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Abstract: To simulate the anisotropic hysteresis characteristics of soft magnetic composite (SMC)
materials accurately, an improved vector hysteresis model was proposed and utilized to adjust the
shape of hysteresis curves by introducing two parameters. These two parameters are correlated
with the amplitude of the vector Everett function and the projection of magnetic flux density along
different directions. An experimental platform was built to measure the two-dimensional (2-D)
magnetic properties of the SMC material under rotational magnetizations. The scalar and vector
Everett functions were constructed by the measured limiting hysteresis loops. A hybrid optimization
strategy based on the particle swarm optimization (PSO) and Powell technique was proposed to
identify the parameters of the improved model efficiently and precisely, which significantly improved
the local optimization ability of the PSO algorithm. The simulated results strongly agree with
the measured ones, and thus the effectiveness of the improved vector model and the parameter
identification method proposed in this paper was verified.

Keywords: SMC material; vector Preisach hysteresis model; rotational magnetization; anisotropy;
parameter identification; optimization algorithm

1. Introduction

Soft magnetic composite (SMC) materials have been extensively used in motors and power
electronic devices due to their unique electromagnetic properties such as magnetic and thermal isotropy,
diversified processing shapes, and low eddy current loss at medium and higher frequencies [1]. As a
kind of complex characteristic inherent in SMC materials, hysteresis has a great impact on the optimal
design and analysis of electrical equipment, so accurate measurement and simulation of the hysteresis
properties of these materials is critical to their research and application [2].

Traditional scalar simulation of the magnetic performance enables precise results under alternating
magnetic excitations. However, the electrical devices usually operate under alternating and rotational
excitations in practice, and the magnetic flux density B and magnetic field strength H do not always
align in the same direction. The iron loss caused by the rotational excitations is greater than that
induced by the unidirectional alternating fields [3–5]. Therefore, it is of great importance to measure
and model the vector hysteresis properties of SMC materials under rotational excitations [6].

Different vector hysteresis models are presented in previous studies to obtain the rotational
magnetic characteristics by using some newly developed measuring methods [7]. Stoner and Wohlfarth
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proposed a vector hysteresis model which was designed as an ensemble of single-domain and
uniaxial particles. Nevertheless, it was impossible to fit the asymmetric hysteresis loops and accomplish
the parameter identification completely [8]. In view of the defects of the model mentioned above,
Mayergoyz presented a classical vector Preisach model to simulate the isotropic vector hysteresis
characteristics of magnetic materials [9]. However, the anisotropy magnetic properties under
rotational excitations are found even at a relatively low frequency [10,11], so the classical model
is no longer applicable in most cases, leading to imperative demands for further improvement.
Miklós Kuczmann proposed an improved vector Preisach model to simulate the slight anisotropic
behavior of isotropic materials, whereas it indicated great errors at low amplitudes of the magnetic
flux density [12]. In addition, M. Enokizono and N. Soda presented the E&S vector hysteresis model
considering the anisotropic properties under rotational magnetization. It requires large amounts of
experimental data to obtain numerous parameters, which severely limits its application [13].

In this paper, an experimental platform for the measurement of vector magnetic properties was
employed to obtain the 2-D magnetic properties of the SMC material under rotational excitations [14–16].
By introducing the correlation parameters, the classic vector hysteresis model was modified to simulate
the vector hysteresis curves of the SMC material, considering the anisotropy property. Based on the
measured limiting hysteresis loops in two orthogonal directions, the first-order reversal curves (FORCs)
were numerically generated to construct the scalar and vector Everett functions. A hybrid optimization
strategy combining the particle swarm optimization (PSO) algorithm and the Powell technique was
proposed for parameter identification in the improved model with good efficiency and precision,
which significantly improved the local optimization ability of the PSO algorithm. The validity of the
proposed method was proved by comparing the measured results with the simulated ones.

2. Material and Methods

2.1. Material

The SMC material, SOMALOYTM 500 (developed by Höganäs in Höganäs, Sweden), was employed,
which has a maximum magnetic flux density of 2.1 T at a magnetic field strength of 100 kA/m,
residual magnetization of 0.25 T, a coercive magnetic field strength of 250 A/m, conductivity of 30 µS/m,
a coefficient of thermal conductivity of 17 W/(m·K) and an initial relative magnetic permeability of 130.

