cooling of
bituminous mixtures containing a binder of this kind causes problem in the process of compaction,
so big that in many cases it is impracticable to achieve the required density. The process of compaction
of HMA can be affected by the presence of even a small amount of water with consequences that are
not always evident from the compaction index determined on the pavement cores. This can result in an
increased air void content and a consequential decrease of the HMA’s resistance to the environmental
factors [9]. As a consequence, premature distress, including potholes, cracking and spalling, can occur
on the top surface of the pavement [10,11]. The cause of this distress is the accelerated aging resulting
in the deterioration, namely hardening of the binder due to the access of atmospheric oxygen and
UV [12,13]. If the underlying layer contains excess moisture, then a higher air void content at the
bottom of the asphalt layers will affect the fatigue life of pavement and lead to premature initiation of
cracks at the bottom of the asphalt layers due to tensile strains [14]. Moreover, a loss of bond between
the pavement courses can occur if precipitation occurs during placement of HMA [15,16]. The presence
of water on the top of an underlying asphalt layer (for example road base) can result in a loss of bond
between the asphalt layers (for example between the road base and the binder course). This kind of
defect can also be caused by spraying of asphalt emulsion on the surface of the underlying layer just in
front of the asphalt spreader [17]. After break-up of the bituminous emulsion water can no longer
evaporate or drain from the surface and acts as a kind of bond breaker between the asphalt layers of
pavement. Thus, a lack of bond between the pavement layers ensues, considerably decreasing the
fatigue life of the pavement [18]. The problem of subbase unbound is important among others due to
the unpredictability of weather conditions and the possibility of conducting construction works during
or shortly after rain stops. The authors considered the problem of subbase unbound on a technical
scale by performing tests on materials taken from experimental sections which allowed to determine
the parameters of laboratory samples. Based on the results obtained on the experimental sections the
impact of the work of compaction and subbase unbound of void content and the density of asphalt
layers was determined. Laboratory tests covered a range of HMA parameters, the results of which
allowed determining the effect of subbase unbound on the main HMA parameters.

2. Test Section

2.1. Materials and Testing Program

2.1.1. Properties of the Bitumen

The bitumens used for the production of paving mixtures include moderately hard bitumens of
50/70 grade, harder bitumens of 35/50 grade and binders from a quite large group of polymer modified
bitumens, for example PMB 25/55–60) [19]. However, for the cost reasons and to ensure the desired
deformation resistance of the pavements placed on heavily trafficked roads (traffic service levels KR3
to KR7 [8]) the 35/50 bitumen is the material of choice for production of the base and binder course
mixes. This being so, this bitumen type was used for the production of the Asphalt Concrete (AC 16 W
35/50) binder course mixture used to construct the test section pavement. The essential classification
parameters of this binder are given in the Table 1 below.
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Table 1. The values of the main parameters applied for classification of 35/50 bitumen before and after
Rolling Thin Film Oven Test (RTFOT as per EN 12607-1 [20]).

Type of Test Standard
Test Value

Before RTFOT After RTFOT

Penetration (P) (25 ◦C, 100 g, 5 s), [× 0.1 mm] EN 1426:2015-08 [21] 46.2 ± 1.1 46.2 ± 0.6
Softening point (TR&B) (5 ◦C/min), [◦C] EN 1427:2015-08 [22] 55.9 ± 0.3 59.2 ± 0.4

Fraass breaking point (TFraass), [◦C] EN 12593:2015-08 [23] −11.9 ± 1.7 −9.4 ± 0.9
Penetration index (Ip), [−] EN 12591:2010 (Annex A) [24] −0.018 −0.259

Plasticity range (PR), [◦C] PN-EN 14023:2011/Ap2:2020-02,
National Annex NA [25] 67.8 68.6

The penetration index Ip values were found as in Equation (1) by determining the bitumen
temperature susceptibility taking into account its 25 ◦C penetration grade (P) and softening point
(TR&B) and utilizing the formula according to EN 12591 [24]:

Ip =
20× TR&B + 500× lgP− 1952

TR&B × lgP + 120
(1)

The temperature range of plasticity (plasticity range, PR) of the binder, dependent on its softening
point (TR&B) and breaking point (TFraass), was determined by Equation (2) in compliance with the
requirements laid down in PN-EN 14023:2011/Ap:2020-02 (National Annex NA) [25] according to the
following formula:

