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Abstract: Warm mix asphalt (WMA) technology, taking advantage of reclaimed asphalt pavements,
has gained increasing attention from the scientific community. The determination of technical
specifications of such a type of asphalt concrete is crucial for pavement design, in which the asphalt
concrete dynamic modulus (E*) of elasticity is amongst the most critical parameters. However, the latter
could only be determined by complicated, costly, and time-consuming experiments. This paper
presents an alternative cost-effective approach to determine the dynamic elastic modulus (E*) of
WMA based on various machine learning-based algorithms, namely the artificial neural network
(ANN), support vector machine (SVM), Gaussian process regression (GPR), and ensemble boosted
trees (Boosted). For this, a total of 300 samples were fabricated by warm mix asphalt technology.
The mixtures were prepared with 0%, 20%, 30%, 40%, and 50% content of reclaimed asphalt pavement
(RAP) and modified bitumen binder using Sasobit and Zycotherm additives. The dynamic elastic
modulus tests were conducted by varying the temperature from 10 ◦C to 50 ◦C at different frequencies
from 0.1 Hz to 25 Hz. Various common quantitative indications, such as root mean square error
(RMSE), mean absolute error (MAE), and correlation coefficient (R) were used to validate and compare
the prediction capability of different models. The results showed that machine learning models could
accurately predict the dynamic elastic modulus of WMA using up to 50% RAP and fabricated by
warm mix asphalt technology. Out of these models, the Boosted algorithm (R = 0.9956) was found
as the best predictor compared with those obtained by ANN-LMN (R = 0.9954), SVM (R = 0.9654),
and GPR (R= 0.9865). Thus, it could be concluded that Boosted is a promising cost-effective tool for
the prediction of the dynamic elastic modulus (E*) of WMA. This study might help in reducing the
cost of laboratory experiments for the determination of the dynamic modulus (E*).

Keywords: warm mix asphalt; reclaimed asphalt pavement; dynamic modulus; machine learning

1. Introduction

Hot Mix Asphalt (HMA) is the most widely used pavement material [1–3]. First introduced in the
early 1900s, it could be stated that HMA technology has been fully understood to date [1–3]. However,
the use of HMA has posed severe problems for the environment as HMA is typically produced at
temperatures from 140 ◦C to 160 ◦C [3]. Therefore, Warm Mix Asphalt (WMA) technology has been
proposed and developed in many countries over the past few years to improve the performance
of the HMA [3]. The ultimate goal of using WMA is to reduce emissions and better control the
quality of asphalt mixtures with a lower average mix temperature from 20 ◦C to 40 ◦C compared to
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HMA [4]. In addition, the use of WMA technology exhibits many advantages including (i) lower
energy consumption compared to HMA technology, thus allowing a reduction of 25–35% of energy,
(ii) reducing greenhouse gas emissions by 25–40%, and (iii) reducing human exposure to smoke in
batching plants and construction sites by 30–50% compared to HMA [5–8].

In the design of advanced pavement using WMA, the mechanistic-empirical method (ME) has
been widely used in the analysis and forecasting of the long-term features of asphalt pavement [9].
Out of these, the dynamic modulus (E*) of the asphalt mixture is one of the most crucial mechanical
parameters used in the analysis of WMA’s performance [10]. Even though the ME method can allow
forecasting of the E* over time with input parameters related to virgin materials, loads, and weather
conditions, its accuracy sometimes is affected by many uncertainty factors related to the experimental
conditions (accuracy of types of equipment and experience of testers) [11]. In addition, some empirical
equations have also been developed to predict and determine E* in correlation with several influential
parameters, such as proposed by Witczak [10] and Christensen et al. [12]. Although these equations
provided alternative ways to predict E*, only several fixed parameters were used in the construction of
these equations. Thus, it is required to find a better flexible and alternative way for a more accurate
prediction of the E*.