2.2. Vector Hysteresis Measurement of SMC Material

The vector magnetic property testing system consisted of a main measuring device, a power
amplifier, a magnetic sensing system and a signal-processing unit. The main measuring devices are
shown in Figure 1, including the “C-type” core-poles and core-yokes, excitation windings, and three
B-H composite sensing coils.
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Figure 1. Experimental platform: (a) Main measuring system; (b) Diagrammatic sketch of magnetic 
circuit for measurement. 
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mounted with B-H sensing coils on six sides to measure the corresponding B and H. 

Figure 2 is the structure diagram of the measuring system. The signal generating system was 
used as the computing core to provide the analog excitation signals for three high power amplifiers. 
Then the excitation voltage signals were selected by the impedance matching loop and the resonant 
circuit to obtain a large excitation current, which acted as the input of the main excitation magnetic 
circuit so as to generate a rotational magnetic field inside the measured specimen. The sensing coils 
on the specimen can pick up weak electrical signals, and then these signals are input into the signal 
processing circuit and collected by a LabView embedded control system. The closed-loop feedback 
of the system is realized in such way. 
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Figure 2. Structure block diagram of the measuring system of vector magnetic property. 

In order to ensure the circular trajectory of the 2-D magnetic flux density B, a circular rotational 
excitation at a low frequency (f = 5 Hz) was set on the x-o-y plane. The locus of the vector B and H 
with the increase of excitation current are demonstrated in Figure 3, and the locus of H exhibits a 
special feature in an asymmetric and irregular shape due to the slight anisotropic property. 
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The measuring system was used to get the 2-D magnetic properties of the material. During the
experiment, a cubic specimen made of SMC with a size of 22 × 22 × 22 mm3 was fixed in a sensing box
mounted with B-H sensing coils on six sides to measure the corresponding B and H.

Figure 2 is the structure diagram of the measuring system. The signal generating system was
used as the computing core to provide the analog excitation signals for three high power amplifiers.
Then the excitation voltage signals were selected by the impedance matching loop and the resonant
circuit to obtain a large excitation current, which acted as the input of the main excitation magnetic
circuit so as to generate a rotational magnetic field inside the measured specimen. The sensing coils
on the specimen can pick up weak electrical signals, and then these signals are input into the signal
processing circuit and collected by a LabView embedded control system. The closed-loop feedback of
the system is realized in such way.
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Figure 2. Structure block diagram of the measuring system of vector magnetic property.

In order to ensure the circular trajectory of the 2-D magnetic flux density B, a circular rotational
excitation at a low frequency (f = 5 Hz) was set on the x-o-y plane. The locus of the vector B and H with
the increase of excitation current are demonstrated in Figure 3, and the locus of H exhibits a special
feature in an asymmetric and irregular shape due to the slight anisotropic property.
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Figure 3. Measured hysteresis curves: (a) Locus of vector B; (b) Locus of vector H. 

The measured concentric hysteresis loops along two orthogonal directions, i.e., x direction and 
y direction, are shown in Figure 4. The hysteresis curves at the saturated magnetic flux density are 
the limiting hysteresis loops required for identification of the Preisach model. 
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Figure 4. Measured concentric hysteresis loops in two orthogonal directions: (a) In x direction; (b) In 
y direction. 
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The measured concentric hysteresis loops along two orthogonal directions, i.e., x direction and
y direction, are shown in Figure 4. The hysteresis curves at the saturated magnetic flux density are the
limiting hysteresis loops required for identification of the Preisach model.
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2.3. Hysteresis Modeling Based on Improved Preisach Model

2.3.1. Improved Vector Preisach Model Based on Classical Model

The inverse form of the classical vector Preisach model, which predicts the magnetic field strength
H from the magnetic flux density B, is expressed as follows [9],

H(t) =
∫ π/2

−π/2
eϕ

(
Hϕ

(
Bϕ

))
dϕ (1)

where Hϕ(Bϕ) is the scalar magnetic field strength of H(t) in the direction eϕ.
In the numerical calculation, the angle ϕ ε [−π/2, π/2] is evenly divided into n cells:

ϕi = −
π

2
+

i− 1
n
π (2)

where i = 1, . . . ,n and n is the number of directions.
The vector magnetic field strength H(t) in Equation (1) can be expressed as the sum of the scalar

magnetic field strength Hϕi(Bϕi) along all the n directions, described as follows,

H(t) =
n∑

i=1

eϕi

(
Hϕi

(
Bϕi

))
∆ϕ (3)

Hϕi

(
Bϕi

)
=

x

α≥β

v(α, β)γαβBϕidαdβ (4)

where ∆ϕ = π/n. γαβ is the simplest hysteresis operator with α and β corresponding to “up” and
“down” switching values of the input, respectively. v is the vector Preisach distribution function.