PR = TR&B − TFraass (2)

Additionally, the dynamic viscosity of the 35/50 bitumen was measured before and after RTFOT
aging according to EN 13302 [26] at the test temperatures of 60, 90, 135, and 160 ◦C. The test data are
displayed in Figure 1.
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The above values of the dynamic viscosity of bitumen show that asphalt mixtures containing the
35/50 bitumen required relative high temperatures both during production (over 160 ◦C) and during
compaction (100–130 ◦C). The presence of water, acting as an additional cooling factor can considerably
shorten the compaction time, thus increasing the in-situ air void content.

2.1.2. Properties of the Asphalt Used on the Test Section

For the purposes of this research a test section was constructed to assess the effect of water on
the micro-structure of the compacted HMA layer. The experimental verification concerned the effect
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of excess moisture in the underlying layer, the compaction effort and the thickness of HMA layer
on the values of bulk specific gravity across the layer. The pavement was made of asphalt concrete
type mixture containing 35/50 bitumen, designated for binder course construction. The aggregate
grading parameters are displayed in Figure 2 below. For the mixture design and main properties
see Tables 2 and 3. The asphalt concrete mixture was specified in compliance with the Polish design
manual No. WT-2:2014 [27].
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Table 2. Components of the AC 16 W 35/50 binder course mixture.

Materials
Bulk Specific

Gravity [g/cm3]

Composition of

Mineral Mixture
(MM)

Asphalt Mixture
(AM)

Coarse agg. # 11/16 (granodiorite) 2.727 24.0 22.9
Coarse agg. # 8/11 (granodiorite) 2.751 20.0 19.1
Coarse agg. # 5/8 (granodiorite) 2.745 16.0 15.3
Coarse agg. # 2/5 (granodiorite) 2.745 12.0 11.4

Crushed fine agg. # 0/2 (granodiorite) 2.745 24.0 22.9
Filler agg. (limestone) 2.747 4.0 3.8

Bitumen 35/50 1.030 – 4.6
Adhesive additives (by weight of binder) – – 0.3

Table 3. Properties of the AC 16 W 35/50 mixture.

Property
Requirements
According to

WT-2 2014
Value

Maximum density of HMA, EN 12697-5, method A in water [Mg/m3] – 2.511
Bulk specific gravity of HMA EN 12697-6, method B [Mg/m3] – 2.419

Air Void Content V, EN 12697-8 [%] 4.0–7.0 5.17

Rutting resistance, EN 12697-22, 60 ◦C, 10,000 cycles WTSAIR [mm/103 cycles] ≤0.10 0.06
PRDAIR [%] ≤5.0 4.7

Stiffness, EN 12697-26, 4PB-PR, 10 ◦C, 10 Hz [MPa] – 16,290
Resistance to fatigue, EN 12697-24, 4PB-PR, 10 ◦C, 10 Hz, ε = 115 µm [106 cycles] – 1.23

The AC 16 W 35/50 binder course mixture was placed on a suitably prepared underlying course,
which in this case was # 0/31.5 mm crushed aggregate base of varying moisture content, as schematically
shown in Figure 3. Just before HMA placement the essential parameters of the underlying layer were
checked, including flatness, bearing capacity, compaction and moisture content. The area was divided
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into three test zones differing in terms of the moisture content in the top part of the layer, i.e., from the
top to 6 cm below the surface. In the first test zone (designated “a”) natural moisture content of 2%
was not changed and in the other zones water was poured to increase the moisture content to 6−8% in
the test zone “b” and 15−18% in the test zone “c”. The moisture content was measured with a pin-style
moisture meter utilizing resistive moisture measuring technique. The JT T-90 MM type moisture
meter has been used. The laboratory tests showed that the differences between the device readings
(with the mean of 5 readings) and moisture tests results in accordance to EN 1097-5 did not exceed 1%.
About 10 readings have been made for each area. On the base, prepared as described above the tested
HMA mixture was placed by an asphalt spreader. The paver travelled at a speed of 2 m/min. The
initial temperature of HMA was ca. 155 ◦C. During the work the ambient air temperature was 18 ◦C
at ca. 70% Relative humidity (RH). The mixture was placed on a 9.1 m long by 2.7 m wide surface.
The process of compaction was commenced after about 3 min. from placement. A nine ton vibratory
roller (type CC322) was employed, travelling at a speed of 3 km/h in 1 min work cycles. The first two
passes from the edge of the layer, in the forward and reverse directions of travel, were static. After that
the roller was shifted to 60 cm from the edge and the next passes were done as follows: the first pass,
in the forward direction–static, the second and third passes, in the forward and reverse directions–with
vibration and the fourth pass, in the reverse direction–static. This procedure was repeated after the
next shift, this time by 40 cm. In this way, each section was compacted as follows (Figure 3):