In recent years, more advanced and objective machine learning approaches have been developed
and applied to predict the mechanical properties of the materials accurately, including asphalt mixtures.
As an example, Nivedya et al. [13] developed and used a popular machine learning technique, namely
Artificial Neural Networks (ANN), for the prediction of field permeability of HMA pavement layers
and they stated that ANN is a promising tool for accurately predicting the field permeability of
HMA. In another study, the k-nearest neighbor model—an effective machine learning algorithm—was
applied to predict the moisture susceptibility of HMA [14], which suggested that this machine learning
model should be used for accurate prediction of the vital properties of the HMA. Androjić et al. [15]
studied and compared two popular machine learning models namely ANN and multiple linear
regression (MLR) for prediction of different HMA properties (air void and soluble binder content),
and concluded that both applied machine learning models are suitable for prediction of the HMA
properties. However, ANN is better than MLR at predicting the air void content, whereas MLR is
better than ANN in predicting soluble binder content. In general, these machine learning models are
useful for the prediction of the properties of the asphalt materials. However, their applications are still
limited in WMA materials.

In this contribution, the main objective was to develop a cost-effective and alternative approach
based on machine learning algorithms (ANN, support vector machine—SVM, Gaussian process
regression—GPR, and ensemble boosted trees—Boosted) to predict the dynamic modulus (E*) of
WMA. For this, the database, including 300 experimental results, was constructed using the laboratory
tests supported by the national research project in Vietnam. In the WMA mixtures, reclaimed asphalt
pavement (RAP) was used as it is considered an excellent solution to reduce the need for virgin
materials. Thus, it could reduce the aging of asphalt binders and reduce construction temperatures
due to the reduction of energy consumption as well as greenhouse gas emissions. To validate and
compare the models, various quantitative–statistical indices, namely root mean square error (RMSE),
mean absolute error (MAE), and correlation coefficient (R) were used. Matlab codes and packages
were used for the development and validation of the models.

2. Experimental

2.1. Materials

The andesite aggregates used in this research were collected from the Tan Cang plant, Bien Hoa,
Dong Nai, Vietnam. Table 1 shows the test results of the aggregates with the maximum aggregate
sizes corresponding to 12.5 mm, 9.5 mm, 4.75 mm, and the mineral filler. It is worth noticing that all
the aggregate properties met the requirements specified according to AASHTO M323. Two types of
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additives, namely Sasobit and Zycotherm, were employed to modify the 60/70 grade bitumen using
the wet process of mixing. Sasobit and Zycotherm are the two commonly used additives in WMA
technology, aiming for the improvement of the bitumen coverage percentage on aggregates, as well
as workability for WMA mixtures using RAP. Derived from the gasification process of coal, Sasobit
additive has organic origins with long-chain aliphatic hydrocarbons. The working mechanism of
Sasobit consists of decreasing the bitumen viscosity, thus increasing the compacting ability of the
WMA mixtures. The long-chain of Sasobit is composed of 40 to 115 atoms of carbon. As stated by the
producer, the melting point of Sasobit is 100 ◦C, and complete dissolution in bitumen is reported at a
temperature above 115 ◦C. Moreover, Sasobit additive helps to improve the durability of the WMA
mixtures. On the other hand, Zycotherm additive is a commercial product, in the liquid form odorless,
and the main composition is nano organosilane. The density of Zycotherm additive is 0.97 (g/cm3),
whereas the viscosity is in the range of 1 to 5 (Pa.s). The use of Zycotherm additive contributes to
the decrease of the surface tension, increasing the bitumen coverage on aggregates at a given mixing
temperature, as well as during the construction stage. In addition, Zycotherm additive helps increase
the chemical bonding between the bituminous binders and the surface of aggregates. Table 2 shows
the testing results of the two types of modified bitumen. Reclaimed Asphalt Pavement (RAP) was used
with a nominal maximum aggregate size of 12.5 mm, which has a similar rock origin as the aggregates.
The extraction and recovery process of bitumen in RAP followed the AASHTO T319 [16]. The test
results of the recovered bitumen recovery process are shown in Table 3.

Table 1. Properties of aggregates and mineral filler.

Properties Agg.12.5 Agg.9.5 Agg.9.5 Filler Specification

Bulk Specific Gravity (Gsb) 2.735 2.725 2.702 2.712 AASHTO T84, 85
App.Specific Gravity (Gsa) 2.751 2.752 2.740 - AASHTO T84, 85

Absorption, % 0.207 0.365 0.517 - AASHTO T84, 85
Clay and dust content, % 0.35 0.67 - - ASTM C142

Flat and elongation, % 11.26 8.41 - - ASTM D4791
Fineness modulus - - 3.48 - ASTM C33

Los Angeles, % 23.48 - - - ASTM C131
Sand equivalent value - - 73.9 - AASHTO T176

Plasticity index - - - 1.09 ASTM D4318

Table 2. Properties of bitumen 60/70, bitumen 60/70 with Sasobit, and bitumen 60/70 with Zycotherm.