The magnetic flux density in the direction ϕi can be calculated from the two components of the
magnetic flux density:

Bϕi = Bx cosϕi + By sinϕi (5)

As shown in Equation (4), the key to identifying the vector model is to obtain the vector distribution
function v. There are two main difficulties in identifying v directly. On one hand, it is time-consuming
to evaluate the double integral in Equation (4) numerically. On the other hand, the determination
of the distribution function v requires differentiations of experimentally obtained data, which may
amplify the inherent experimental errors significantly [9].

In order to eliminate the double integral of α and β, the discrete Everett function E [9] is commonly
used to identify the vector hysteresis model numerically. The specific expression of E is as follows,

E(α, β) =
x

T(α,β)
v(α, β)dαdβ (6)
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where T(α,β) is the limit triangle surrounded by α and β in the Preisach plane.
According to Equation (6), Hϕi(Bϕi) can be expressed by E in the following equation:

Hϕi

(
Bϕi

)
= −E(B0, b0) + 2

nϕi (t)∑
k=1

[
E
(
Bϕi,k, bϕi,k−1

)
− E

(
Bϕi,k, bϕi,k

)]
(7)

where B0 and b0 are the positive and negative saturation values of B. Bϕi,k and bϕi,k−1 represent a series
of maximum and minimum values of Bϕi. nϕi(t) is the number of reversal points of the first-order
reversal curves (FORCs) [17–19] in the direction ϕi.

The function E is related to the scalar Everett function F, as described in the following equation:

F(α, β) =
∫ π/2

−π/2
cosϕE(α cosϕ, β cosϕ)dϕ (8)

where function F can be generated from the measured data by numerical methods.
The classical vector Preisach hysteresis model given above implies that for a uniformly and

rotationally applied B, the locus of H is circular [20], as shown in Figure 3a. However, the locus
of H exhibits a bit petal-like shape because of the slight magnetic anisotropy property of the SMC
material itself, as shown in Figure 3b. It is obvious that the classical vector model is no longer applicable.
In order to circumvent the limitations of the classical model above, an improved Preisach model
was proposed by introducing two parameters w and z. These two parameters are connected to the
amplitude of Everett function E and the projection of magnetic flux density along different directions.

H(t) =
∫ π/2

−π/2
eϕ

(
Hϕ

(
Bϕ

))
dϕ �

n∑
i=1

eϕi

(
Hϕi

(
Bϕi

))
∆ϕ (9)

Bϕi = Bxsign(cosϕi)
∣∣∣cosϕi

∣∣∣w + Bysign(sinϕi)
∣∣∣sinϕi

∣∣∣w (10)

F(α, β) =
∫ π/2

−π/2
cosϕE(α cosw ϕ, β cosw ϕ)z(Bm)dϕ (11)

where Bm is the magnitude of B.
From Equations (10) and (11), it can be seen that the parameter w generalizes the projection of B

and controls the projection of H along each discrete direction. It enables the slight anisotropic property
of the model. The parameter z was used to adjust the function E and the amplitude of H under
different Bm to get more accurate fitted results. When 0 < w < 1, the improved model can simulate
slight anisotropic hysteresis characteristics of the material, thus making the locus of H an elliptical or a
petal-like shape. In particular, it is in accordance with the classic vector model as w = 1.

The two orthogonal components of the magnetic field strength are given by

Hx =
n∑

i=1

Hϕi cosϕi (12)

Hy =
n∑

i=1

Hϕi sinϕi (13)
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2.3.2. Identification Procedure of Improved Vector Preisach Model

According to Equation (11), the numerical identification of scalar Everett function F [21] can be
represented by function E as follows,

F(α, β) =
n∑

i=1

cosϕiE(α cosw ϕi, β cosw ϕi)z(Bm)∆ϕ (14)

The function F in Equation (14) can be constructed numerically based on the measured limiting
hysteresis loops in Figure 4. Their descending branches are used for the generation of the FORCs by
the numerical method proposed by Dlala [22], as shown in Figure 5.
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According to the identification procedure presented in [9], the scalar Everett functions can be
obtained from the interpolation based on FORCs,

F
(
bu, bv

)
=

1
2

(
Hforc

(
bu, bv

)
−Hforc

(
bu

))
(15)

where bu and bv respectively correspond to the discrete increasing and decreasing values of B on the
FORCs. Hforc(bu,bv) refers to the value of H on the FORCs, while Hforc(bu) represents the value of H at
the reversal points.

