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Abstract: This paper analyses the effect of the abrasive waterjet cutting parameters’ modification
on the condition of the workpiece surface layer. The post-machined surface of casting aluminium
alloys, AlSi10Mg and AlSi21CuNi, was characterised in terms of surface roughness and irregularities,
chamfering, and microhardness in order to reveal the effect that variable jet feed rate, abrasive
flow rate, and sample height (thickness of the cut material) have on the quality of surface finish.
From the analysis of the results, it emerges that the surface roughness remains largely unaffected
by changes in the sample height h or the abrasive flow rate ma, whereas it is highly susceptible
to the increase in the jet feed rate vf. It has been shown that, in principle, the machining does not
produce the strengthening effect, that is, an increase in microhardness. Owing to the irregularities
that are typically found on the workpieces cut with higher jet feed rates vf, additional surface finish
operations may prove necessary. In addition, chamfering was found to occur throughout the entire
range of speeds vf. The statistical significance of individual variables on the 2D surface roughness
parameters, Ra/Rz/RSm, was determined using factorial analysis of variance (ANOVA). The results
were verified by means of artificial neural network (ANN) modelling (radial basis function and
multi-layered perceptron), which was employed to predict the surface roughness parameters under
consideration. The obtained correlation coefficients show that ANNs exhibit satisfying predictive
capacity, and are thus a suitable tool for the prediction of surface roughness parameters in abrasive
waterjet (AWJ) technology.

Keywords: abrasive waterjet technology; Al-Si alloys; surface roughness; irregularities; specimen
chamfering; microhardness; artificial neural networks; ANOVA statistical analysis

1. Introduction—State of the Art

Machine components and semi-finished products are manufactured using a range of methods
and types of machining operations. The 21st century manufacturing industries employ modern
and cutting-edge machining techniques, including precision casting, plastic forming (die forging,
cross-wedge rolling) [1], or high-speed milling (roughing, finishing, precision cutting) [2–4].
Increasingly often, the preparation of pre-products for subsequent processing involves abrasive water
jet machining (AWJ)—one of the most dynamically developing technologies of modern manufacturing.
Several terms for the technology have been proposed—abrasive waterjet machining (AWJM), abrasive
waterjet cutting (AWJC), or abrasive waterjet technology (AWJT). AWJ machining is one of the most
promising, non-conventional methods for shaping various types of structural materials, which is in a
number of ways distinctly superior to other cutting methods [5]. Its advantages include high versatility
with respect to the material being cut—it copes with virtually any metal/non-metal substrate except
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for diamond. AWJ machining of light alloys can be carried out at approximately twice the speed of
steel. In addition, in the case of aluminium alloys, AWJ cuts through a range of thicknesses, from thin
sheets (under 3 mm) to thick plates in the excess of 150 mm. The cut surfaces are smooth and show
good quality of finish, rarely requiring further finishing treatment. High-pressure abrasive waterjet
technology is undergoing constant evolution, which enables increasing its efficiency as well as the area
and scope of applications [6].

The superiority of abrasive waterjet technology in comparison with conventional machining
techniques is further bolstered by its other strengths [5,7]. The technology is capable of machining
materials of any given hardness and can effortlessly shape intricate geometries. With respect to soft
alloys, Mg or Al, the features of AWJ that are by far the most important markers of its capacity for
handling these substrates [5] are as follows: no thermal effects, negligible cutting forces (reduced
heat generation and no need for special technological equipment), and no dangerous dust or fumes
during machining.

The process parameter that regulates the shape of the waterjet during cutting is water pressure;
the waterjet stream and aerodynamic force rise with the increase in the pressure. This reduces the core
zone of the waterjet and increases the jet exit angle. The jet geometry affects the depth of cut; when
conical, an increase in the standoff distance will reduce the depth of cut. In addition, jet deflection occurs
when a certain workpiece thickness is exceeded. The machining quality is particularly susceptible to
the depth of cut; as the jet impact depth rises, the quality of the cut deteriorates. This may be explained
by an uneven distribution of the kinetic energy of the abrasive medium (the energy is in the most part
spent on removing the top layer of the workpiece, and the remaining energy is insufficient to provide a
clear cut). As a result, machining tends to leave visible marks, striations, on a lower surface of cut [8].

The processing effectiveness is described and measured by various indicators, including efficiency;
the quality of workpiece surfaces; technological parameters; or, alternatively, as a ratio of the amount of
labour to the effect of that work [3]. In the aviation industry, the factors that are critical for production
efficiency are, inter alia, a proper design of a component, machine-tool-workpiece-system rigidity,
high-durability tooling, and optimal technological machining parameters that ensure high efficiency
and adequate stability.

The chief focus of the efficiency-oriented investigations is to establish the effect that certain
processing conditions have on the material removal rate and the geometry of the finished product.
With respect to surface quality, researchers typically consider the impact of feed speed and standoff

distance [9,10].
Abrasive waterjet technology is most widely studied in aluminium alloy machining. The scope of

Al alloys tested in scientific investigations is quite extensive and includes a variety of classes, from
nearly pure aluminium alloys (1xxx series) [11,12], to Al-Mg alloys (5xxx series) [11,13,14], Al-Mg-Si
alloys (6xxx series) [11,15–22], and Al-Zn-Mg alloys (7xxx series) [11,23,24]. The selected referenced
research is summarised in Table 1.
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Table 1. Summary of abrasive waterjet cutting light alloys.