• section I—two static passes,
• section II—four static passes plus two vibratory passes,
• section III—six static passes plus four vibratory passes,

The total duration of the HMA compaction process was 10 min. The compacted thickness of the
HMA layer was 8.0 ± 0.2 cm.

Once the placed asphalt mixture had cooled down, three samples (100 mm cores) were taken from
each zone and from each test section, giving twenty seven samples in total. Next the 8 cm thick binder
course was removed and replaced with a 4 cm thick binder course. The weather conditions and the
moisture content in the base were much the same as during the previous placement.
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Figure 3. Schematic representation of the test section showing the effect of the number of roller passes
and the content of moisture in the underlying layer on the relative compaction of the asphalt mixture
(AM) layer. Legend: 1–C3/4 cement-bound layer; 2–layer of # 0/31.5 mm mechanically compacted
crushed aggregate; 3–AC 16 W binder course, 8 and 4 cm in thickness; zones of different moisture
contents: 2% (a), 6−8% (b), and 15−18% (c) respectively; sections varying in terms of the applied
compaction effort (compactor roller was employed for the work): I—two static passes, II—six passes
including two vibratory ones, III—10 passes including 4 vibratory ones.

2.2. Results and Discussion

The samples of asphalt concrete were cut from the test section (Φ = 100 mm cores), as shown in
Figure 3. The bulk specific gravity was determined on the entire cores using method B [28] as per EN
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12697-6. The in-place air void content and compaction values were determined for the complete layer
according to EN 12697-8 (Section 4) [29]. The results, each calculated as an average of three cores for
the respective layers made of AC 16 W mixture (8 cm and 4 cm thick) are presented in Figures 4 and 5
for different compaction efforts and moisture contents in the respective sections and zones.
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Figure 5. Compaction and air void content in the cores taken from the 4 cm thick binder course
depending on the location. The zone and section designations are the same as in Figure 3.

In the next step the samples were sliced into ca. 0.8–1.0 cm thick slices (Figure 6). Next the bulk
specific gravity was determined on these slices according to method C, as per EN 12697-6 (sealed
specimen). The average air void content values, taking account of the location inside the layer are
presented in Figures 7 and 8.
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Figure 7. Air void content (Vm) in the 8 cm thick binder course, determined on the sliced specimens,
depending on the number of passes of the compactor roller. The designations of the sections (I, II,
and III) and the test zones of different moisture content (a, b, and c) are the same as used in Figure 3.
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Figure 8. Air void content (Vm) in the 4 cm thick binder course, determined on the sliced specimens,
depending on the number of passes of the compactor roller. The designations of the sections (I, II and
III) and the test zones of different moisture content (a, b, and c) are the same as used in Figure 3.

The observed variation of the test results obtained for the respective the sections, differing in
terms of the number of passes and the test zones (a, b, and c) indicates the high degree of complexity
of the studied problem. We can conclude, on the basis of these results, that the compaction effort is the
factor which has a decisive bearing on the obtained micro-structure of asphalt. The increase of the
air void content in the bottom part of the sample was expected and is consistent with the results of
other reported studies [30,31]. However, it is important note, that the considerable increase of the air
void content in the bottom part of the specimen (within 1–2 cm from the bottom face) results from the
excess moisture in the base, which should be considered an undesired effect. The higher content of free
space in the upper part of layer against its center springs from faster cooling of this part and increase
of asphalt tenacity. Faster temperature drops in the upper part of layer (about 1.0–1.5 cm) results from
the heat flow. In the middle of the layer the heat flow takes place by conduction whereas on the surface
and in its upper part by convection (forced and free) also as a result of the impact of water used to
sprinkle the steel roller drum. Heat consumption as a result of convection and water is much higher
than for conduction, thus rapid and significant temperature drops are set down. The influence of free
space content and compaction on the number of roller passes and soil moisture is shown in Figure 9.
On the construction site, the main importance in achieving the required compaction and free space
content for the entire thickness of the layer is the number of roller passes and then later humidity.
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3. Laboratory Testing