According to Equation (15), the corresponding scalar Everett functions Fx and Fy are depicted in
Figure 6, respectively.
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The scalar Everett function in the direction ϕ is expressed as the elliptic interpolation of Fx and Fy

to approximate the smooth angular behavior,

F(α, β,ϕ) =
√

Fx2(α, β) cos2 ϕ+ Fy2(α, β) sin2 ϕ (16)
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Therefore, the scalar Everett function F under the circular rotational magnetization is represented
as follows [21],

F(α, β) =
∆ϕ
π

F(α, β, 0) + F
(
α, β,

π

2

)
+ 2

n−1∑
j=1

F
(
α, β,ϕ j

) (17)

The generated scalar Everett function F is depicted in Figure 7a.
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As shown in Equation (14), it should be noticed that the function E can be obtained from the scaler
Everett function F at specific values of Bm, w, and z. Assuming that Bm = 1.398 T, w = 0.7 and z = 2,
the corresponding vector Everett function is shown in Figure 7b.

2.3.3. Parameter Extraction of Improved Model Based on Hybrid Optimization Algorithm

The improved model can simulate the anisotropy property of SMC materials by introducing
parameters w and z. The extraction of these two parameters is essential to the simulation accuracy.
For full utilization of the strong global search ability of the random optimization algorithm as well as
the fast local convergence of the deterministic optimization algorithm, a hybrid optimization strategy
combining PSO with the Powell algorithm was presented to implement the parameter extraction.

The mean absolute percent error (MAPE) was used to evaluate the simulation accuracy of the
improved vector hysteresis model. Thereafter, the parameter extraction of the improved model can be
performed by searching for the minimum value of the objective function f given in Equation (18).

min f =
1
N

N∑
i=1

∣∣∣∣∣∣Hcal(i) −Hmea(i)
Hmea(i)

∣∣∣∣∣∣× 100% (18)

where Hcal and Hmea refer to the calculated and measured magnetic field strength, respectively. N is
the total amount of data.

During the initial iteration of the hybrid algorithm, the PSO algorithm was first used to perform a
wide-ranging optimization to quickly lock the solution region. Specific steps are as follows.

(1) Set the parameters of the PSO algorithm. The particle number N, the acceleration factors c1 and
c2, the inertia factor ω, the maximum number of iterations T and the initial iteration number k are
set to 5, 0.3, 0.3, 1, 100 and 1 respectively.

(2) Initialize the population. The position X(wi
0, zi

0) of each initial particle i is generated randomly
within wi0 ε [0.5,1], zi0 ε [1,1.5]; the range of the initial particles’ velocity Vi

0 ε [Vmin, Vmax] is set
to [0,0.3].

(3) Calculate the objective function fi0 of each initial particle to obtain the historical optimal position
Pi

0 = Xi
0 and the global optimal position Pg

0 = P(wg
0, zg

0).
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(4) Update the particle velocity Vi
k and position Xi

k by Pi
k−1 and Pg

k−1

 Vk
i = ωVk−1

i + c1r1
(
Pk−1

i −Xk−1
i

)
+ c2r2

(
Pk−1

g −Xk−1
i

)
Xk

i = Xk−1
i + Vk

i
(19)

where r1 and r2 are generated randomly within the interval of [0,1].
(5) Evaluate the fik of each particle and update the historical optimal position Pi

k of each particle as
well as global optimal objective position Pg

k as follows f k
i = f

(
Pk

i

)
f k
g = f

(
Pk

g

)
= min

i=1,··· ,N

{
f k
i

}
= min

i=1,··· ,N

{
f
(
Pk

i

)} (20)

where f g
k is the global optimal objective function at the kth iteration.