Condition Properties Bitumen 60/70
(Virgin)

Bitumen 60/70
with Sasobit

Bitumen 60/70 with
Zycotherm Specification

Unaged

Penetration at 25 ◦C, 0.1 mm 66 52 64 ASTM D 5
Flash point, ◦C 253 247 259 ASTM D 92

Softening point, ◦C 49.5 69.8 50.7 ASTM D 36
Ductility at 25 ◦C, cm >100 >100 >100 ASTM D 113

Rotational Viscometer, Pa.s 0.385 0.237 0.316 AASHTO T316
G*/sinδ at 64 ◦C, kPa 1.15 2.96 1.06

AASHTO T315Short-term
aged (RTFO) G*/sinδ at 70 ◦C, kPa 2.62 6.497 3.439

Table 3. Properties of recovered reclaimed asphalt binder.

Properties Value Specification

Penetration at 25 ◦C, 0.1 mm 25.4 ASTM D 5
The softening point, ◦C 76.7 ASTM D 36
Viscosity at 135 ◦C, Pa.s 2.134 AASHTO T316

G*/sinδ at 82 ◦C, kPa 1.1 AASHTO T315
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2.2. Sample Design and Preparation

The mixtures were designed according to the Marshall method [17,18], whereas the aggregate
gradation followed the AASHTO M323 [19]. The Sasobit and Zycotherm contents were chosen as
1.5% and 0.15% of the overall weight, as recommended by the producers [4]. The RAP contents were
selected as 0%, 20%, 30%, 40%, and 50% of the overall weight. It is worth noticing that the mixture
with 0% RAP corresponded to the control mix. Figure 1 shows the aggregate gradation with different
RAP contents, according to the AASHTO M323 requirements.
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Figure 1. Gradation plot for different % reclaimed asphalt pavement (RAP) mixes.

The mixtures were designed according to the Marshall method based on the volumetric properties,
the Marshall stability, and the flow criteria. The mixing temperature was 140–145 ◦C, whereas the
compaction temperature was selected as 130–135 ◦C. The composition and properties of mixtures are
shown in Table 4.

Table 4. Composition and properties of different mixtures.

WMA with RAP + Zycotherm WMA with RAP + Sasobit

Mix Composition/Mix Content

RAP 0 19.0 28.5 37.9 47.4 0.0 19.0 28.5 37.9 47.4
Agg.12.5 19.2 9.5 9.5 6.6 6.6 19.2 9.5 9.5 6.6 6.6
Agg.9.5 28.8 20.0 16.1 14.2 8.5 28.8 20.0 16.1 14.2 8.5
Agg.4.75 43.2 42.8 38.0 33.2 30.3 43.2 42.8 38.0 33.2 30.3

Filler 3.8 3.8 2.8 2.8 1.9 3.8 3.8 2.8 2.8 1.9
Pb(RAP) 0.0 0.8 1.1 1.5 1.9 0.0 0.8 1.1 1.5 1.9

Pbn 5.0 4.2 4.0 3.7 3.4 5.0 4.2 4.0 3.7 3.4
Total 100 100 100 100 100 100 100 100 100 100
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Table 4. Cont.

WMA with RAP + Zycotherm WMA with RAP + Sasobit

Properties of Mixtures

Va (%) 4.5 3.9 4.1 4.1 4.3 3.9 4.0 4.1 3.8 4.1
VMA (%) 15.7 14.1 14.1 14.3 14.3 14.3 14.5 14.3 14.1 14.1
VFA (%) 71.5 72.1 70.7 70.9 70.1 72.4 71.0 71.0 71.4 70.6
Pba (%) 0.3 0.72 0.70 0.95 1.05 0.44 0.72 1.04 1.22 1.48
Pbe (%) 4.7 4.32 4.44 4.30 4.31 4.58 4.32 4.11 4.04 3.90

