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Abstract: In this paper a hybrid combination of carbon nanotubes (CNTs) and graphene nanoplatelets
(GNPs) was used for developing cementitious self-sensing composite with high mechanical,
microstructural and durability performances. The mixture of these two nanoparticles with different
1D and 2D geometrical shapes can reduce the percolation threshold to a certain amount which
can avoid agglomeration formation and also reinforce the microstructure due to percolation and
electron quantum tunneling amplification. In this route, different concentrations of CNT + GNP were
dispersed by Pluronic F-127 and tributyl phosphate (TBP) with 3 h sonication at 40 ◦C and incorporated
into the cementitious mortar. Mechanical, microstructural, and durability of the reinforced mortar
were investigated by various tests in different hydration periods (7, 28, and 90 days). Additionally, the
piezoresistivity behavior of specimens was also evaluated by the four-probe method under flexural
and compression cyclic loading. Results demonstrated that hybrid CNT + GNP can significantly
improve mechanical and microstructural properties of cementitious composite by filler function,
bridging cracks, and increasing hydration rate mechanisms. CNT + GNP intruded specimens also
showed higher resistance against climatic cycle tests. Generally, the trend of all results demonstrates
an optimal concentration of CNT (0.25%) + GNP (0.25%). Furthermore, increasing CNT + GNP
concentration leads to sharp changes in electrical resistivity of reinforced specimens under small
variation of strain achieving high gauge factor in both flexural and compression loading modes.

Keywords: hybrid CNT/GNP; self-sensing; piezoresistivity; cementitious composite; mechanical;
microstructural; durability

1. Introduction

Cementitious composites, as one of the most extensively used materials in the structure’s design
and construction, are brittle and susceptible to cracking [1]. Damage and the failure of cementitious
composite occur mainly over time due to numerous factors such as some inherent drawbacks, porosity,
heterogeneity, or aggressive environmental conditions, rebar corrosion, or overexploitation, aging of
materials, overloading and lack of maintenance over their service life [2]. Among the microstructure
of hardened cementitious composites, there are many nanoscale porosities and cracks. These cracks
are formed in the process of fabrication or exploitation [3]. As the nanoscale cracks grow and
expand over time, larger micro-scale cracks can develop, which may cause structural failures [4–6].
Timely detection of these intrinsic damages in initial phases can prevent their progression and the
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sudden collapse of structures and greatly minimize potential consequences of deterioration in the
service life of structures [7,8]. The process of continuously damage detection and evaluating the
state of civil infrastructures which is commonly known as structural health monitoring (SHM), has
attracted the attention of many researchers in the past decades. SHM systems are generally organized
to catching real-time data of the structure through sensors that measure condition state’s parameters
such as stress, displacement, strain, temperature, and etc. Despite recent advances, most SHM
techniques involve a limited number of sensors which are distributed in large areas of structures [2].
Among all SHM methods, cement-based self-sensing composites with capabilities of intrinsic damage
sensing based on the piezoresistivity principle, have provided a more sustainable, real-time and
practical alternative to concrete structure damage detection [9–11]. Existence of the conductive phase
is essential to achieve piezoresistivity in a cementitious composite. This conductive phase creates
conductive electrical networks within the non-conductive cementitious matrix, based on percolation
and quantum electron tunneling effects [12–15]. This conducting network is disturbed when the
cementitious composites are subjected to damage or deformation which results in changing the
electrical resistivity [16–18]. Sensitivity and performance of the cement-based self-sensing composites
are extremely dependent on the type of conductive phase, their concentration as well as their
distribution [9,19]. Although the various types of conductive fillers such as nickel powder, iron
oxide nanoparticles, carbon black, carbon fiber, carbon nanofiber, graphene nanoplatelets (GNPs),
and carbon nanotubes (CNTs) have been used as a conductive phase in the cementitious matrix,
GNPs and CNTs have attracted more attention for developing multifunctional composite with
high gauge factor and lower percolation threshold due to their unique electrical and mechanical
properties [9,19]. Furthermore, reinforcing cementitious composite by highly dispersed CNTs and GNPs
with low concentration can improve mechanical performance due to denser microstructural formation,
increasing hydration rate and bridging mechanisms [20–22]. The optimal percentage of CNTs and
GNPs which have been reported by researchers and lead to significant enhancement in cementitious
composites mechanical performance were usually less than 0.3% by weight of cement. However,
excessive ones cause porosities formation due to agglomeration of nanoparticles. [21–24]. Additionally,
to achieve high-performance cement-based self-sensing composite with a high gauge factor, much
greater CNT and GNP concentration (sometimes up to 30 times higher) is required [1,25–27]. Besides,
the presence of a certain amount of nanoparticle agglomeration was reported as a crucial issue in
significant increasing electrical conductivity as well as reducing the percolation threshold [28–31].
Therefore, highly sensitive and applicable cement-based self-sensing composites mostly have weakness
microstructural behavior with low mechanical and durability performances.