3.1. Materials and Test Procedures

The results obtained from the testing the asphalt concrete samples taken from the test section show
that excess moisture in the underlying layer increases the air void content in the bottom part of the
overlying asphalt layer. It was there much higher than in in the central area and also in the sub-surface
portion of the layer. Therefore, it was decided to carry out laboratory testing of lab-prepared specimens
as the next stage of this research. These specimens were made of AC 16 W 35/50 binder course
mixture, the same as used on the test section of pavement. The specimens were compacted to 96%
(IVC—increased air void content) and 100% (MVC—Marshall air void content) in relation to the design
value—see the job mix formula in Table 3. The specimens were cut from the lab-prepared asphalt
slabs, compacted with plate compactor to obtain the two pre-defined air-void contents, i.e., Vm = 5.1%
(MVC—100% relative compaction) and Vm = 8.8% (IVC—96% relative compaction). The respective
determinations were analyzed together. In this way, the results covered a wider range of air void
content values. An increased air void content can affect the complex modulus (E*) and the fatigue life
(log10N) of the asphalt concrete and decrease, as a result, the load bearing performance and service life
of the entire pavement. The tests to determine the values of the above-mentioned parameters were
carried out on two series of specimens differing in terms of the air void content, resulting from different
compaction. The four-point bending test on prismatic specimens (4PB-PR) was employed. The test
set-up is schematically represented in Figure 10.
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Figure 10. Schematic representation of the asphalt concrete prismatic beam specimens clamped on the
test machine.

The complex modulus E* was determined at the temperature of 10 ◦C and 10 Hz frequency as per
EN 12697-26 [32]. It was determined in the 100th load cycle at 50 µm/m strain amplitude. The test was
carried out on two series of specimens (6 No. each) differing in terms of the air void content. The air
void content obtained for the specimens in the first series approximated the value obtained in the
Marshall test, i.e., 4.5–5.6%. In the second series the air void content fell in the range of 7.9 to 9.4%.
The fatigue life test was carried out at the temperature of 10 ◦C and 10 Hz frequency at the constant
strain amplitudes of 90, 110, and 130 µm/m, as per EN 12697-24 [33]. The fatigue life (log10N—number
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of load cycles) was determined for the cycles during which the stiffness modulus value decreased to
50% of the initial value, which was determined during the 100th cycle. The tests were carried out on
two series of specimens, six for each strain amplitude, varying in terms of the air void content. In the
first series, the air void content fell in the range of 4.4 to 5.6%. In the second series the air void content
fell in the range of 7.9 to 9.5%.

3.2. Results and Discussion

According to the test result there is a strong correlation between the values of the air void content
and the complex modulus (Figure 11) This is confirmed by the R-squared value of R2 = 0.797 and also
by the curve of best fit.
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of the layer.

The effect of the air void content on the fatigue life is analyzed below. The log10N fatigue life test
results depending on the air void content are displayed in Figure 12 below.
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layer (log10N) for the strain amplitudes of 130, 110 and 90 µm/m.
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When the strain amplitude is taken into account, the analysis reveals correlation between the
air void content and the fatigue life of the specimens. This is confirmed by the R-squared values
falling in the range of R2 = 0.720–0.783 (with the exact value depending on the strain amplitude)
and also by the curve of best fit (Figure 12). Attention is drawn to the inclination of the fatigue line
in relation to the horizontal axis for the respective strain amplitudes expressed by the slope factor.
The greatest inclination (and thus the variations of log10N fatigue life) are observed for the 130 µm/m
strain amplitude. This means that the effect of the air void content on the fatigue life increases with the
increase of the strain amplitude.