P0.075/Pbe 0.8 0.85 0.83 0.86 0.86 0.81 0.00 0.90 0.91 0.95
MS (kN) 11.3 13.83 15.03 16.06 16.64 13.45 14.97 16.37 18.11 19.10
MF (mm) 3.5 3.62 3.58 3.58 3.56 3.27 3.62 3.58 3.56 3.61

where Va = Air voids; VMA = Voids in the mineral aggregate; VFA = Voids filled with asphalt; Pba = Absorbed
binder content; Pbe = Effective binder content; P0.075/Pbe = Dust-to-binder ratio; MS = Marshall Stability;
MF = Marshall Flow; Pb(RAP) = content of asphalt binder of RAP (%); Pbn = virgin asphalt binder content.

2.3. Determination of Dynamic Modulus (E*)

The determination of the dynamic modulus (E*) was conducted following the AASHTO TP 62 [20].
The short-term aging of the asphalt concrete, aiming at simulating the oxidation and asphalt absorption
into the aggregates, was performed with the guidance of AASHTO R30 [21]. The samples were then
compacted using a gyratory compactor in order to achieve the air void value of (Va) of 7 ± 0.5%.
After compacting, the flattened specimens had a height of 100 mm and a diameter of 100 mm at both
ends (Figure 2).
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Figure 2. The sample preparation: (a) Compaction by Gyratory Compactor machine, (b) The
testing samples.

The determination of dynamic modulus (E*) was performed in varying the temperature from low
to high, combined with a broad range of frequency applied by the load. Precisely, the test temperatures
were 10 ◦C, 20 ◦C, 30 ◦C, 40 ◦C, and 50 ◦C. At each temperature, the tests were conducted from the
highest to lowest frequency, in the order of 25 Hz, 10 Hz, 5 Hz, 1 Hz, 0.5 Hz, and 0.1 Hz. All samples
were placed in a thermostatic chamber to maintain a stable temperature before testing, with an error of
±0.1 ◦C. The curing time for samples was varied from 4 h to 6 h in the thermostatic chamber. Figure 3
shows the dynamic modulus (E*) test device and the sample test.



Materials 2020, 13, 3272 6 of 19
Materials 2020, 13, x FOR PEER REVIEW 6 of 21 

 

(a) (b) 

The temperature 
chamber

Control System 
and Software

 

Load cell

Axial LVDT 1Axial LVDT 2

Hardened Steel 
DisksGreased Double 

Membrance

Specimen

 
Figure 3. Dynamic Modulus testing: (a) The temperature cabinet and control system, (b) General 
Schematic of Dynamic Modulus Test. 

2.4. Instrumentation 

The test samples were compacted with a Troxler’s Model 4140 Gyratory Compactor (TROXLER, 
Durham, NC, USA). The device could compact the sample with an angle of rotation from 0.5–2.0°. 
Usually, the machine will set the angle of 1.25°. The compression pressure was 600 kPa. 

Cooper’s CRT NU 14 test equipment (Cooper, London, UK) was used to determine dynamic 
modulus (E*), according to AASHTO TP62. The device could power up to 20 kN with a gas supply 
of up to 7 Bar. The equipment can be loaded with frequencies varying from 0 to 30 Hz. The process 
of loading the axial strain of the test piece was determined by Linear Variable Differential 
Transformers (LVDTS) (Cooper, London, UK). All laboratory samples and equipment were placed in 
the Cooper temperature chamber with a tolerance of ±0.1 °C. 

3. Machine Learning Approaches 

3.1. Artificial Neural Network (ANN) 

The ANN is one of the most popular and effective machine learning models used widely to deal 
with a lot of complex real-world problems, including problems related material sciences such as self-
compacting concrete strength prediction [22], modeling in the compression of austenitic stainless 
steel [23], and concrete strength prediction [22]. The main principle of the ANN algorithm is based 
on the biological neural network of the brain of humans. The structure of the ANN consists of three 
components, such as input variables, output variables, and activation functions (hidden layers). In 
the modeling, the activation functions used in hidden layers are trained to analyze and discover the 
relationship between input variables and output variables for prediction and assessment of the 
problems. In this study, sigma functions—a popular activation function used in the ANN—were 
selected to predict the dynamic modulus of warm mix asphalt with high reclaimed asphalt pavement. 
Furthermore, the Levenberg–Marquardt (LM) algorithm was used to optimize the neural networks’ 
learning process. The final ANN model is herein denoted as ANN-LMN. 