Consequently, the piezoresistivity behavior of composites can have sharp changes and scatters in
electrical resistance over time or at the end of each loading cycle due to the destruction of conductive
networks. In this study, in order to overcome some of these drawbacks, a hybrid combination
of CNT + GNP has been used as a conductive part in order to develop a novel high sensitive
affordable cementitious composite with a low percolation threshold. The mixtures of these two
nanoparticles with different 1D and 2D geometrical shapes can cause amplification of percolation
and electron quantum tunneling which decreases the percolation threshold to a certain amount that
can avoid agglomeration formation and reduce the production cost. Moreover, the synergic effects
of CNTs and GNPs can improve mechanical, microstructural, and durability performances by filler
function, bridging and/or deviation of cracks, and increasing hydration rate. As a first step of this
achievement, an effective compatible and affordable technique for dispersion of hybrid CNT + GNP
high concentration with Pluronic F-127 was proposed by Abedi et al. [32]. Using this technique
different concentrations of CNT + GNP were dispersed and incorporated in a cementitious mortar.
These composites were further characterized in terms of mechanical, microstructural, and durability
by various test methods. Furthermore, the piezoresistivity behavior of the composite specimens was
evaluated under compression and flexural cyclic loading tests.
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2. Experimental Methods

2.1. Raw Materials and Characterization

Table 1 summarizes the characteristics of the GNPs and multi-wall carbon nanotubes MWCNTs
as provided by the manufacturer [32]. The Morphology of GNP + CNTs (dry mix) was characterized
using a scanning electron microscope as depicted in Figure 1.

Table 1. GNPs and CNTs characteristics.

GNP

Surface
Area

(m2 g−1)

Density
(g/cm3)

Carbon
Content

(%)

Tensile
Modulus

(GPa)

PH Value
(30 ◦C)

Tensile
Strength

(GPa)
Layers Dimension Form Part

Number

120–150 0.6 >99.5 1000 7–7.65 5 <20
Thickness Diameter Gray

Powder
TGN201

4–20 nm 5–10 µm

MWCNT

Surface
Area

(m2 g–1)

Density
(g/cm3) Color

Outside
Diameter

(nm)

Length
(µm) Ash (wt.%)

Carbon
Content

(%)
Part Number

350 0.27 Black <8 30–10 <1.5 >98 GCM327
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Figure 1. Morphology of carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs) dry mixtures.

For CNTs and GNPs dispersion in aqua suspension, a non-covalent surfactant (Pluronic F-127)
was used in this study. Pluronic F-127 is a non-ionic triblock copolymer surfactant composed of two
hydrophilic chains of polyoxyethylene (PEO) which placed in two sides of a central polyoxypropylene
(PPO) hydrophobic chain. These side chains of hydrophilic PEO are similar to superplasticizers of
polycarboxylate which are typically used in cementitious composites [33]. For this reason, Pluronic
F-127 was found to be compatible with cementitious composites and could possibly improve its
mechanical behavior and dry bulk density due to improved fluidity of the mortar. According to
previous research, to prevent formation of any porosities caused by surfactant function, tributyl
phosphate (TBP) with 1

2 of surfactant weight ratio was used as antifoam [23]. Their chemical structures
are presented in Figure 2 [32]. The ordinary Portland cement type I (CEM I 42.5R) and CEN Standard
sand (EN 196-1 and ISO 679: 2009) were used to prepare mortar mixtures. The chemical composition
and grain size curve of cement and sand are presented in Tables 2 and 3, and Figure 3 [32].
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Figure 2. Chemical structure of: (a) Pluronic F-127, (b) tributyl phosphate 97% [32].

Table 2. Particle size distribution of the sand [32].