Materials Machining Conditions Research Object Reference

Al 1050

Traverse speed vt = 100–600 mm/min
Surface topography
Surface roughness

Machinability
[11]

Al 2017
Al 5083
Al 6060
Al 7075

Al 1060

Velocity v = 0.6–1.5 mm/s

Surface roughness [12]Pressure P = 25–33 MPa
Stand-off distance h = 0.5–2 mm
Abrasive diameter d = 80–200 #

Al 5083-H32
Abrasive mesh size 80–120 #

Jet impingement angle 70–90◦

Surface morphology

[14]
Surface topography

XRD peak
Residual stress
Micro hardness

Al 6060

Cutting speed V = 200–1000 m/min Surface topography
Surface roughness

Surface roughness prediction
[15]Material thickness S = 6–20 mm

Abrasive flow Q = 300–400 g/min
Measurements position 1–3

Al 6061-T6

Stand-off distance h = 2–10 mm
Mask thickness tm = 1–2 mm

Mask opening Wm = 50–150 µm
Number of passes n = 1–120

Nozzle angle θ = 45–90◦

Channel cross-sectional shape
Instantaneous normalized centreline erosion rate

Surface roughness
Surface waviness

[17]

Al 6061 T651
Feed rate vf = 50–100 mm/min

Thickness g = 1–10 mm

Width of processed surface

[18]Inclination angle
Deviation from perpendicularity

Surface roughness

Al 6061 T651 Cutting method

Width of processed surface
Deviation from perpendicularity

Inclination angle
Surface roughness

[20]

Al 6063-T6

Traverse rate V = 30–90 mm/min
Abrasive flow rate M = 0.5–4.5 g/s
Water pressure P = 100–250 MPa

Focusing tube size F = 0.76–1.6 mm
Orifice size O = 0.25–0.35 mm

Depth of cut
Kerf width

Surface roughness
[21]
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Table 1. Cont.

Materials Machining Conditions Research Object Reference

Al 7075
Traverse speed vt = 30–150 mm/min

Water pressure P = 100–300 MPa
Stand-off distance SoD = 1–3 mm

Surface roughness [23]

Al 7475

Feedrate v = 3000–5000 mm/min Surface texture

[24]Pressure P = 40–50 kpsi Fatigue life
Standoff distance s = 10–25 mm Stress

Passess 1–4 Material removal rate

Al-alloy
(lack of material grade)

Material thickness t = 15–30 mm
Traverse speed v = 37–350 mm/min

Abrasive mass flow rate ma = 100–390 g/min
Surface roughness [25]

AZ91D Jet feed velocity vf = 5–180 mm/min
Abrasive material flow rate ma = 50–100%

Irregularities
Surface chamfering
Surface roughness

Microhardness

[5]
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Computer simulation and mathematical modelling techniques are becoming widely employed in
studies of machining processes and related phenomena, including the condition of the surface layer.
The tendency applies to abrasive waterjet machining of soft alloys, as exemplified by Kolohan and
Khajavi’s study [10,26] that utilised statistical regression in the analysis of 6063-T6 aluminium to study
how various process parameters (water pressure, jet traverse rate, abrasive flow rate, and focusing
nozzle diameter) affect the depth of cut. The model was verified using the analysis of variance
(ANOVA) technique. Other studies [27] made use of the response surface methodology based on grey
theory (g-RSM) by simultaneous optimisation aimed to predict optimal cutting data.

Kale et al. [28] investigated the material removal rate and surface roughness with the Taguchi
and grey-relational analysis and combined it with analysis of variance (ANOVA) to determine the
effect changing parameters on the analysed factors. The same method, Taguchi (ANOVA), was used
by Maneiah et al., who examined metal matrix composites (MMCs) of Al-6061 [29]. Fuzzy logic and
regression equations have also been employed to predict surface roughness in a number of studies,
including the analysis of the abrasive waterjet machining of AZ91 magnesium alloy involving response
surface methodology (RSM) [30].

With respect to surface roughness, in several works, it has been investigated with the
implementation of neural networks, for instance, in the study of variable AWJ parameters [31].
The work in question attempted to establish the correlation between cutting parameters and surface
roughness, which necessitated using the artificial neural network (ANN) and multiple regression
tools based on Taguchi’s orthogonal array. In a similar study, by Zain et al. [32], regression modelling,
SA optimisation, GA optimisation, integrated SA–GA-type1 optimisation, and integrated SA–GA-type2
optimisation served to predict the surface roughness parameter Ra in abrasive waterjet machining
of Al 7075 alloy. In another instance, Zagórski et al. [5] analysed the condition of the AZ91D alloy
workpiece surface by forecasting Ra, Rz, and RSm after cutting with the abrasive jet stream that was
carried out for a variable set of parameters, specifically, the jet feed velocity vf and the abrasive flow
rate ma.

ANN-supported analyses of the effects of AWJ machining are not limited to Mg or Al alloys and
include other metals, for example, steel, as evidenced by the study of Selvan et al. [33] or Ganowska
et al. [34]. The studies referenced in the preceding paragraphs constitute only a small extract of an
extensive body of scientific literature showing the use of ANN modelling. Other applications of the
method include modelling surface roughness in milling [2,35], turning [36,37], or drilling [38].