3.2. Support Vector Machine (SVM) 

The SVM was first proposed by Vapnik [24], and is one of the most effective machine learning 
algorithms as it has the capacity to minimize the outliers and noise [25]. The main principle of the 
SVM is to transfer the original input space into a high-dimensional feature space using a hyperplane 

Figure 3. Dynamic Modulus testing: (a) The temperature cabinet and control system, (b) General
Schematic of Dynamic Modulus Test.

Overall, a total of 300 experimental results were obtained by taking the average value of 6 samples
for each of the above results. The total number of samples fabricated was 1800 samples. The tests
contained mixtures with two types of additives (i.e., Zycotherm and Sasobit), five values of %RAP
(i.e., 0%, 20%, 30%, 40%, and 50%), six values of testing frequencies (i.e., 0.1 Hz, 0.5 Hz, 1 Hz, 5 Hz,
10 Hz, and 25 Hz), and five values of testing temperatures (i.e., 10 ◦C, 20 ◦C, 30 ◦C, 40 ◦C, and 50 ◦C).

2.4. Instrumentation

The test samples were compacted with a Troxler’s Model 4140 Gyratory Compactor (TROXLER,
Durham, NC, USA). The device could compact the sample with an angle of rotation from 0.5–2.0◦.
Usually, the machine will set the angle of 1.25◦. The compression pressure was 600 kPa.

Cooper’s CRT NU 14 test equipment (Cooper, London, UK) was used to determine dynamic
modulus (E*), according to AASHTO TP62. The device could power up to 20 kN with a gas supply of
up to 7 Bar. The equipment can be loaded with frequencies varying from 0 to 30 Hz. The process of
loading the axial strain of the test piece was determined by Linear Variable Differential Transformers
(LVDTS) (Cooper, London, UK). All laboratory samples and equipment were placed in the Cooper
temperature chamber with a tolerance of ±0.1 ◦C.

3. Machine Learning Approaches

3.1. Artificial Neural Network (ANN)

The ANN is one of the most popular and effective machine learning models used widely to
deal with a lot of complex real-world problems, including problems related material sciences such as
self-compacting concrete strength prediction [22], modeling in the compression of austenitic stainless
steel [23], and concrete strength prediction [22]. The main principle of the ANN algorithm is based
on the biological neural network of the brain of humans. The structure of the ANN consists of
three components, such as input variables, output variables, and activation functions (hidden layers).
In the modeling, the activation functions used in hidden layers are trained to analyze and discover
the relationship between input variables and output variables for prediction and assessment of the
problems. In this study, sigma functions—a popular activation function used in the ANN—were
selected to predict the dynamic modulus of warm mix asphalt with high reclaimed asphalt pavement.
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Furthermore, the Levenberg–Marquardt (LM) algorithm was used to optimize the neural networks’
learning process. The final ANN model is herein denoted as ANN-LMN.

3.2. Support Vector Machine (SVM)

The SVM was first proposed by Vapnik [24], and is one of the most effective machine learning
algorithms as it has the capacity to minimize the outliers and noise [25]. The main principle of the SVM
is to transfer the original input space into a high-dimensional feature space using a hyperplane [26],
which is determined during the training process. The SVM function is expressed by the following
Equation (1):

y = f (x) = wφ(x) + c (1)

where w is the weight matric, x = xi is input variables, y is the output variable, c is the bias of the
model, and φ(x) is defined as an activation function.

3.3. Ensemble Boosted Trees (Boosted)

Decision trees (DT) and boosting techniques were combined to form a hybrid model, namely the
Boosted. Out of these, DT are utilized to analyze the relationship between output and input variables
using recursive dual separations, whereas the boosting technique is used to associate many individual
DT models to construct the hybrid model with improved performance [27]. In the hybrid DT, the merits
of tree-based techniques can be highlighted as (i) a proper variable can be chosen to match appropriate
functions, (ii) the random boosting is used to fit this model with various amounts of data, and (iii)
model averaging is used to reduce both bias and variance of this model [28].

