

Supplementary Materials

Capacitance Enhancement by Incorporation of Functionalised Carbon Nanotubes into Poly(3,4-Ethylenedioxythiophene)/Graphene Oxide Composites

Anita Cymann ¹, Mirosław Sawczak ², Jacek Ryl ³, Ewa Klugmann-Radziemska ¹ and Monika Wilamowska-Zawłocka ^{1,*}

- ¹ Department of Energy Conversion and Storage, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland; anita.cymann@pg.edu.pl (A.C.); ewa.klugmannradziemska@pg.edu.pl (E.K.-R.)
- ² Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland; mireks@imp.gda.pl
- ³ Department of Electrochemistry, Corrosion and Materials Engineering, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland; jacek.ryl@pg.edu.pl
- * Correspondence: monika.wilamowska@pg.edu.pl; Tel.: +48-58-347-24-74

Received: 30 April 2020; Accepted: 22 May 2020; Published: 25 May 2020

Preparation of PEDOT/GOx Composite Layer.

PEDOT/GOx layers were deposited from the solution containing monomer EDOT (0.015 mol dm⁻³) and graphene oxide (1 mg per 1 ml of the solution). The composite films were deposited in the three-electrode system at a constant potential of 1 V vs Ag|AgCl|0.1 M KCl on the working glassy carbon electrode (GC, 2 mm in diameter), with a deposition charge of 0.8 C cm⁻²; Pt mesh served as a counter electrode.

Preparation of PEDOT/PSS Layer.

PEDOT/PSS layers were deposited from the solution containing monomer EDOT (0.015 mol dm⁻³) and sodium polystyrenesulphonate (0.1 mol dm⁻³). The polymer layers were deposited in the three-electrode system at a constant potential of 1 V vs Ag|AgCl|0.1 M KCl on the working glassy carbon electrode (GC, 2 mm in diameter), with a deposition charge of 0.8 C cm⁻²; Pt mesh served as a counter electrode.

	N [wt%]	C [wt%]	H [wt%]	S [wt%]	C/S
pEDOT/GOx/(0.1)ox-MWCNTs	0	47.24	3.07	17.36	2.72
pEDOT/GOx/(0.5)ox-MWCNTs	0	49.52	2.52	15.10	3.28

Table S1. Elemental analysis results obtained for the composites.

GOx oxidised				GOx reduced			
	BE/eV	atomic %	assignment		BE/eV	atomic %	assignment
O 1s				O 1s	530.45	6.72	O-C=O
	531.81	5.48	O=C/C-O-C		531.7	36.12	O=C / C-O-C
	533.04	25.56	O-C		533.17	3.92	O-C
C 1s	284.4	5.95	C=C	C 1s	284.27	27.48	C=C
	285.23	21.68	C-C/C-H		285.08	8.57	C-C/C-H
	287.23	32.73	C=O		287.01	12.66	C=O
	288.52	7.08	O-C=O / COOH		288.47	3.07	O-C=O / COOH
Р	PEDOT/GOx/(0.1)oxMWCNTs oxidised		Р	PEDOT/GOx/(0.1)oxMWCNTs reduced			
	BE/eV	atomic %	assignment		BE/eV	atomic %	assignment
	531.5	5.45	O=C / O-S	O 1s	531.6	9.8	O=C / O-S
O 1s	532.7	24.1	O-C / C-OH		533.4	13.09	O-C / C-OH
	283.9	3.92	C=C	_	284.1	0.29	C=C
_	284.8	17.79	C-C/C-H	_	285 /	43.63	C-C/C-H
C 1s	285.7	7.65	C-O/C-S*	C 1s	200.4		
	286.8	28.32	C=O/C-S	_	287.0	26.34	C=O/C-S
	288.3	8.68	O-C=O / COOH		288.7	4.59	O-C=O / COOH
_	163.7	1.93	S* -C	_	164.4	1.94	S-C
S 2p _{3/2}	164.7	0.74	S-C	S 2p _{3/2}			
	168.0	0.91	S····O		168.3	0.31	S…O
Р	EDOT/GO	x/(0.5)oxMWC	NTs oxidised	PEDOT/GOx/(0.5)oxMWCNTs reduced			
	BE/eV	atomic %	assignment		BE/eV	atomic %	assignment
O 1s	531.48	5.19	O=C / O-S	O 1s	531.3	13.9	O=C / O-S
	532.89	22.78	O- C / C- OH		533.6	5.37	O-C / C-OH
C 1s	284	4.16	C=C	_	284.2	5.1	C=C
	284.78	13.08	C-C/C-H	_	285.3	57.32	C-C/C-H
	285.8	16.53	C-O/C-S*	C 1s			
	286.76	25.26	C=O/C-S		286.9	11.18	C=O/C-S
	288.61	6.98	O-C=O / COOH		288.5	5.43	O-C=O / COOH
S 2p _{3/2}	163.7	4.23	S*-C		164.5	1.52	S-C
	164.8	1.26	S-C	S 2p _{3/2}			
	167.7	0.53	S····O	_	168.5	0.19	S····O

	Peak position/cm ⁻¹	% of the total integrated area	FWHM
oxMWCNTs	1358.4	66.94	79.14
	1591.4	24.48	43.96
	1622.4	8.58	19.98
GOx	1361.1	59.17	138.31
	1588.7	40.83	89.28
PEDOT/PSS	1106.9	2.42	55.59
	1257.2	9.84	78.57
	1366.5	8.88	43.51
	1437.3	46.18	39.37
	1500.7	16.83	28.17
	1562.2	15.38	72.09
	1621.0	0.47	24.61
PEDOT/GOx/(0.1)oxMWCNTs	1106.0	1.46	62.63
	1264.6	8.53	119.75
	1360.7	29.16	94.30
	1436.6	25.16	40.65
	1510.3	9.19	36.47
	1569.2	19.72	65.86
	1609.6	6.78	42.57
PEDOT/GOx/(0.5)oxMWCNTs	1103.0	2.14	86.10
	1271.6	9.90	125.42
	1360.2	26.78	86.86
	1437.3	23.56	40.33
	1506.5	10.62	39.25
	1571.6	21.24	68.82
	1611.6	5.77	39.02

Table S3. Data obtained from curve fitting of the Raman spectra of the investigated materials.

Figure S1. Experimental set-up for: (**a**) electrodeposition process; (**b**) electrochemical measurements in the three-electrode configuration, (**c**) electrochemical tests of symmetric capacitor.

Figure S2. XPS spectra of C1s orbital recorded for (**a**) graphene oxide layer, (**b**) electrochemically reduced graphene oxide layer.

Figure S3. SEM image of broken PEDOT/GOx/(0.5)oxMWCNTs composite layer electrodeposited on FTO-coated glass.

Figure S4. SEM image of PEDOT/GOx/(1)oxMWCNTs composite layer electrodeposited on FTOcoated glass, deposition charge 200 mC cm⁻²; (**a**) magnification 10,000, (**b**) magnification 50,000.

(a)

Figure S5. SEM pictures of (a) cross-section, (b) surface of PEDOT/GOx/(0.5)oxMWCNTs electrodeposited from the solution containing agglomerated graphene oxide flakes (3 weeks after preparation of the synthesis suspension), deposition charge 800 mC cm⁻².

Figure S6. Deconvoluted Raman spectra of (a) oxMWCNTs, (b) GOx.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).