For practical reasons, the research direction that should necessarily be explored is the study of
the effect of input parameters of AWJ on the output model parameters: quality and accuracy [6].
What emerges from the study of literature is the notable paucity of published research material on the
application of AWJ in the machining of Al-Si alloys.

Furthermore, it was found that an aluminium alloy with a low content of abrasive particles,
such as the Si–AlMgSi0.5, has only once been an object of a scientific study [22]. The paper, however,
did not address the post-machining condition of the Al-Si surface, as it focused on two indicators:
width of the kerf and taper angle. The key observations were that the amount of energy is a decisive
factor for the size and type of the cone-shaped cavity in the cut zone. It was thus resolved that the
subject matter required deeper investigation, particularly given that the cut material in question has
not been tested within the scope specified in our work. A further motivation is the practical implication
of the undertaken study. Si-rich alloys are the source of machining problems rooted in tool wear
or cutting edge degradation, contributing to a substantial rise in machining costs. These issues are
effectively avoided when AWJ machining is performed, which additionally indicates that abrasive
waterjet technology exhibits the necessary capacity to replace conventional machining methods in the
preparation of Al or other soft pre-products for subsequent machining processes. This work provides
evidence indicating that AWJ technology could decrease the cost-intensity of the process (tool/abrasive
material costs), while positively impacting its efficiency.
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2. Materials and Methods

The essential part of this work is the study of the abrasive waterjet machining of Si-enriched Al
alloys AlSi10Mg and AlSi21CuNi with respect to process quality and efficiency. Figure 1 presents the
test flowchart, the AWJ cutting visualisation, and the neural network predictive model.

In the course of the investigations, the testing procedures and methodology were carried out with
strict adherence to an International Standard, PN-EN ISO 9013. The variable machining parameters
were as follows: the abrasive flow rate ma, the jet feed rate vf, and the sample (pre-product) height
h. The Al-Si alloy cutting process was performed with OPAL WATERJET COMBO (Legnica, Poland)
cutting machine for plasma and waterjet cutting. The specimens were produced in the following sizes:
AlSi10Mg 60 mm × 46/23/12 mm × 270 mm and AlSi21CuMn 60 mm × 46/23/12 mm × 154 mm.

The abrasive medium was a widely used blasting abrasive GARNET 80 mesh, which is natural
sand characterised by low dustiness, low wear, and high hardness, whose sharp-edged particles
provide good machinability properties [5]. Table 2 shows the constant AWJ cutting settings.

Table 2. Constant technological parameters of abrasive waterjet (AWJ) cutting.

Nozzle (focusing tube) diameter—do 0.7 (mm)
Abrasive (size) Garnet 80 mesh

Standoff distance 3 (mm)
Nozzle width 60 (mm)

Water pressure—p 350 (MPa)

Table 3 shows the variable cutting parameters tested during AWJ machining. As in the case of the
constant parameters, these were pre-determined from previous studies and the literature.

Table 3. Variable technological parameters of AWJ cutting.

Workpiece Sample Height h
(mm)

Abrasive Flow Rate
ma (g/min)

Jet Feed Rate
vf (mm/min)

AlSi10Mg
46

500 (g/min) i.e., –100%
250 (g/min) i.e., –50% 5–100

23
12

AlSi21CuNi
46
23
12

Figure 1. Cont.
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Figure 1. Schematics of (a) test flowchart, (b) abrasive waterjet (AWJ) visualisation, (c) measurement
roughness parameters area, and (d) neural network for surface roughness parameter prediction.
ANOVA, analysis of variance; ANN, artificial neural network.

The machine-cut specimens were subjected to 2D roughness analysis. The surface of the cut
was measured in five repetitions in two regions of the workpiece; at the waterjet entrance and in
the middle of sample height (corresponding to the half of specimen thickness). The data obtained
from the roughness measurements, performed using Hommel’s T1000 (Jena, Germany) roughness
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tester, have eventually enabled us to determine the optimal AWJ cutting settings, considering the
surface quality. The 2D surface roughness measurement sampling parameters were as follows:
ISO 16610-21:2013-02 filter (M1), sampling length, lr = 0.8 mm; evaluation length, ln = 4 mm; traversing
length, lt = 4.8 mm; traverse feed velocity, and vt = 0.5 mm/s.

Surface irregularities, that is, gaps between extreme peaks and valleys that were carved in the
workpiece by the waterjet impacting its surface, were viewed using the optical system composed of the
VHX 5000 digital microscope from Keyence (Osaka, Japan) equipped with VH-2 100R optics. The tilting
angle on the post-machined surface was measured along the jet axis using the Vista ZEISS (Jena,
Germany) coordinate measuring machine with auxiliary equipment: Renishaw (Wotton-under-Edge,
UK) PH10M probe head with TP20 touch-trigger probe kit and Renishaw A-5003-0047 stylus (ball
diameter d = 5 mm; effective working length l = 30 mm; ball weight of 2.57 g). The specimen tilting angle
(chamfering) data were processed with the application of Power Inspect 4.3.5.1. The touch-and-learn
mode enabled some automation of measurements; once performed manually, the measuring cycle was
saved and repeated automatically on other specimens. The specimens were fixed on the measuring
table using purpose-made clamps.