3.4. Gaussian Process Regression (GPR)

The GPR is a well-known probabilistic, nonparametric technique used to solve nonlinear regression
problems [29]. Initially, GPR was proposed to solve the limitation of the relevance vector machine
(RVM). It can be utilized to define prior distributions over latent functions based on a Bayesian learning
algorithm. It is also based on the assumption that Gaussian is the joint probability distribution of model
outputs. Many advantages of GPR compared with other machine learning models are hyperparameter
estimation and uncertainty analysis or estimation [30]. Thereby, the performance of the predictive
model using GPR is less affected by subjectivity [31].

3.5. Quality Assessment Criteria

In this study, various popular quantitative statistical indexes, namely mean absolute error (MAE),
root mean square error (RMSE), and correlation coefficient (R) were used to validate and compare the
performance of different machine learning models. A detailed description of these indices is presented
in previously published works [32–39]. Their calculation can be carried out by using the following
Equations (2)–(4) [40–43]:

MAE =
1
k

k∑
i=1

(
pi − p i

)
(2)

RMSE =

√√√
1
k

k∑
i=1

(
pi − pii

)2
(3)

R =

√√√√√√√√√√√√√√1−

k∑
i=1

(
pi − pi

)2

k∑
i=1

(pi − p)2
(4)

where pi: actual output, pi: predicted output, p: mean of the pi and k: number of samples.
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4. Results and Discussion

This section is dedicated to the presentation of the results obtained in this study. It is worth
noticing that the present dataset contains 300 instances. The result of each instance was derived by
taking the average value of six experimental results, making a total number of 1800 tests performed.
The dataset was next divided into two parts, the training dataset served for the development of
the machine learning algorithms (containing 70% of data, or 210 samples), and the testing dataset
used to assess the performance of the constructed algorithms (including 30% (the remaining data),
or 90 samples). The results presented herein reflect the best performance of the machine learning
algorithms with the highest values of R, and the lowest values of RMSE and MAE.

This section is presented in the following steps. The experimental results are first provided,
followed by the application of machine learning methods to predict the values of dynamic modulus
(E*). In this step, the performance of four algorithms, namely ANN-LMN, SVM, GPR, and Boosted, are
evaluated and compared in function of different statistical criteria. Finally, the best predictor was used
to interpret the results, and to perform the parametric study to reveal the relationship and dependence
of the predicted output on the input variables.

4.1. Experimental Results

The test results of the sample groups at different test temperatures and frequencies, following the
ASTM E187, are shown in Figure 4. It could be observed that at the same test temperature, the value of
dynamic modulus (E*) decreased as the frequency decreased from 25 Hz to 0.1 Hz. Another observation
could also be noticed for the test temperatures of 40 ◦C and 50 ◦C, as there was an important difference
in dynamic modulus (E*) between test frequency 25 Hz compared to other frequencies (i.e., from
10 Hz to 0.1 Hz). However, with the frequencies of 10 Hz or 5 Hz, 0.1 Hz, there was no significant
difference between the E* values. This result clearly reflected the viscosity elasticity characteristic of
asphalt mixture at high temperatures. Regarding the effect of RAP content, it was shown that when
the RAP content increased from 0% to 20%, 30%, 40%, and 50%, the value of E* increased by 5.4%,
8.8%, 18.5%, and 11.8%, respectively. Furthermore, due to the higher hardening properties of Sasobit
compared to Zycotherm, the mixtures with Sasobit had an 11.4% higher value of E* considering the
same RAP content.
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In general, the test results showed that when the test temperature increased, the E* tended to
decrease at all test frequencies. Moreover, at the same test temperature, the E* test results tended to
increase when the test frequency increased from 0.1 Hz to 25 Hz.

4.2. Prediction Performance of Machine Learning Models

The performance and effectiveness of four machine learning models are evaluated in this section.
The prediction performance in a regression form is shown (Figure 5) for the training, testing, and all
datasets. A summary of the corresponding information is indicated in Table 5. It is worth mentioning
that the results presented herein were transformed into the normal range.
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Table 5. Summary information of different machine learning algorithms.

