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Abstract: The unsteady flow of H,O saturated by tiny nanosized particles with various shapes
(platelets, blades, cylinders, and bricks) over a thin slit is reported. For this novel analysis,
the influences of the magnetic field and heat generation/absorption are incorporated into the
governing model. The dimensionless nanofluid model is attained after the successful implementation
of similarity transformations. Then, Runge-Kutta and homotopy analysis algorithms are implemented
for mathematical analysis, and the results are obtained by varying the main flow parameters.
A decrease in nanofluid motion is observed for a stronger magnetic field (M). Additionally, nanofluid
temperature 3(1) increases for higher values of M. Decreasing trends in the shear stresses Re, O2Cpy
are observed for the unsteadiness parameter S, and this declines with stronger M. Similarly, the local
heat transfer rate Re, 0°Nyy rises with the unsteady behavior of the fluid. It is observed that the
nanofluid motion drops for variable thickness (1) of the slit, whereas the motion becomes slower
with stronger magnetic field effects (M).

Keywords: heat transfer; thermal conductivity; nanoparticles; shear stresses; RK scheme; HAM

1. Introduction

Heat transfer investigation has been a major concern for researchers, industrialists, scientists,
and engineers. A remarkable amount of heat is necessary to accomplish many industrial processes,
such as food and paper production. Therefore, the large amount of heat required to create these products
has been a major problem for industrialists, engineers, scientists, and researchers. Unfortunately,
carrier liquids are not able to produce the necessary amount of heat required to accomplish many
production processes. Additionally, some researchers have proposed the replacement of conventional
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carrier liquids by a new sort of fluid that offers improved heat transfer properties. Thus, a new class of
fluids has been introduced called “nanofluids” (Choi) [1].

The investigation of heat transport in nanofluids is a focus for engineers and industrialists.
The beneficial heat transport properties of nanofluids have resolved problems faced by engineers.
Nanofluids are compositions of regular liquids and tiny particles of different metals, oxides, carbon
nanomaterials, ferromagnetic alloys, and alloys of various other metals. These particles are saturated in
regular liquids in stable thermal equilibrium. Nanofluids have gained popularity for their extensive uses,
including applications in medical sciences, chemistry, civil engineering, aerodynamics, manufacturing
of aircraft, home appliances, electronics, and different computer chips.

Nanofluid models comprising various thermal conductance correlations are very difficult to tackle
theoretically. The reason for this challenge is that thermal conductance correlations involve various
properties, such as the diameter of the tiny particles, the effects of temperature, and molecular diameter.
The resultant mathematical nanofluid models are highly nonlinear and coupled; therefore, such models
are complex. However, mathematicians have proposed several mathematical techniques that help to
tackle these models effectively.

The investigation of flow and thermal transport in nanofluids over a thin slit with variable
thickness has versatile applications. Analysis of heat transfer and the impacts of Lorentz forces in
flow regimes over a thin slit offers potential uses in the aforementioned industries. Nanofluid models
that describe flow over a thin slit and comprise the effects of Lorentz forces are highly nonlinear and
significant from an industrial point of view. Heat transfer in carrier fluids is very poor. Because of
these poor heat transfer properties, carrier fluids have limited uses in industries.

Researchers have carried out heat transport investigations of nanofluids over a thin slit under
various physical flow conditions. Recently, Shah et al. [2] described the influence of nonlinear
radiative heat flux in a magnetized nanofluid thin film flow. They adopted analytical and numerical
techniques for the solution and reported the results of nanofluid velocity and thermal transport.
The second-law analysis and behavior of velocity and thermal fields resulting from an imposed
magnetic field in a viscoelastic nanofluid are described in [3]. The researchers reported results for local
heat transfer and discussed this comprehensively. A heat and mass transport analysis under the impact
of variable Lorentz forces over a thin film was presented in [4]. They highlighted the behavior of mass
and temperature for multiple values of these parameters. The influence of the Cattaneo—Christov
constitutive model of a thin film flow of carbon nanotube-based nanofluids and entropy analysis were
described in [5]. They treated the model by implementing a MATLAB built-in algorithm and published
the results of the flow regimes. They pointed out that velocity and thermal profiles rise for high volume
friction of carbon nanotubes. Furthermore, fruitful analyses of the flow and thermal behavior over a
thin film were provided in [6,7].