Further detail in the description of the post-machined surfaces was provided by microhardness
testing. The procedure was performed using the Leco LM700AT (St. Joseph, MI, USA) microhardness
tester with diamond pyramid-shaped indenter of a 136◦ included angle with a load of 5 g (0.05 HV)
(Vickers method). The microhardness of the specimen was measured on the face and lateral surfaces;
in the latter case, it was along the jet axis direction. The testing was fully compliant with international
standards, PN-EN ISO 6507-1:2018-05.

In the predictive part of the study, the nonlinear technological process of abrasive waterjet
machining was modelled to find Ra, Rz, and RSm parameters for two substrates: AlSi21CuNi and
AlSi10Mg alloys. Given that the ANN had to account for three input parameters (cutting data) and
two substrates, six different artificial network models were obtained. The network schematics are
shown in Figure 1d, where “nn” in the output stands for a respective Ra, Rz, or RSm surface roughness
parameter for a given alloy. To obtain the simplest network structure, the models contain a single
hidden layer, three neurons in the input (the jet feed rate vf, the abrasive flow rate ma, and the sample
height h), and one neuron in the output (Ra, Rz, and RSm).

It was resolved that the best-fitting networks to model the investigated relationships were
the radial basis function (RBF) and multi-layered perceptron (MLP). The entire process was
modelled in Statistica environment. The MLP was trained using three approaches: the BFGS
(Broyden–Fletcher–Goldfarb–Shanno) method, the conjugate gradient, and the steepest descent
training algorithm, whereas the RBFT algorithm was used for RBF. The activation functions were linear,
exponential, logistic, tanh, and sinusoidal for the MLP network, and of the Gaussian distribution for
RBF neurons in the hidden layer and a linear function for the output. Other testing parameters that
were established experimentally were the number of hidden neurons (2 ÷ 15) and training epochs
(150–300). The networks were modelled with 24 sets of machining parameters. The training dataset
used 75% of the measurement results and the remaining 25% enabled validation. Testing sets were
omitted owing to a small number of all datasets [2]. The suitability of particular networks was assessed
using the following: training quality, validation quality, and training error determined by the method
of least squares.

3. Results

3.1. Surface Roughness after AWJ Method

The condition of the surface was first assessed from the perspective of the effect that variables
vf, h, and ma have on selected parameters of surface roughness. Figure 2 shows average Ra results
measured on the surfaces of the AlSi10Mg and AlSi21CuNi alloys.
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Figure 2. The impact of jet feed rate vf, sample height h, and abrasive flow rate ma on Ra of
post-machined alloys: (a) AlSi10Mg and (b) AlSi21CuNi.

With respect to the AlSi10Mg alloy, the Ra parameter values were in the range of 3.71–7.16 µm.
At a reduced abrasive flow rate (ma = 50%), the smallest values were obtained for a medium sample
height, h = 23 mm. At a full rate of abrasive flow (ma = 100%), the lowest values were reported at the
sample height h = 46 mm and the highest for the smallest height, h = 12 mm. Considering the second
of the tested alloys, AlSi21CuNi, the Ra values were in the range of 3.44–6.49 µm. For AWJ cutting
executed at a lower abrasive flow setting, the lowest values were recorded in samples h = 12 mm, in the
range of vf = 5–20 mm/min, whereas at a deeper cut, h = 46 mm, in the range of vf = 60–100 mm/min.
At full abrasive flow rate, ma = 100%, the lowest values were obtained in the thickest specimens.
For both alloys, average values increased with the rise in the cutting speed vf and were lower in most
cases at a full abrasive flow rate ma = 100%. In comparison with the results for the AZ91D alloy [5],
where the Ra parameter was in the range of 3–6 µm, it can be assumed that the obtained surface
roughness characteristics are fully comparable, even though, in certain machining settings, the Ra in
Si-enriched alloys approached 7 µm (Figure 2a—vf = 100 mm/min, Figure 2b—vf = 60–100 mm/min).
Furthermore, our data converge with the results from the tests conducted with a resembling set of
parameters (i.e., 5–7 µm at cutting speed 100 mm/min) on other soft alloys Al 2017, Al 5083, Al 6060,
and Al 7075, investigated in previous studies [11].

The results in Figure 3 display the effect of variable cutting parameters on Rz. In AlSi10Mg
alloym the values of Rz ranged between 22.79 µm and 38.60 µm. The smallest Rz readings at a 50%
abrasive flow were recorded mostly for sample height h = 23 mm, while for higher abrasive flow,
ma = 100%, at a sample height h = 46 mm. Considering AlSi21CuNi alloys, the average Rz values
ranged from 21.47 to 37.12 µm and, regardless of the abrasive medium flow, the lowest values were
obtained predominantly in h = 46 mm specimens. It was found that, similarly to the Ra parameter,
increasing the cutting speed vf would produce a rougher surface (Rz) and that it was the full abrasive
flow, ma = 100%, that produced the smoother surface finish. We detected much higher values for Rz
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than those reported in previous works [5]. In the referenced study, Rz virtually never exceeded 35 µm
in AZ91D alloy, while in our data for Al-Si alloys, Rz reached the level of up to 40 µm.

Figure 3. The impact of jet feed rate vf, sample height h, and abrasive flow rate ma on Rz of
post-machined alloys: (a) AlSi10Mg and (b) AlSi21CuNi.