Dataset Criterion ANN-LMN SVM GPR Boosted

Training RMSE 225.99 758.50 408.74 248.54
MAE 171.81 623.10 292.05 179.82

R 0.9959 0.9565 0.9880 0.9953
Testing RMSE 283.38 376.29 432.82 203.84

MAE 215.15 265.50 333.68 144.68
R 0.9944 0.9989 0.9819 0.9967

All RMSE 244.63 667.23 416.11 236.02
MAE 184.82 515.82 304.54 169.28

R 0.9954 0.9654 0.9865 0.9956

With respect to the training parts, the ANN-LMN model demonstrated better performance,
yielding a correlation of R = 0.9959, RMSE = 225.99, and MAE = 171.81. The Boosted model produced
an intermediate accuracy (R = 0.9953, RMSE = 248.54 and MAE = 179.82), followed by the GPR model
(R = 0.9880, RMSE = 408.74 and MAE = 292.05), and the SVM algorithm (R = 0.9565, RMSE = 758.50
and MAE = 623.10).

Considering the testing datasets, the Boosted model yielded the best prediction results with
respect to all statistical measurements (i.e., R = 0.9967, RMSE = 203.84, MAE = 144.68), followed by
ANN-LMN, SVM, and GPR (Table 5). The R value of the SVM was slightly higher than the ANN-LMN
and the Boosted, whereas those of RMSE and MAE were higher compared with the ANN-LMN and the
Boosted (Table 5). The regression graphs of the four proposed models are plotted in Figure 6. As can
be seen, the predicted outputs were in good agreement with the experimental values
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4.3. Mapping of the Relationship of Dynamic Modulus (E*) with Input Variables

As identified in the previous section, the Boosted model exhibited the best prediction performance.
Therefore, it could be used as a continuous function for mapping dynamic modulus and input variables
such as temperature, RAP, frequency, and additives used (i.e., Sasobit and Zycotherm), within the
ranges of the input variables adopted in this study. Figure 7a,b show the corresponding box maps
using Sasobit and Zycotherm technology, respectively. For illustration purposes, Figure 8 presents
the corresponding box maps sliced at different temperatures, such as 10 ◦C, 20 ◦C, 30 ◦C, 40 ◦C,
and 50 ◦C, and using Sasobit and Zycotherm additives, respectively (at two opposite viewpoints).
In these figures, the dynamic modulus (E*) was highlighted in the same color scale between 0 and
10,000 MPa. The results showed that the dynamic modulus (E*) exhibited a nonlinear relationship
with all input variables, regardless of the technology used. Moreover, as deduced in Figure 8, a similar
trend of variation of dynamic modulus (E*) was observed using Sasobit and Zycotherm technology.
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For comparison purposes, an indicator called ∆, was introduced and expressed as below Equation (5):

∆ =
E∗Zycotherm − E∗Sasobit

E∗Sasobit
× 100 (5)

The corresponding box map of ∆ is presented in Figure 9, with two opposite viewpoints. The color
scale is in the range of (−45, 45) (%). Clearly, it can be seen that the dynamic modulus (E*) using
Zycotherm technology could be equal (green zone), higher (red zone), or smaller (blue zone) than
that using Sasobit technology. However, such variation is local. The magnitude of the indicator ∆
could be increased by up to 45%. For instance, at 30 ◦C, the lowest frequency and lowest value of
RAP, Zycotherm technology provided a dynamic modulus (E*) 45% larger than that acquired with
Sasobit technology.
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Figure 9. Box map comparison analysis for the two technologies in varying %RAP, frequencies and
temperatures, (a) standard view; and (b) opposite view.
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The indicator ∆ was next investigated at five temperatures, such as 10, 20, 30, 40, and 50 ◦C,
as shown in Figure 10. Regarding ∆ at temperature of 10 ◦C, it corresponded to the zone of highest
dynamic modulus (up to 10,000 MPa, illustrated in Figure 8); both Zycotherm and Sasobit technologies
provided similar values of dynamic modulus for RAP higher than 10%, as ∆ is in the range of (−10, 10)
(%). For an RAP content lower than 10%, Sasobit technology was better.
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Figure 10. Box map sensitivity analysis and comparison of the two technologies at different %RAP,
frequencies and temperatures (a) T = 10 ◦C; (b) T = 20 ◦C; (c) T = 30 ◦C; (d) T = 40 ◦C; and (e) T = 50 ◦C.
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It is observed in Figure 10a–e that the blue surface of ∆ was increased while increasing the
temperature (i.e., the similitude zone between Zycotherm and Sasobit was reduced, except for a small
red zone in Figure 10c at low frequency and RAP). Such a result led to a better performance of Sasobit
technology than Zycotherm. Notably, at 50 ◦C, the dynamic modulus using Sasobit technology was
higher than that using Zycotherm at all frequencies and % RAP.

