

Supplementary Materials

A Method to Assess the Relevance of Nanomaterial Dissolution During Reactivity Testing

Willie J.G.M. Peijnenburg ^{1,2,†}, Emmanuel Ruggiero ^{3,†}, Matthew Boyles ⁴, Fiona Murphy ⁵, Vicki Stone ⁵, Derek A. Elam ³, Kai Werle ³ and Wendel Wohlleben ^{3,*}

- ¹ National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, 3721 MA Bilthoven, The Netherlands; willie.peijnenburg@rivm.nl
- ² Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RA Leiden, The Netherlands
- ³ Department of Material Physics & Analytics & Formulation, BASF SE, Carl-Bosch-Strasse 38, 67056 Ludwigshafen, Germany; emmanuel.ruggiero@basf.com (E.R.); derek-alexander.elam@basf.com (D.A.E.); Kai.Werle@basf.com (K.W.)
- ⁴ Institute of Occupational Medicine (IOM), Research Avenue North, Heriot-Watt University, Midlothian EH14 4AP Edinburgh, UK; Matthew.boyles@iom-world.org
- ⁵ Nano Safety Research Group, Heriot-Watt University, EH14 4AS Edinburgh, UK; f.murphy@hw.ac.uk (F.M.); v.stone@hw.ac.uk (V.S.)
- * Correspondence: wendel.wohlleben@basf.com
- ⁺ Co-first authors

Received: 23 March 2020; Accepted: 7 May 2020; Published: date

1. Reactivity assay reagents

Below, we reported the list of materials used during each assay. In the FRAS assay, the materials employed were: sodium acetic trihydrate (Sigma Aldrich BioUltra, Darmstadt, Germany), glacial acetic acid (Alfa Aesar, Haverhill, MA, USA), 2,4,6-tri(2-pyridyl)-s-triazine (Sigma Aldrich, purity: ≥98%), HCl (Riedel-De Haen, Seelze, Germany, concentration: 1M), FeCl₃·6H₂O (Sigma Aldrich), human blood serum (Sigma Aldrich). In EPR spectroscopy, the materials used were: 5,5-Dimethyl-1-pyrroline-N-oxide (Enzo Life Sciences ALX-430-090, Oyster Bay, NY, USA), hydrogen peroxide (H₂O₂, 30%, Suprupus K49549298 824, Sigma Aldrich). In the DCFH test, we employed the following materials: 2',7'-dichlorodihydrofluoresin diacetate (Sigma Aldrich), fluorescein diacetate (Sigma Aldrich) NaOH (Sigma Aldrich), methanol (analytical grade) (Sigma Aldrich), 0.1M (×10) PBS (Gibco DPBS 10×, Gaithersburg, MD, USA) phenol red free MEM (Gibco), and FCS (heat inactivated, Gibco).

Table S1. Main	ph	vsicochemical	characteristics	of NFs.
Tuble 01. Mulli	PIL	ysicocitenticui	citatacteristics	011415.

NF	CAS	TEM Picture	Primary Particle Dimension (TEM)	Surface Area (BET)	Surface Chemistry (XPS)
CuO	1317-38- 0	200 nm	24 nm	34	7% C, 47% O, 46% metals

ZnO NM110	1314-32- 2		42 nm	12	30% C, 38% O, 38% metals, 3% non metals
Fe2O3 nano_A	1309-86- 9	100 nm	12 nm	107	16% C, 54% O, 28% metals, 1.8% non metals
Ag NM300k	7440-22- 4	20 nm	7.2 nm	n.a.	66% C, 29% O, 1.9% metals, 3.1% non metals

Table S2. The list of key parameters employed during EPR measurements.

Figure S1. FRAS dose-dependent results for Cu ions.