Mesh Size (mm) 0.08 0.16 0.5 1 1.6 2

Cumulative
retained (%) 99 ± 1 87 ± 5 67 ± 5 33 ± 5 7 ± 5 0
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2.2. Carbon Nanotube (CNT) + Graphene Nanoplatelet (GNP) Dispersion Method

Nowadays, a successful feasible and compatible technique for hybrid CNT + GNP dispersion
in aqueous suspension to be used in multifunctional cementitious composites has been developed
by 10% Pluronic F-127 with the addition of TBP through 3 h sonication (80 w, 45 kHz) at 40 ◦C [32].
In this route, first TBP (50 wt.% of Pluronic) was completely dissolved in 225 mL water for 12 h using a
magnetic stirrer at 800 rpm/min. Thereafter, 10% Pluronic (wt.% of carbon nanomaterials (CNMs))
added to the water and the suspension was mixed for 1 more hour by magnetic stirrer mixer. Further
on, CNT + GNP was added and stirred continuously for 1 h. Afterward, suspensions were placed
in a sonicator bath. A digital temperature regulator was used to adjust the temperature during the
ultrasonication process by the circulation system through a radiator and sensors.
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Table 3. Chemical composition and properties of ordinary Portland cement.

SiO2 (%) Al2O3 (%) Fe2O3 (%) MgO (%) CaO (%) Na2O (%) TiO2 (%) K2O (%) MnO (%) P2O5 (%) SO3 (%) LOI a (%) Finenes
(m2/kg)

Specific
Gravity

(kg/dm3)

Initial Setting
Time (min) b

Soundness
(mm) b

Blaine’s
Surface

(cm2/g) b

19.9 4.7 3.38 1.3 63.93 0.17 0.245 0.446 0.079 0.063 2.54 2.97 360 3.15 194 1.1 4220

a (Loss on ignition)EN 196-2, b EN 196-3.
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Under these mild mixing conditions, negligible structural damage is expected for the CNTs and
GNPs. The Raman spectroscopy (Figure 4) was carried out on CNTs and GNPs using laser excitation
with wavelength 532 nm to avoid adverse effects on CNMs structural quality such as edge-type defect,
reduction of aspect ratio and sp2 domain crystallinity (La), that cause a deleterious influence on their
mechanical and electrical properties [34,35].Materials 2020, 13, x FOR PEER REVIEW 5 of 26 
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2.3. Cementitious Composite Fabrication

Plain and CNT + GNP reinforced specimens were prepared through the mixing of prepared CNT
+ GNP aqua suspensions with ordinary Portland cement and standardized sand using a laboratory
mixer following EN 196-1:1994 standard.

First, the required amount of cement (450 g) was poured into the mixer’s stainless steel bowl in
order to prepare the mortar mixes. Then, the prepared CNT + GNP aqueous suspension with 225 mL
water was added to cement (after re-measurement to ensure that water does not evaporate before and
after the dispersion process) and the required amount of sand (1350 g) were poured into the mixing
machine’s hopper.

The mixer was then run for 1.5 min, with the stainless steel blade’s rotational speed at 140 m/min,
followed by a 30 s timeout and then run at a 285 m/min higher speed for another 2.5 min. Next, the
mixture was shed into 160 mm × 40 mm × 40 mm prismatic molds and placed on a jolting machine for
1 min for vibrating compaction.

For 24 h the molds were placed in a humid atmosphere (99%) and then the samples were de-molded
and kept underwater for 28 days of the hydration process. Four copper mesh in 40 mm × 50 mm
dimensions, were embedded as electrodes in 40 and 60 mm distance from the middle of the specimens
which were used for piezoresistivity behavior evaluation (Figure 5). The samples were identified by
the variation of CNMs concentration in such a way that specimens GC (0.1%), GC (0.3%), GC (0.5%),
GC (0.7%), and GC (1.0%) are contained 0.1%, 0.3%, 0.5%, 0.7% and 1.0% of CNT + GNP respectively
(1:1 by weight of cement). For all specimens the content of cement and W/C are constant and equal to
33.3% by weight, and 0.5, respectively.
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2.4. Mechanical and Microstructural Characterization

Flexural and compressive strength tests were carried out according to BS EN 196-1:1995 standard.
In addition, apparent porosity and dry bulk density of the samples were measured as stated by ASTM
C20 and BS EN 1015-10:1999 standards. The results are obtained by the mean of at least 3 specimens
for flexural and 6 for compressive test according the test procedure. Compressive and flexural moduli
at rupture moment (ECr and EFr) were also calculated by Equations (1) and (2) respectively:

ECr =
FcL0

A∆L
(1)