Figure 4 presents the impact of variable machining factors on average RSm values. The surface
roughness of AlSi10Mg alloy specimens varied between 109.2 and 181.8 µm, depending on the specific
cutting data settings. At a reduced abrasive flow ma = 50%, the lowest RSm values were recorded in
h = 23 mm samples cut in the range of vf = 5–20 mm/min, and at lower heights, h = 12 mm, in the
range of vf = 60–100 mm/min. The values of RSm were the lowest at ma = 100% and sample height h
= 46 mm. With respect to the other investigated workpiece material, AlSi21CuNi alloy, RSm ranged
between 103.2 and 189.0 µm and attained the lowest values in h = 46 mm samples. The increase in the
cutting speed was found to result in an increase in average RSm values on the surfaces of both alloys,
whereas it was a higher abrasive flow rate that produced surfaces generally exhibiting lower RSm
values. Values in a similar range (100–200 µm) were reported in the study of AZ91D [5].

Rku levels in response to changing AWJ cutting parameters are shown in Figure 5. On the
AlSi10Mg alloy surfaces, the kurtosis values were close to 3, indicating normal peak distribution,
which, in the case of mating surfaces, reduces the friction coefficient. This tendency was not displayed
by h = 12 mm samples, whose Rku values were notably higher at a 50% abrasive flow rate. The values
of Rku were found to exceed 3 on all AlSi21CuNi alloy specimens that were machined with abrasive
flow rate ma = 50%, which is indicative of sharp-peak surfaces. With respect to the full abrasive flow
rate, ma = 100%, Rku > 3, which could result from the increased cutting speed vf, further leading to the
sharpening of peaks and valleys of the profile.



Materials 2020, 13, 3122 11 of 22

Figure 4. The impact of jet feed rate vf, sample height h, and abrasive flow rate ma on RSm of
post-machined alloys: (a) AlSi10Mg and (b) AlSi21CuNi.

Figure 5. The impact of jet feed rate vf, sample height h, and abrasive flow rate ma on Rku of
post-machined alloys: (a) AlSi10Mg and (b) AlSi21CuNi.
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Figure 6 shows the impact of variable machining settings on the average values of the Rsk
parameter. The surface of both alloys exhibited a flat plateaued finish of peaks, as indicated by Rsk < 0,
which designates a lower coefficient of surface friction. Increasing the cutting speed vf was in the
majority of cases shown to increase kurtosis on the AlSi10Mg alloy surfaces, while on the AlSi21CuNi
alloy surfaces, it caused their reduction.

Figure 6. The impact of jet feed rate vf, sample height h, and abrasive flow rate ma on Rsk of
post-machined alloys: (a) AlSi10Mg and (b) AlSi21CuNi.

3.2. Irregularities after AWJ—Microscopic Examination of Machined Specimen Surface

The accuracy of the AWJ machining was verified by the analysis of irregularities at the jet exit
from the cut at the bottom of the workpiece. What is understood by “irregularities” is the distance
between the highest peak and the lowest valley within a defined area at the bottom of the specimen.
The irregularities were measured according to the standards set out in the respective norms, referenced
in the preceding sections [5].

Table 4 shows surface irregularities expressed as numerical values. The results were obtained
from the microscopic examination report for various sample heights—h: 46 mm, 23 mm, and 12 mm.

Table 4 displays an increase in the irregularities correlated with both higher jet feed rate (vf)
and sample height (h). Furthermore, in AlSi10Mg alloys, the irregularity value is contained within
the range of ≤0.2 mm for cutting speeds not exceeding vf = 60 mm/min (except for h = 23 mm and
ma = 50%). These results imply that workpieces subjected to machining within the specified range of
vf may not require further post-treatment, which in turn leads to substantial time savings and cost
reduction already at the pre-production stage.

In general, higher irregularity errors were recorded on surfaces of AlSi23CuNi alloys, which is
most likely associated with an increased quantity of abrasive grain (mainly Si and Ni), which may
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impede the decoherence of the material in the area of cut (in addition, higher hardness and tensile
strength).

Table 4. Quantified surface irregularities after AWJ machining.

Al-Si Alloys vf (mm/min)

h (mm)

ma = 50% ma = 100%

46 23 12 46 23 12

AlSi10Mg 5 0.125 0.235 0.063 0.095 0.118 0.117
AlSi21CuNi 5 0.172 0.123 0.226 0.13 0.414 0.33
AlSi10Mg 20 0.166 0.273 0.068 0.117 0.189 0.221

AlSi21CuNi 20 0.173 0.153 0.241 0.134 0.519 0.474
AlSi10Mg 60 0.259 0.353 0.084 0.227 0.23 0.07

AlSi21CuNi 60 0.924 0.159 0.537 0.255 0.19 0.587
AlSi10Mg 100 0.944 0.352 0.199 0.577 0.202 0.111

AlSi21CuNi 100 1.893 0.334 0.79 0.944 0.237 0.62

The rate of irregularity is by far most substantial at sample height h = 46 mm, the maximum jet
feed rate vf = 100 mm/min, and abrasive flow rate ma = 50%. The respective maximum irregularities for
AlSi10Mg and AlSi21CuNi alloys are 0.944 mm and 1.893 mm. Comparing the results from Table 4 with
former data [5], it can be seen that, for the AZ91D alloy, an acceptable machined surface quality (surface
irregularities < 0.2 mm) is achieved given that the cutting speed does not exceed vf = 40 mm/min (ma

= 50%) or vf = 80 mm/min (ma = 100%). In our tests, the satisfactory condition of Al-Si alloy surfaces
in comparable-height specimens was produced under the condition that the cutting speeds did not
exceed vf = 60 mm/min. Therefore, the observed difference is quite significant.