The effect of the air void content on the parameters of the AC 16 W 35/50 asphalt concrete is the
most evident in the fatigue curve. The graph in Figure 13 represents the relationship between the
log10N fatigue life and the strain amplitudes for the specimens of different air void contents. Also in
this case the inclination angle of the trend line in relation to the horizontal axis is greater for the
specimens with a higher air void content (IVC). The values of the limit strain ε, which is the strain at
which the complex modules decreased by 50% after one million cycles, differ by appreciable amounts.
In the case of properly compacted specimens (MVC) the limit strain was 120 µm/m while for specimens
with an increased air void content (IVC) this value approximated 98 µm/m. This indicates a very strong
influence of the air void content on the fatigue life of asphalt mixtures, in particular when they are
used for the bottom layers of the pavement structure.
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Figure 13. Visual representation of the fatigue behavior of the AC 16 W 35/50 mixtures determined on
the two series of specimens (MVC—Marshall air void content, IVC—increased air void content).

The least squares method was employed to derive an equation describing the relationship between
the number of cycles, the strain amplitude and the air void content. The equation has been written in
the following general form Equation (3):

Cycle = 10 b1+b2amplitude+b3V (3)

The results of the analysis are given in Table 4 below.

Table 4. The results of the regression analysis.

Coefficient Result p

b1 8.725 0.0000
b2 −0.0185 0.0000
b3 −0.0972 0.0000
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The value of p = 0.0000 confirms the significance of all the coefficients. Finally, we obtain the
function describing the relationship between the number of cycles, the strain amplitude and air void
content expressed by the following Equation (4):

Cycle = 10 8.725−0.0185amplitude−0.0972V (4)

This relationship is shown in the graph in Figure 14 below. The validity of the Equation (4) was
confirmed by the analysis of residuals and the analysis of the graph.
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4. Final Conclusions

1. The 35/50 bitumen is classified in the group of relatively hard binders requiring high application
temperatures. A rapid increase of the viscosity of bitumen resulting from contact with water can
considerably hamper the process of compaction of mixtures that contain this bitumen.

2. The results of the tests carried out on the entire cores show that the amount of effort applied by
the compactor and the time frame of the process have a decisive bearing on obtaining the desired
compaction. The number of passes should be specific to the type of mixture, its temperature
and, last but foremost, the compacted layer thickness. The excessive amount of effort leads
to over-compaction, especially in the center of the layer, which in some cases can decrease its
resistance to permanent deformations.

3. An insufficient number of passes, in turn, will result in an increased air void content through the
entire thickness of the layer, the most in the subsurface portion, resulting in a decreased fatigue
life or weather resistance in the case of the wearing course. The example of the lack of density
can be section I in which the samples had a free space above 7% in the entire cross-section (with a
layer thickness 4 and 8 cm).

4. While the excess moisture in the underlying layer plays some role, the variation of the air void
content in the asphalt layer in the areas of the highest moisture content (zones “a” and “c”)
determined on the entire specimens (prior to slicing) are small, i.e., maximum 1%. The variation
of the results and the actual distribution of pores in the mixture became apparent in the sliced
specimens. It is evident that high amounts of moisture inhibit obtaining the desired air void
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content in the mixture, in particular at the bottom of the layer. An increased porosity was noted
within 1–2 cm from the bottom face of the layer where the air-void content reaching 7–12% was
noted. This affects the parameters relevant to the fatigue performance of the mixture in the zone
subjected to the highest tensile stress levels.

5. An increase of the air void content causes a decrease of the value of complex modulus E*.
In researches with the free space increase by of 3.7% average, the decrease of complex module
was almost 7%. As a consequence, higher tensile strains due to traffic loading can be expected at
the bottom of the pavement structure due to a smaller stress distribution area.

6. An increased air void content in the mixture considerably reduces the value of the limit strain ε.
A decrease by 22 µm/m from 120 to 98 µm/m was noted for the analyzed mixture.

7. An increase of the tensile strains at the bottom of inadequately compacted asphalt layers in
combination with impaired fatigue performance parameters will reduce the fatigue life of the
entire road pavement. This will cause premature fatigue cracking, initiated at the bottom of
asphalt layers.

8. An increased air void content at the bottom of an asphalt layer caused by the presence of
moisture in the underlying layer will considerably decrease the fatigue life of the entire pavement.
This effect will be noticeable even if the layer as a whole simultaneously satisfies both the applied
criteria, i.e., degree of compaction and the air void content.
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