Different theoretical models have been suggested in order to improve thermal transport in
nanofluids. One of them is known as the Hamilton-Crosser model, which deals with particle shapes.
The convective thermal transfer of nanofluids in the presence of variously shaped nanoparticles is
described in [8]. These researchers also studied the impacts of varying nondimensional physical
quantities on the flow behavior. Khan et al. [9] presented the flow of copper/water nanofluids in an
oblique channel. The thermal behavior of a ferromagnetic fluid based on the convective nature of the
flow conditions was reported in [10]. Sheikholeslami et al. [11] studied water-based nanofluids and
evaluated the impacts of convective auxiliary conditions. They discussed this problem numerically and
examined the effects of nondimensional quantities. The study of water saturated by carbon nanotubes
was discussed in [12]. The impacts of the slip parameter and ohmic heating on Casson-flow properties
over a convectively heated stretchable surface were discussed in [13,14], respectively. Incompressible
flow was explored by considering viscous dissipation and thermal radiation in two nonparallel walls
in [15,16]. The researchers performed analytical and numerical investigations for a nonlinear flow
model and studied the flow field graphically. The flow of a magneto-nanofluid in a rotating channel
is discussed in [17]. Recently, Athira et al. [18] explored the influence of silver nanosized particles
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on Jeffrey flow properties. Many other researchers have presented studies regarding nonlinear flow
models for nanofluids (e.g., [19-21] and references therein).

A literature review indicates that thermal transport in colloidal fluids composed of various
tiny particles (platelets, blades, bricks, and cylinders) over a thin slit has not been analyzed to date.
Therefore, this study is presented to fill this significant research gap. Our aims are to examine the heat
transfer behavior by incorporating the influence of Lorentz forces and heat generation/absorption in
the energy constitutive relation. The model is formulated and reduced into the self-similar version by
plugging in defined invertible transformations. The model is treated analytically and numerically over
the domain of interest. The homotopy analysis method (HAM) and Runge—Kutta (RK) algorithm are
merged with the shooting technique in the presented analysis. Then, the results are presented with the
main parameters and discussed comprehensively. Finally, the key output of the study is highlighted in
the conclusions section.

2. Materials and Methods
2.1. Model Formulation

2.1.1. Statement and Geometry of the Model

In this model, 2D electrically conducting unsteady flow is considered. The sheet is positioned
along the x-axis. The velocity in the horizontal direction is uy, = (1 — at)~! bx, where uy depends
on x and t. Furthermore, b and « are constant quantities. The temperature at the wall is
Ts(x, t) = (Tg — To)/(1 — at)Obx?(2v¢) L. Here, reference and slit temperatures are denoted by Ty and
T;, respectively. A time-dependent magnetic field is applied perpendicular to the slit with strength By,
where B(t) = Bo/(v/(1 — «t)). Moreover, the variable slit thickness is represented by h(t). Furthermore,
it is assumed that the nanoparticles have the shapes of platelets, blades, cylinders, and bricks and that
there is no slip condition between them. Figure 1 depicts the appropriate geometry of the particular
nanofluid model.
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Figure 1. The flow of nanofluid composed of multiple nanomaterials.
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2.1.2. Governing Model and Similarity Transformations

The considered nanofluid model includes the following set of partial differential equations (PDEs)
comprising the impact of Lorentz forces that describe the flow through a thin slit:

Ju oJv
X + g =0 1
du du du *u 5
pnf(ﬁ fus-+ V@) = Unf (3_}72) —opfB7u )
dT ~ JT  JT A
(pCp)nf(E + ux + V;) = knf(a—yz) +q (3)