3.3. Specimen Surface Chamfering after AWJ

While cutting, abrasive waterjet interacts with two surfaces, the left and right side of the specimen.
Each cut produces two surfaces that have been machined at the same feed rate. Figure 7 presents
specimen chamfering on two sides impacted at by the abrasive waterjet (left/right). The measurement
methodology is consistent with previously performed tests presented before [5].

Chamfering is represented by the data in the graphs above. The specimen surface angle on the
left of the cut is typically greater than 90◦. However, the inclination angle of the specimen surface on
the right of the cut is less than 90◦. Although, in essence, slight changes in the chamfering angle were
found to be technologically insignificant, the issue could be subjected to further statistical analysis
with a view of verification. Considering the least favourable scenarios, the absolute values of specimen
chamfer were as follows: AlSi10Mg ma = 50%—2.17◦, AlSi10Mg ma = 100%—1.88◦ and AlSi21CuNi ma

= 50%—2.52◦, and AlSi21CuNi ma = 100%—2.08◦. For planeness and parallelism of the specimen sides,
a certain finishing treatment would be advised. The Al-Si data concur well with previous findings [5],
where the absolute tilt angle was 1.94◦ for the abrasive flow rate of 50% and 1.09◦ for the flow rate
of 100%. A slight discrepancy can be seen in AZ91D alloy, which, at ma = 100%, displayed generally
lower chamfering angle values.
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Figure 7. Specimen chamfering by abrasive waterjet machining depending on the side of impact and
abrasive flow rate (ma = 50% and 100%): (a) right side specimen ma = 50%, (b) left side specimen
ma = 50%, (c) right side specimen ma = 100%, (d) left side specimen ma = 100%.

3.4. Specimen Surface Microhardness

The microhardness readings were analysed only in AlSi10Mg alloy workpieces owing to inadequate
cut quality in the AlSi21CuNi alloy cut material. Figure 8a displays the changes in surface microhardness
following the modification of the jet feed rate. Additionally (Figure 8b), the microhardness analysis
was carried out in three different regions of specimens machined at uniform speed (vf = 5 mm/min),
where the measurements were possible (no striation or irregularities).

Figure 8. Microhardness: (a) with variable jet feed rate vf and (b) in different specimen region
vf = 5 mm/min.
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Jet feed rate (Figure 8a) was found not to cause a significant increase in average microhardness.
According to Figure 8b, the microhardness levels were to a large extent constant across the three regions
of the workpiece. A possible explanation for these observations is that the cut surface of Al-Si alloy
workpieces was not hardened as a result of the abrasive grain impact. In comparison [5], the AZ91D
magnesium casting alloy developed higher values of surface microhardness (approximately 100 HV).
At 70 HV, the AlSi10Mg alloy cut material investigated here was hence softer.

3.5. Statistical Analysis

The statistical significance of the data, and thus the importance of individual variables on the
surface roughness parameters, was assessed using a factorial ANOVA (significance level α = 0.05).
Prior to the analysis, the normal distribution of data was confirmed using the Shapiro–Wilk test.
Although it emerged from the Levene test that the homogeneity of variance hypothesis was not true for
all analysed groups, in homoscedastic groups, ANOVA exhibited good robustness to the heterogeneity
of variance [39].

ANOVA results for the AlSi10Mg alloy are given in Table 5. Variables were shown to be significant
(p < 0.05) for all the surface roughness parameters, except for RSm, in which case the sample height
and the abrasive flow rate proved not significant. In addition, certain factors were found to be
interdependent although, considered separately, they were statistically insignificant.

Table 5. Analysis of variance (ANOVA) for different roughness parameters—Ra, Rz, and RSm
(AlSi10Mg alloy).

Effect DF
Ra Rz RSm

SS MS F p SS MS F p SS MS F p

vf (A) 3 35.41 11.80 92.370 0.000 986.40 328.80 118.230 0.000 13,587.00 4529.00 16.885 0.000
h (B) 2 6.42 3.21 25.100 0.000 197.40 98.70 35.490 0.000 199.00 100.00 0.371 0.691

ma (C) 1 3.11 3.11 24.340 0.000 105.10 105.10 37.800 0.000 701.00 701.00 2.613 0.109
AB 6 7.99 1.33 10.420 0.000 204.30 34.00 12.240 0.000 10,444.00 1741.00 6.489 0.000
AC 3 2.88 0.96 7.520 0.000 27.20 9.10 3.260 0.025 582.00 194.00 0.724 0.540
BC 2 7.93 3.97 31.040 0.000 137.10 68.60 24.650 0.000 9113.00 4556.00 16.987 0.000

ABC 6 3.49 0.58 4.550 0.000 68.50 11.40 4.110 0.001 14,311.00 2385.00 8.892 0.000
Error 96 12.27 0.13 267.00 2.80 25,750.00 268.00
Total 119 79.51 25.09 1993.00 658.50 74,687.00 14,474.00

ANOVA results for the AlSi21CuNi alloy (Table 6) show the significance of all variable factors
(p < 0.05) on the analysed surface roughness parameters. There are also interactions between the factors
being changed that indicate the simultaneous influence of several factors on the surface roughness.
The interaction does not occur only in relation to the RSm parameter between cutting speed and
abrasive output, although these variables are statistically significant individually.