(6) Determine whether the switching criteria as Inequation (21) is satisfied. If satisfied, the current
optimal solution Pg

k= P(wg
k, zg

k), and the corresponding objective function f g
k, are transferred to

the Powell algorithm and the calculation process is ended. Otherwise, set k = k + 1 and repeat
from step (3).

n0∑
n=1

∣∣∣ f k+1−n
g − f k−n

g

∣∣∣
f k
g

< ε (21)

where ε = 0.01. n0 is the number of consecutive iterations, and was set to 10 in this paper.

After receiving the optimal solution provided by the PSO, the Powell algorithm which can
converge to the optimal solution efficiently was utilized to optimize the parameters of the vector
Preisach model. The specific process is as follows:

(1) Initial the basic point of the Powell algorithm: x0
(1) = x(0) = x(w(0), z(0)) = P(wg

k, zg
k).

(2) Set the parameters of the Powell algorithm: the iteration accuracy e, the initial direction S1
(1),

S2
(1), and the initial iteration number t, are set to 0.001, (1,0), (0,1) and 1, respectively.

(3) Basic search: start from x0
(t) and do a 1-D search along S1

(t) and S2
(t) to obtain the extreme points

x1
(t) and x2

(t) for f.
(4) Accelerated search: start from x0

(t), perform a 1-D search along the conjugate direction
S(t) = x2

(t) - x0
(t) to get the extreme point x3

(t).
(5) Determine whether the termination condition as Inequality (22) is met. If satisfied, the current

optimal solution x* = x3
(t) = x(w3

(t), z3
(t)), and the corresponding optimal value f (x*), are obtained.

Otherwise, go to step (6).
‖x(t)3 − x(t)0 ‖ ≤ e (22)

(6) Calculate the maximum drop ∆(t)
m of f and the corresponding direction Sm

(t) as follows. ∆(t)
m = max

i=1,2

{
∆(t)

i

}
= max

i=1,2

{
f
(
x(t)i−1

)
− f

(
x(t)i

)}
S(t)

m = x(t)m − x(t)m−1

(23)

Calculate the mapping point xmap
(t) = 2x2

(t)
− x0

(t) along direction S(t) and set f 1 = f (x0
(t)),

f 2 = f (x2
(t)), f 3 = f (xmap

(t)). Update the initial point x0
(t + 1) = x3

(t) and the search direction
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Sm
(t) = S(t) if the Powell condition is satisfied as Inequality (24), and then repeat from step (3).

Otherwise, go to step (7).
f3 < f1

( f1 − 2 f2 + f3)
(

f1 − f2 − ∆(t)
m

)2
< 0.5∆(t)

m ( f1 − f3)
2 (24)

(7) Update the initial point: x0
(t + 1) = x2

(t) if f2 < f3. Otherwise, update the initial point:
x0

(t + 1) = xmap
(t). Set t = t + 1 and repeat from step (3).

The specific calculation flowchart of the parameter extraction based on hybrid algorithm of
PSO–Powell is demonstrated in Figure 8.Materials 2020, 13, x FOR PEER REVIEW 10 of 16 
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By using the PSO–Powell hybrid algorithm, the numerical simulation of the anisotropic vector
hysteresis properties under circular rotational magnetization was completed by the improved vector
hysteresis model, and the detailed procedures are given in Figure 9.
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3. Results and Discussion

The PSO algorithm and the hybrid optimization strategy of PSO–Powell, respectively, give the
same initial values of w and z to optimize the two parameters, so we can compare the convergence
performance of the two algorithms intuitively. The values of the maximum iteration number are set
appropriately for the two algorithms, and the termination criteria of the hybrid algorithm is determined
by the convergence condition of Powell method.

Based on the PSO algorithm, the variation of MAPE with the number of iterations at Bm = 1.398 T is
demonstrated in Figure 10, which shows strong global optimization ability but worse local search ability.
Although it takes only four iterations to reduce MAPE from 21.3698% to 7.3943% in the beginning,
the solutions are trapped in local optimum when the values of MAPE vary little. The aforementioned
defect indicates that the convergence performance of the PSO algorithm tends to deteriorate when
approaching the solution region, which makes it difficult to extract the optimal parameters accurately.Materials 2020, 13, x FOR PEER REVIEW 12 of 16 
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Figure 10. Variation of mean absolute percent error (MAPE) with number of iterations based on the
PSO algorithm at 1.398T.