Equation (1) describes mass conservation, and Equations (2) and (3) represent the well-known
dimensional momentum and energy equations, respectively. Further, thermal conductivity is denoted
by kn¢, specific heat capacity is (pCp )y, effective electrical conductivity is oy,¢, and the dynamic viscosity
and density of the nanofluid are p,¢ and pyf, respectively. Furthermore, u and v represent the velocity
in the horizontal and vertical positions, respectively. The time- and thermal-dependent sink/source
quantity q” is given in the following formula:

q” = (xv) "ke(Ts = To)uw (x, ) (A1 F + By (Ts = To) ™ (T - To)) @)

Here, A; and B; represent the heat generation and absorption parameters, respectively.
Furthermore, we used the following effective nanofluid models:

g = g (1 +a"¢ +bd?) ©
[k (= Dk + (n—1) (ks —ke)
Ko = kf[ ks + (n—1)k¢ — (ks —ke)d ] ©
Pnf g oy $Ps
pe =)+ Pt v
oC d(pC
( p)nf:(l—d))-f—ﬂ ®)
(pCP)f (pcp)f

Here, a* and b are constants, ¢ is the volumetric fraction, ps shows the effective density of the
nanoparticles, ps is the density of the carrier fluid, and n = 3/\ is the empirical shape factor. The thermal
and physical properties are reported in [8]. The empirical shape factor, sphericity, and thermophysical
attributes of the host liquid and Cu tiny particles are described in Tables 1-3, respectively.

Table 1. Empirical shape factors.

Model Platelets Blades Cylinders Bricks

a* 37.1 14.6 13.5 1.9
b 612.6 123.3 904.4 471.4

Table 2. Sphericity () or the nanoparticles.

Model Platelets Blades Cylinders Bricks
] 0.52 0.36 0.62 0.81
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Table 3. Thermophysical properties.

Model p (kgm~3) ¢p (kglk )  k(wm k! g (105K
H,O 997.1 4179 0.613 21
Cu 8933 385 401 1.67

The boundaries of the slit at y = 0 and y = h(t) are specified as follows:

u »Ly:0: Uw, V ly:OZ 0, T ly:O: Ts (9)
du JaT
gy b=h9= 0 Viyen=he and 5o dyon=0 (10)

The suitable self-similar variables are defined in the following way:

1 b\

1= () "

P R 7 :
R e R 12

T-Tp
B(n) = T, (13)
Ts = To - Te(bX?(2v) 7 )(1 - at) 2B (m), Yt <1/ (14)

9 P)
u= %, v = &(5 (15)

By using these similarity variables and models for nanofluids (given above), in the dimensional
model for the nanofluids given by Equations (1)—(3), we get the following nondimensional flow model:

(0s+20¢)+2(0s—0¢) b
" 1 d) +d)[ ] ’ 2 ’ N, 2{ (Gs+26f)_(55_0f)¢ } ’
F - (F —-F*-SF -s—F )—M =0 (16)
(1+a'p+be?) 2 (1+a¢ +bg?)
C
(1-¢)+ ¢[—Egci;f}
7 —_ F 3 )
B [k5+kf(n—l)+(n—l)d)(ks—kf)] ( ‘B-FB+ 3 ( B+np’)
ot (n-Dki—(Ke—Kp) (17)
1
AF +B =0
+[k5+<n—1>kf+<n—1)(ks—kn«b]( 1 +BiB)
ks+kg(n=1)- (ks—k¢)
The conditions at the boundaries of the slit are the following;:
F(Tl) ln:(): 0, F'(n) ln:0: 1, B(Tl) ln:O: 1 (18)
F'(m) In=1=0, B'(M) In=1=10 (19)

The quantities incorporated in the model are the Prandtl number, Hartmann number, and
unsteadiness parameter. Mathematical expressions for the aforementioned parameters are as follows:

Hf(Cp)f 5 O'fB%Vf 10 >
Pr = K , M~ = b ,S—B.Also?\—ﬁ
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and p* is defined as
hb (ve) ™

(1-at)/?

Physical quantities such as shear stresses and the local Nusselt number are of great interest from
an engineering point of view. In their self-similar form, these quantities are as below:

*

Crx VRex = =2 F () Ly—o (20)
P Aq
NUX(RQX)_% = _Igf B’ (m) In=0 (21)

ks + (n-Dke+ (n-1) (ks —ke)
ks + (n—1)ks — (ks —ke) &

A; = (1 - (b) +¢[—], AZ =1+a'¢p —|—bd)2, and AZ =

Pt

where Rex = %% is the local Reynolds number.