Table 6. ANOVA for different roughness parameters—Ra, Rz, and RSm (AlSi21CuNi alloy).

Effect DF
Ra Rz RSm

SS MS F p SS MS F p SS MS F p

vf (A) 3 72.13 24.04 218.720 0.000 1346.85 448.95 158.230 0.000 61,880.00 20,627.00 116.640 0.000
h (B) 2 15.46 7.73 70.310 0.000 649.49 324.75 114.450 0.000 7172.00 3586.00 20.280 0.000

ma (C) 1 10.45 10.45 95.060 0.000 721.33 721.33 254.220 0.000 6810.00 6810.00 38.510 0.000
AB 6 12.58 2.10 19.070 0.000 161.46 26.91 9.480 0.000 5760.00 960.00 5.430 0.000
AC 3 3.13 1.04 9.490 0.000 53.64 17.88 6.300 0.001 367.00 122.00 0.690 0.559
BC 2 1.02 0.51 4.620 0.012 128.87 64.44 22.710 0.000 1249.00 624.00 3.530 0.033

ABC 6 2.53 0.42 3.830 0.002 100.51 16.75 5.900 0.000 3236.00 539.00 3.050 0.009
Error 96 10.55 0.11 272.39 2.84 16,976.00 177.00
Total 119 127.83 46.40 3434.54 1623.85 103,450.00 33,445.00

Table 6 presents the ANOVA results for the values of Ra, Rz, and RSm roughness parameters
obtained on the surfaces of the AlSi21CuNi alloy.
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The cutting speed vf, sample height h, and abrasive flow rate ma have a statistically proven influence
on the values of the Ra, Rz, and RSm parameters of AlSi10Mg and AlSi21CuNi aluminium alloys.

3.6. Numerical Modelling of Surface Roughness Parameters with Artificial Neural Networks after AWJ Method

The data from the measurements carried out on the AlSi21CuNi and AlSi10Mg aluminium alloy
specimens have allowed us to describe the surface of the specimens after they were machined using
AWJ technology. The parameters that were used for the purpose, Ra—arithmetical mean roughness
of the profile, Rz—maximum height of profile, and RSm—mean width of profile elements, were
subsequently used as input for the simulation of surface roughness parameters using MLP and RBF
artificial neural networks.

The suitability of networks for modelling relationships between sets of data is typically assessed
from the analysis of the network quality indicators: learning quality, validation quality, learning error,
and validation error derived from the least-squares method. A total of 200 networks were generated
to handle each modelled scenario. The quality of the networks was evaluated with the indicators
above to select a better-suited model, MLP or RBF. Table 7 presents the network quality parameters for
AlSi21CuNi and AlSi10Mg alloys with regards to Ra, Rz, and RSm. Training and validation quality
and errors, as well as the hidden and output layer activation functions, are given. From the data on the
AlSi21CuNi alloy, it is shown that the best-fitting network considering Ra was RBF 3-8-1 with eight
neurons (network no. 1); for Rz, it was MLP 3-2-1 with two neurons (network no. 2); while for the
RSm parameter, it was RBF 3-14-1 with fourteen neurons (network no. 3). In the case of the AlSi10Mg
alloy, the networks were as follows: Ra—network no. 4, RBF 3-15-1 (network with fifteen neurons);
Rz—network no. 5, MLP 3-14-1 (network with fourteen neurons); RSm—network no. 6, RBF 3-12-1
(network with twelve neurons). On aggregate, RBF networks provided a closer fit of results for Ra and
RSm, while the MLP model performed better in the prediction of Rz.

Table 7. Multi-layered perceptron (MLP) and radial basis function (RBF) networks for surface roughness
parameters Ra, Rz, and RSm in AlSi21CuNi and AlSi10Mg alloys.

Network
No.

Network
Name

Quality
(Training, %)

Quality
(Validation, %)

Error
(Training)

Error
(Validation)

Activation
(Hidden)

Activation
(Output)

AlSi21CuNi alloy

Arithmetical mean roughness of the profile, Ra
1 RBF 3-8-1 95.24 90.28 0.049 0.093 Gaussian Linear

Maximum height of the profile, Rz
2 MLP 3-2-1 96.99 96.49 0.755 0.984 Logistic Linear

Mean width of profile elements, RSm
3 RBF 3-14-1 99.48 94.09 4.088 53.73 Gaussian Linear

AlSi10Mg alloy

Arithmetical mean roughness of the profile, Ra
4 RBF 3-15-1 99.86 91.31 0.001 0.164 Gaussian Linear

Maximum height of the profile, Rz
5 MLP 3-14-1 98.54 89.61 0.247 1.409 Exponential Sinus

Mean width of profile elements, RSm
6 RBF 3-12-1 98.99 88.56 4.769 63.98 Gaussian Linear

The 3D graphs below show the numerical results from the simulation of surface roughness
parameters for the Al alloys following machining with the abrasive waterjet technology. Given that
three input parameters were considered, they are presented in pairs in two figures: the jet feed rate vf

and abrasive flow rate ma, and the jet feed rate vf and sample height h. Figure 9 shows the surface
roughness results for Rz for AlSi21CuNi (MLP 3-2-1) and AlSi10Mg (MLP 3-14-1). Figure 10 concerns the
Ra (RBF 3-8-1) and RSm (RBF 3-14-1) parameters simulated for AlSi21CuNi alloy. The experimentally
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established quantities, vf, ma, and h, were entered in Statistica as inputs and provided the basis for
simulating the output parameters.

