



## Supporting Information Thermal Analysis of High-Entropy Rare Earth Oxides

## Sergey V. Ushakov 1,\*, Shmuel Hayun 2,\*, Weiping Gong 3,\* and Alexandra Navrotsky 1,\*

- <sup>1</sup> School of Molecular Sciences, and center for Materials of the Universe, Arizona State University, Tempe, AZ 85287, USA
- <sup>2</sup> Department of Materials Engineering at the Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- <sup>3</sup> Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou 516001, Guangdong, P. R. China
- \* Correspondence: sushakov@asu.edu (S.V.U.); hayuns@bgu.ac.il (S.H.); weiping\_gong@csu.edu.cn (W.G.); anavrots@asu.edu (A.N.)



Figure S1. The flow chart of the performed experiments and characterization



**Figure S2.** Aerodynamic levitator with splittable nozzle and copper plates for splat quenching. The outer diameter of the nozzle is 5 mm. Sample is heated from the top with 400-W CO<sub>2</sub> laser.



**Figure S3.** Integration of area detector diffraction images of aerodynamically levitated bead at 6-ID-D beamline of Advanced Phton Source (APS). Synchrotron X-ray wavelength  $\lambda$  = 0.123613 Å. The shown image is a sum of 100 images collected with acquisition interval 0.1s on HE-Nd ((La<sub>0.20</sub>Sm<sub>0.20</sub>Dy<sub>0.21</sub>Er<sub>0.20</sub>Nd<sub>0.19</sub>)<sub>2</sub>O<sub>3</sub>) bead levitated at room temperature in Ar flow. The intensities in the lower part of the image are attenuated by a levitation nozzle. The integration settings used were as follows: inner/outer 2-theta; 1.0–7.0°; start/end azimuth 70.0–120.0°; 1600 2-theta steps).



**Figure S4.** Back-scattered electron micrograph of the laser-melted HE-Y ((La0.18Sm0.20Dy0.18Er0.18Y0.26)2O3)) sample with points of microprobe analysis.



3 of 10



FigureS5.Back-scatteredelectronmicrographofthelaser-meltedHE-Gd((La0.19Sm0.21Dy0.21Er0.20Gd0.19)2O3) sample with points of microprobe analysis.



FigureS6.Back-scatteredelectronmicrographofthelaser-meltedHE-Nd((La0.20Sm0.20Dy0.21Er0.20Nd0.19)2O3) sample with points of microprobe analysis.



**Figure S7.** Room-temperature X-ray diffraction patterns of HE-Y, HE-Gd and HE-Nd samples from solution combustion synthesis: (a) After calicination at 800 °C for 96 h; (b) after annealing at 1100 °C for 12 h (Cu Ka radiation  $\lambda$  = 1.54056 Å).



**Figure S8.** Rietveld refinement plot of HE-Nd ((La<sub>0.20</sub>Sm<sub>0.20</sub>Dy<sub>0.21</sub>Er<sub>0.20</sub>Nd<sub>0.19</sub>)<sub>2</sub>O<sub>3</sub>) sample after calcination in air at 800 °C for 96 h. Powder X-ray diffraction pattern was collected at room temperature using Cu K $\alpha$  radiation  $\lambda$  = 1.54056 Å.



**Figure S9.** Rietveld refinement plot of HE-Nd ((La<sub>0.20</sub>Sm<sub>0.20</sub>Dy<sub>0.21</sub>Er<sub>0.20</sub>Nd<sub>0.19</sub>)<sub>2</sub>O<sub>3</sub>) sample after splat quenching from melt. Powder X-ray diffraction pattern was collected at room temperature using Cu K $\alpha$  radiation  $\lambda$  = 1.54056 Å.



**Figure S10.** Room-temperature powder XRD patterns on Sm<sub>2</sub>O<sub>3</sub> sample (Alfa Aesar 99.99% purity) after annealing at 800 °C (top) and after laser melting (bottom). (4, 0, −2) reflection is marked. NIST Si640C standard was added in the sample after laser melting.





**Figure S11.** Heat flow trace (baseline subtracted) vs. sample temperature for HE-Gd ((La<sub>0.19</sub>Sm<sub>0.21</sub>Dy<sub>0.21</sub>Er<sub>0.20</sub>Gd<sub>0.19</sub>)<sub>2</sub>O<sub>3</sub>) sample. Sample mass 140.23 mg. Heating and cooling rate 20 °C/min. Three endothermic peaks on heating and corresponding exothermic peaks on cooling are related to reversible B-A, A-H and H-X transformations. Temperatures corresponding to onset of the transition and to return to the baseline are labelled for each peak.



**Figure S12.** Pawley refinement of unit cell parameters for B and A phases of HE-Gd sample at transition temperature (1957 ± 10 °C from DTA results). XRD pattern collected on laser-heated sample aerodynamically levitated in argon, X-ray wavelength  $\lambda$  = 0.1236 Å.



**Figure S13.** Pawley refinement of unit cell parameters for H and X phases of HE-Y sample at transition temperature (2254 ± 8 °C from DTA results). XRD pattern collected on laser-heated sample aerodynamically levitated in argon, X-ray wavelength  $\lambda$  = 0.1236 Å.



Figure S14. Calphad modeling of phase fractions in HE-Y ((La $_{0.18}$ Sm $_{0.20}$ Dy $_{0.18}$ Er $_{0.18}$ Y $_{0.26}$ )2O3)), HE-Gd ((La $_{0.19}$ Sm $_{0.21}$ Dy $_{0.21}$ Er $_{0.20}$ Gd $_{0.19}$ )2O3) and HE-Nd ((La $_{0.20}$ Sm $_{0.20}$ Dy $_{0.21}$ Er $_{0.20}$ Nd $_{0.19}$ )2O3) samples. The single phase fields are shaded.



© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).