Table 1 lists the parameters w and z, corresponding values of MAPE, as well as the bounds of
relative error extracted by PSO algorithm at Bm = 0.178 T, 0.423 T, 0.704 T, 1.053 T and 1.398 T. As shown
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in Figure 11, the comparison between the measured hysteresis curves of vector H and the simulated
results obtained from the extracted parameters were made, which showed considerable discrepancy.
This brings a significant obstacle to the magnetic hysteresis property simulation of the SMC material.

Table 1. Values of parameters and corresponding error extracted by the PSO algorithm.

Bm/T w z MAPE/% Bounds of Relative Error/%

1.398 0.7893 1.9567 7.3943 21.0209
1.053 0.7004 2.1219 4.9722 8.9200
0.704 0.6997 2.2231 4.0773 9.6547
0.423 0.5783 2.2117 3.3801 8.8839
0.178 0.6891 2.1583 2.8924 8.0391
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In contrast to the convergence performance of the PSO algorithm in Figure 10, Figure 12 as
below shows the corresponding variation of MAPE with the iteration steps based on the PSO-Powell
hybrid algorithm.
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(a) Global optimization by PSO algorithm; (b) Local optimization by Powell algorithm.

The trend of MAPE variation shows that the PSO algorithm meets the switching criteria
automatically when it reaches the 12th iteration, thereafter the Powell algorithm is started with
the previously optimized results as the initial solution. Then it takes only four iterations to achieve the
convergence. These results show that the hybrid algorithm of PSO–Powell exhibits a faster convergence
speed than the PSO algorithm.

In contrast to the values in Table 1, the values of the parameters and corresponding error extracted
by the hybrid algorithm are listed in Table 2. The values of MAPE and bounds of relative error are,
respectively, adjusted below 5.9571% and 10.7819%, which shows a significant reduction in the error of
the improved model and a higher accuracy than that of the PSO algorithm.



Materials 2020, 13, 3138 12 of 14

Table 2. Values of parameters and error extracted by hybrid algorithm of PSO–Powell.

Bm/T w z MAPE/% Bounds of Relative Error/%

1.398 0.6951 2.1655 5.9471 10.7819
1.053 0.6960 2.1666 4.1672 8.2838
0.704 0.5755 2.1715 3.0289 7.0621
0.423 0.5939 2.1686 2.9272 6.3889
0.178 0.7182 2.1995 2.6848 6.5886

Based on the extracted parameters in Table 2, the comparison between the measured hysteresis
curves of vector H and simulated results optimized by the hybrid algorithm was made and is
depicted in Figure 13. The simulated results strongly agree with the measured ones when Bm varies
within a wide range, which can reflect the slight anisotropy hysteresis properties of the specimen.
The effectiveness and accuracy of the improved vector model connected with the hybrid algorithm of
PSO–Powell were verified.Materials 2020, 13, x FOR PEER REVIEW 14 of 16 
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Figure 13. Comparison between experimental H and simulated H based on hybrid algorithm
of PSO–Powell.

By applying the hybrid algorithm, the slight error of the hysteresis loops simulated by the
extracted parameters tended to increase at high Bm (more than 1 T), which was mainly attributed to
the limitations of the proposed model. The model makes some improvements on the isotropic vector
Preisach hysteresis model. It is noticed that the motion of the domain wall under the circular rotational
excitation was more complicated with the increase of magnetic flux density (not only translation,
but also rotation). The anisotropy properties of the material were more obvious, which makes accurate
prediction by the proposed isotropic vector model difficult. Further improvements based on the
classical vector hysteresis model, or application of the anisotropic vector model, are required for
better accuracy.

4. Conclusions

The rotational magnetic characteristics of the SMC material are measured based on the experimental
platform. Considering the anisotropic property of the material, an improved vector hysteresis model
was put forward by introducing two parameters correlated with the amplitude of vector Everett
function and the projection of magnetic flux density along different directions, to improve the shape of
hysteresis curves.

Benefiting from the strong global search ability of the random optimization algorithm,
in collaboration with fast local convergence of the deterministic optimization algorithm, a hybrid
optimization strategy of PSO–Powell was proposed to extract the model parameters precisely
and efficiently.
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The simulated magnetic hysteresis characteristics of the SMC material under circular rotational
magnetic excitation were basically consistent with the measured ones, which verified the effectiveness
of the parameter extraction process by the hybrid optimization strategy and the improved model
proposed in this paper.
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