Figure 9. Numerical results of surface roughness parameters Rz after AWJ depending on the jet feed
rate vf and abrasive flow rate ma for (a) AlSi21CuNi alloy (MLP 3-2-1) and (b) AlSi10Mg alloy (MLP
3-14-1), and depending on the jet feed rate vf and sample height h for (c) AlSi21CuNi alloy (MLP 3-2-1)
and (d) AlSi10Mg alloy (MLP 3-14-1).

Table 8 presents the correlation coefficients of Ra, Rz, and RSm in AlSi21CuNi and AlSi10Mg
alloys. The results confirm that the artificial neural networks are good predictors of surface roughness
parameters. In addition, the correlation between the experimental and simulation data for networks
visualised in Figures 9 and 10 is further shown in Figure 11.
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Figure 10. Numerical results after AWJ for AlSi21CuNi alloy for surface roughness parameters Ra (RBF
3-8-1) depending on the jet feed rate vf and abrasive flow rate ma (a), as well as depending on the jet
feed rate vf and sample height h (b), and surface roughness parameters RSm (RBF 3-14-1) depending
on the jet feed rate vf and abrasive flow rate ma (c), as well as depending on the jet feed rate vf and
sample height h (d).

Table 8. Correlation R2 for surface roughness parameters Ra, Rz, and RSm for AlSi21CuNi and
AlSi10Mg alloys.

Alloys Grade AlSi21CuNi AlSi10Mg

Surface Roughness
Parameters Ra Rz RSm Ra Rz RSm

Network RBF 3-8-1 MLP 3-2-1 RBF 3-14-1 RBF 3-15-1 MLP 3-14-1 RBF 3-12-1

Correlation R2 0.9384 0.9694 0.9719 0.9433 0.9646 0.9564

The conclusion that arises from the graphs and figures above is that the networks exhibit good
predictive capacity, which is additionally underlined by the coefficient of correlation R2 > 0.9, and
thus are effective tools for simulating surface parameters after abrasive waterjet machining processes.
The data produced by the artificial networks could provide the foundation for subsequent processing
and incorporation into numerical models of machining processes.
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Figure 11. Comparison of artificial neural network (ANN) results with experimental measurements of
surface roughness parameters Rz (a) AlSi21CuNi alloy (MLP 3-2-1) and (b) AlSi10Mg alloy (MLP 3-14-1);
(c) surface roughness parameters Ra AlSi21CuNi alloy (RBF 3-8-1); and (d) surface roughness parameters
RSm AlSi21CuNi alloy (RBF 3-14-1).

4. Conclusions

The experimental and mathematical findings from the study are significant in several
major respects.

1. In the case of both aluminium alloys, the increase in jet feed rate vf led to the deterioration of the
surface smoothness (higher roughness parameters), and the sample height h modification was
not found to produce a constant effect on the investigated parameters.

2. Although there was no strong correlation between the abrasive flow rate and the surface roughness
characteristics of the specimens, there was a slight tendency towards lower roughness levels on
the part of workpieces machined with full abrasive flow rate ma = 100%.

3. AlSi23CuNi alloy exhibited higher susceptibility to machining errors, confirmed by higher
surface irregularity rates. The AlSi10Mg alloy provides better machinability and, under specific
conditions (vf ≤ 60 mm/min), the pre-products machined using AWJ technology may not require
additional finishing machining.

4. Jet feed rate vf has a low impact on the mean microhardness of AlSi10Mg alloy specimens cut with
the reduced abrasive flow rate ma = 50%, and is virtually negligible in the case of full abrasive
flow rate ma = 100%. Constant microhardness levels were displayed at different measurement
points on the specimens (vf = 5 mm/min).
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5. In the analysed range of sample heights h, workpieces showed a certain degree of chamfering
that could require post-treatment aimed to reduce the undesirable chamfer angle.

6. From the statistical analysis, it emerges that, in the majority of cutting scenarios, the change in the
jet feed rate vf, the sample height h, and the abrasive flow rate ma will have a strong effect on the
levels of Ra, Rz, and RSm on the surfaces of the AlSi10Mg and AlSi21CuNi alloys. In addition,
particular technological parameters directly interact with each other.

7. Artificial neural network modelling may be an effective tool for predicting surface roughness
parameters. The correlation coefficient R2 for both alloys is R2 > 0.93; therefore, the trained
networks are sound predictors of the surface roughness characteristics with respect to the
tested materials.

8. ANN models determine relationships between input machining parameters (vf, ma, h) and output
(Ra, Rz, RSm) surface roughness parameters of AlSi21CuNi and AlSi10Mg alloys. This enables
computing the AWJ machining data that will ensure the optimal cutting performance and results
even in the absence of preliminary test runs.
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