2.2. Mathematical Analysis

The particular model in this study is of a nonlinear nature. For this kind of model, closed solutions
are difficult. The set of ordinary differential equations (ODEs) given by Equations (5) and (6) is highly
nonlinear in nature and coupled. For this sort of system, exact solutions are infeasible. Thus, we tackled
this problem by considering the flow of magneto-nanofluids analytically. For this purpose, we used the
boundary value problem HAM (BVPH2.0). To initiate the package, the following estimates were made:

Fo(m) =n (23)
Bo(n) =1 (24)
The supporting linear operators are Ly = ;1375 and Lg = jo%, respectively. These operators obey
the linear property:
Lr(N; + N3(n) + N3(m)%) =0 (25)
Lp(Ny +Ns(n)) =0 (26)

where N} (k = 1...5) is a constant.
The auxiliary parameters for the velocity and temperature (Ar and 7ig) embedded in the solution
play vital roles in the convergence. The following mathematical formulae are used to calculate

these parameters:
2

B* m*
Yoo () = 13 NF[z b <nAx*>] @
n=0 =0

2

B m”
Yo 2 (Fig) = % Za NB[ZS By (nAx*)] (28)
n= j=

where AX* = %. The solutions of the model are calculated over the domain of interest, and the values
of auxiliary parameters are also determined for varying relevant parameters to validate the applied
method. Tables 4 and 5 present the optimal values and solution of the model. Further, both analytical
and numerical solutions show excellent agreement.
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Table 4. The values of auxiliary parameters.

A S M Aq B1 hg hg Error
0.2 0.2 0.2 0.2 0.2 -0.65145 -0.72236 1.24527 x 10~10
0.4 —0.86694 —-0.56591 7.61662 % 1077
0.6 -1.69158 —-0.53692 -3.60051 x 1074
0.2 0.4 -0.70535 -0.68526 —4.20735 x 10710
0.6 -1.52688 —-0.79938 -3.14081 x 1077
0.2 04 -0.97360 -0.72343 —-9.49486 x 10710
0.6 -1.21863 —0.69243  —6.768686 x 1078
0.2 0.4 —-1.02047 —0.73573 —3.14275x 10710
0.6 -0.66141 —-0.71472 1.77114 x 10710
0.2 0.4 ~1.57109 —-0.96331 -1.25138 x 1077
0.6 -1.68925 -1.06871 -8.10655 % 1077

Table 5. Solutions of the model.

n F(n) BM)

! HAM Numerical Error HAM Numerical Error
0.0 0.0000 0.0000 0.0000 1.0000 1.0000 0.0000
0.1 0.10013 0.10013 9.722400 x 10710 0.87309 0.87309 5.333840 x 1078
0.2 0.20050 0.20050 1.761650 x 10~° 0.76556 0.76556 4.908750 x 1078
0.3 0.30109 0.30109 3.020970 x 10~? 0.67574 0.67574 6.497240 x 1078
0.4 0.40187 0.40187 4770370 x 1077 0.60206 0.60206 3.247030 x 1078
0.5 0.50282 0.50282 6.911800 x 10~ 0.54305 0.54305 2.215420 x 1078
0.6 0.60390 0.60390 9.409160 x 10?7 0.49733 0.49733 1.406580 x 1078
0.7 0.70509 0.70509 1.220780 x 1078 0.46363 0.46363 7.046780 x 10~
0.8 0.80637 0.80637 1.524420 x 1078 0.44079 0.44079 1.502500 x 10~?
0.9 0.90770 0.90770 1.844790 x 1078 0.42776 0.42776 6.340190 x 102
1.0 1.00906 1.00906 2.174040 x 1078 0.42361 0.42361 3.568580 x 107

3. Physical Interpretation of the Results

Changes in the main flow quantities, such as the Prandtl number (Pr), imposed magnetic field
(M), and unsteadiness parameter (S), are significant in the behavior of temperature, velocity, and the
local heat transfer rate for the model under consideration.