In order to obtain a general view on the difference between Sasobit and Zycotherm, the average
values of ∆ were calculated in function of the temperature, frequency, and %RAP. Figure 11a–c present
the surface of average ∆ in function of the average values of these three features. Taking the average
value of temperature, the difference seemed significant, with the value of frequency superior to 2 Hz
and at low and high % RAP (Figure 11a). On the contrary, taking the average frequency as the chosen
feature, the two additives exhibited a significant effect at high temperature (i.e., higher than 40 ◦C)
(Figure 11b). Finally, with the average % RAP, higher values of the temperature (i.e., higher than 40 ◦C)
led to an important distinction between Zycotherm and Sasobit (Figure 11c).
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RAP, respectively.
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Overall, E* depends on many factors, which can be categorized into two groups: (i) testing
condition (i.e., testing temperature, testing frequency), and (ii) the mixture content (i.e., coarse and
fine aggregates, type of aggregates, binder content, binder type, the RAP content). It is worth noticing
that in this study, the air void, aggregates gradation, bitumen type and content were kept constant.
Two main reasons were considered. First, most of the asphalt mixtures used in Vietnam and many
other countries are designed with a targeted and typical value of Va of 7 ± 0.5%. Second, regarding
the mix design procedure, 300 mixtures in the database were already optimized. It means that in
order to construct a database of 300 instances, many other non-optimum samples had been fabricated.
However, due to the E* testing cost and testing time required, only 300 optimized mixtures were finally
performed. Therefore, a particular interest of the present study is to extend the input variables by
performing an investigation on the effect of other parameters on the predicted values of E*.

In short, this preliminary investigation allowed the attainment of quantitative maps of dynamic
modulus in function of input variables. Moreover, as a machine-learning technique, the Boosted model
can be extended to learn in a broader range of input variables in further researches.

5. Conclusions and Outlook

The present work proposed a cost-effective alternative approach, based on machine learning
algorithms (ANN-LMN, SVM, GPR, and Boosted), to predict the dynamic modulus (E*) of WMA with
high RAP content. For this purpose, a database consisting of 300 experimental tests was constructed,
analyzed, and used for the development of four machine learning models. Concerning the experimental
study, the following observations can be drawn: (i) the use of both additives resulted in a significant
reduction in mixing and constructing temperatures so that WMA technology could be favorably
applied compared with traditional HMA technology, (ii) the value of dynamic modulus (E*) of WMA
mixtures using Sasobit and Zycotherm additives had a close relationship with the testing temperatures
and frequencies (i.e., the dynamic modulus (E*) values decreased with an increase of the testing
temperature and decrease of the testing frequency), (iii) the value of dynamic modulus (E*) improved
with the incorporation of RAP, and the effect was more pronounced when RAP content was increased to
50%, (iv) the use of Sasobit additive resulted in a better value of dynamic modulus (E*) in comparison
with Zycotherm. Concerning the results of the simulation of dynamic modulus (E*), the Boosted
algorithm was found as the best predictor compared with those obtained by ANN-LMN, SVM, and GPR
(i.e., R = 0.9954, R = 0.9654, R= 0.9865, and R = 0.9956 for all dataset using ANN-LMN, SVM, GPR,
and Boosted, respectively). Finally, the Boosted “machine learning black-box” was used to derive a map
that related the dynamic modulus (E*) in function of input variables, namely the testing temperature,
frequency, RAP content, and additives. The proposed maps could assist researchers, engineers with a
more in-depth understanding of the mixing process, and the working mechanism of WMA containing
high RAP content. Furthermore, it is recommended that the proposed models should be applied and
validated in other new datasets considering different types of RAP, aggregates, and bitumen in the
mixture to extend the range of possible applications.
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