The changes in the velocity F'(n) for A and the magnetic number M are shown in Figure 2 over the
region of interest. It is noted that the velocity of the nanofluid for various geometries over the thin
slit rises for higher A. At =0, these are almost negligible for multiple nanofluids based on the tiny
particles” geometries. However, the velocity gradually rises towards the regionn = 1.

The Lorentz force is of great importance for its uses in multiple industrial production processes
and in various engineering disciplines. The influence of the magnetic number due to the imposed
magnetic field on the nanofluid velocity F'(n) is illustrated in Figure 2b. Decreasing values of F'(n)
are observed. Physically, this means that the applied magnetic field opposes the nanofluid motion.
Consequently, the momentum drops, which leads to a drop in the velocity F'(n). Near the higher end
of the range (n = 1), an abrupt decrement in F’(n) is detected because, with these values, the magnetic
field is very strong in comparison with lower values (n = 0). Further, for the tiny particles with a
blade geometry, values of F'(n) rapidly decrease. Figure 3 shows the influences of the unsteadiness
number S on F'(n) for multiple values. These results show that a more unsteady nanofluid tends to be
associated with increasing velocity F’(n), and an abrupt increase in F’(1) is observed for tiny particles
with a platelet geometry. The velocity F'() increases very slowly for a nanofluid with blade-type
tiny particles.



Materials 2020, 13, 2737 8 of 14

5=02 A=02
S=02M=20 10 "I‘v--=-.. - ]
1.0f- ' ' ' ' S
‘0 T 1=0.1,02,0304 AR T
SSns 0-2
0.9 K .
= 0.8
= = 0.
:u_: 08 Flatelets
Platelets o d Blades i
0.7 - - Blades — Cylinders =-‘._H.’_
i1=0 5 57 "
"t — Cylinders 06 Bricks, M ID.jzl.l}:l_):_,_D . .
- - Bricks . . . ) 0.0 02 0.4 06 08 1.0
0.0 0.2 0.4 0.6 0.8 1.0 n
n
(b)
(a)

Figure 2. The velocity pattern for different values of (a) A and (b) M.
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Figure 3. The velocity pattern for different values of S.

Nanofluids are very popular for their effective heat transfer properties. Figures 4—6 present the
influences of the considered flow parameter on the temperature of various nanofluids based on tiny
particles with different geometries. The Prandtl number is fixed at 6.2 because water is taken as the

host liquid.
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Figure 4. The temperature pattern for different values of (a) A* and (b) B".
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Figure 5. The temperature pattern for different values of (a) M and (b) S.
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Figure 6. The temperature pattern for different values of A.

Figure 4 depicts the changes in temperature 3(n) for the heat source/sink parameter. The results
show that as a result of the internal heat source, the temperature increases for nanofluids composed
of various tiny particles. Physically, this is due to the internal heat source, which provides extra
energy to the nanofluid molecules, and this additional energy leads to the increase in temperature 3(1)).
On the other side, B* restricts the nanofluid temperature [3(n) abruptly near the regionn = 1. A higher
magnetic number appears to be beneficial for thermal transport, and a greater increase in temperature
is observed for the nanofluid composed of blade-shaped tiny particles. Near 1 = 0, these influences are
almost inconsequential because the effects of the imposed Lorentz forces are weaker for these values.
Moreover, for a more unsteady nanofluid, the temperature (3(n) drops. The behavior of 3(n) for higher
A is shown in Figure 6. The stronger A decreases the nanofluid temperature (3(n).

Studying wall shear stresses and local heat transportation is significant from industrial and
engineering points of view. Therefore, Figures 7-11 are presented to analyze the behavior of shear
stresses and heat transportation for multiple flow quantities. The stronger magnetic field restricts the
wall shear stresses because the high impact of the magnetic field causes the motion of the nanofluids
to decline, and consequently, the transport of shear stresses drops. Rapid decreases are detected for
nanofluids composed of cylinder-shaped tiny particles. For more unsteady flow, maximum shear
stresses at the wall are detected because of the increased unsteadiness of the nanofluid. These findings
are illustrated in Figure 7a,b, respectively. The shear stresses S versus A and M versus A are plotted in
Figure 8a,b, respectively.
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Figure 11. Variations in the Nusselt number for different values of S.

Figure 9a,b express the local heat transportation rate at the wall. It is noted that Re, 02Ny
declines for B* and A*. Rapid decreases are observed for the nanofluid composed of brick-shaped tiny
particles in both cases. Further, nanofluids that are more unsteady favor heat transportation at the wall.
These effects are shown in Figures 10 and 11.

4. Validation of the Analysis

The results of comparative analysis for some of the involved parameters are presented in Table 6.
It is noteworthy to mention that for zero volumetric friction of the nanoparticles, the present model is
reduced to the conventional flow model. Therefore, we compared the results with those of conventional
models and observed that the presented results are reliable.

Table 6. Comparison with scientific literature for =0, M =0, a* =0, b = 0.

S Presented Results [22] Present Results [23]

A F”(0) A F”(0) A F”(0) A F”(0)
1.4 0.674089 -1.01278 0.674089 -1.01278 0.674097 -1.01278 0.674097 -1.01278
1.6 0.331976  —0.642398 0.331976  —0.64240 0.331977 —-0.642399 0.331977  —0.64241
1.8 0.127013  -0.309137 0.127013 -0.309138 0.127014 -0.309139 0.127014 -0.339138
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5. Conclusions

A thermal transport analysis in nanofluids for multiple shapes of tiny particles in the presence of
Lorentz forces and heat generation/absorption is reported. The flow is carried out over an unsteady thin
slit. The effects of the main flow parameters on the velocity and temperature behavior are illustrated.
It is observed that the nanofluid velocity F'() rises, and stronger effects of the imposed magnetic field
resist the motion of the fluid. The velocity of nanofluids composed of the platelet- and blade-shaped
tiny particles is highest among the studied particle shapes. The nanofluid temperature (3(n) increases
for a more magnetized fluid, and the unsteadiness parameter S decreases it. Further, an increase in
the shear stresses is observed for higher values of M, whereas they decrease with the unsteadiness
parameter. On the other hand, the effects of S for the local heat transfer rate are strong. Moreover, it is
observed that the nanofluid comprising blade-shaped nanomaterial has a high heat transport capacity
and is thus promising for industrial uses.

6. Achievements

A comparative heat transfer analysis in the nanofluids comprising the tiny particles with various
shapes (blades, cylinders, bricks, and platelets) is reported. From the presented results, it is observed
that the nanofluid comprising the blade-shaped nanomaterial has excellent heat transport properties.
Therefore, these materials are better for practical applications to overcome the heat transport issues of
engineers and industrialists.
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Nomenclature

u, v Velocities in the x- and y-directions, respectively (m/s)

X,y Coordinates

To and Ty Temperature at the slit surface and reference temperature, respectively (K)
Bo Magnetic field (T)

«and b Constants

nf Denotes the nanofluid

Pnf Nanofluid density (kg/m3)

ps and pg Densities of the tiny particles and host liquid, respectively (kg/m?)

nf Dynamic viscosity of the nanofluid (kg/ms)

Onf Electrical conductivity of the nanofluid (S/m)

os and o Electrical conductivities of the tiny particles and host liquid, respectively (S/m)
(pCp)n Specific heat capacity of the nanofluid (J/kg K)

(Cp) o (Cp)s Specific heat capacities of the liquid and tiny particles, respectively (J/kg K)
knf Thermal conductivity of the nanofluid (W/m K)

k¢ and kg Thermal conductivities of the liquid and tiny particles, respectively (W/m K)
n Shape factor of the particles

¢ Volume fraction of the particles

n Invertible variable

F(n) Dimensionless velocity

Bm) Dimensionless temperature
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A Dimensionless slit thickness

© Stream function

Pr Prandtl number

M Magnetic number

S Unsteadiness number

Cry Dimensionless skin friction coefficient

Nuy Dimensionless Nusselt number

Lrand £ Linear operators
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