EFr =
F f L3

4δwh3 (2)

where Fc is the compressive load at rupture, L0 initial length of the specimen in the direction of loading,
A is the section area of specimen perpendicular to the loading, ∆L is the L0 changes at rupture, Ff is
the flexural load at rupture, L is the length of the specimen, δ is the displacement of the specimen at
rupture at the middle and under the loading axis, w and h are also width and height of the section. The
fracture surface of specimens was characterized by scanning electron microscopy using an acceleration
voltage of 10 kV and secondary mode of electron after coating with an Au–Pd thin film (30 nm)
in a high-resolution sputter coater (Cressington 208HR) in order to investigate the microstructure.
Furthermore, the ultrasonic test was performed for microstructural evaluation according to BS EN
12504-4 standard by ultrasonic test device through two probes along the longitudinal transverse axis.
Moreover, specimens weight loss percentage was measured as a criterion of cementitious composite
durability against freeze-thaw cycles. In this route, saturated specimens with similar dimensions were
tested in the temperature range of −20 ◦C to 30 ◦C after 28 days of curing. The relative humidity of the
chamber was 90% in 30 ◦C and the duration of each cycle was considered 12 h (Figure 6). Furthermore,
relative dynamic modulus of elasticity were calculated by Equation (3) [36]:

RDM =
( ts.0

ts.n

)2
(3)

where ts.n is the transmit time after n cycles and ts.0 is the initial transmit time.
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Figure 6. Freeze–thaw temperature cycle.

2.5. Piezoresistivity Measurement

Specimens with embedded electrodes used for piezoresistivity tests were dried at 70 ◦C for 72 h
after 90 days of curing to avoid moisture effect on electrical conductivity. In this study a four-probe
method (Figure 4) by applying a direct current (DC) was used to evaluate cementitious composite
piezoresistivity behavior under cyclic compression (10 KN by rate of 50 N·s−1) and flexural (500 N
by rate of 2.5 N·s−1) loading. Electrical resistance was measured by two digital multimeter and one
programmable power supply. One multimeter was connected to the power supply and to the outer
electrode for measuring the intensity of current and the other was connected to the inner electrode for
measuring of voltage difference. The electrical resistivity ρ(t) of each specimen was obtained from the
average of five resistance measurements and was calculated by combining first and second Ohm’s low
equations (Equations (4) and (5) respectively) as presented in Equation (6):

R =
V
I

(4)

R = ρ
L
A

(5)

ρ(t) =
V(t)
I(t)

×
A
L

(6)

where R is electrical resistance, I(t) is the current between outer electrodes, V(t) voltage difference
between inner electrodes is the applied voltage, L is the spacing between the inner electrodes, A is
the contact surface between electrode and composite. For the following assessment of cementitious
composite piezoresistivity, the fractional change in resistivity (FCR) was calculated by Equation (7):

FCR =
ρ(t) − ρ0

ρ0
(7)

where ρ0 is the initial electrical resistivity which is measured before loading and ρ(t) is the resistivity
at time t during the test. To evaluate the sensitivity of CNT + GNP reinforced specimens, the gauge
factor (GF) is defined as the relative change in electrical resistivity over the strain (Equation (8)):

GF =
FCR
ε

(8)

where ε is the applied strain along the axis of force and bottom of the specimen in compressive and
flexural loading respectively.
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3. Results and Discussion

3.1. Mechanical and Microstructural Cementitious Composite Characterization

Mechanical properties of the reinforced cementitious composite were evaluated by the flexural
and compression tests. The results of these tests for cementitious composites reinforced by different
CNT + GNP concentrations are shown in Figure 7 after 7, 28, and 90 days of hydration period as well
as its corresponding coefficient of variation that has not exceeded 4%. According to the results, the
presence of CNT + GNP among cementitious composite causes mechanical properties enhancement.
Reinforcing cementitious composite by 0.1%, 0.3%, 0.5%, 0.7% and 1% concentration of CNT + GNP
lead to increasing flexural strength by 12%, 31%, 37%, 23% and 25%, respectively, when compared to
the plain mortar after 7 days of hydration period and 14%, 23%, 41%, 16% and 13% after 28 days.
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Figure 7. (a) Flexural and (b) compressive strengths of CNT + GNP incorporating cementitious
composites at different curing time.

The same analysis for compressive strength shows an increase of 13%, 21%, 28%, 20%, and 17%
after 7 days and 8%, 14%, 36%, 23%, and 16% after 28 days of hydration period. The normalized
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results of flexural and compressive strength results for different CNMs concentration and hydration
periods are presented in Figure 8. As can be seen, the general trend of results indicates optimal
dosage by around 0.5% concentration of CNT + GNP achieving the best mechanical properties of the
reinforced composite.
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Figure 8. Normalized compressive (Comp) and flexural (Flex) strength of plain and CNMs reinforced
mortar for different curing times.

Flexural and compressive (rupture) modulus of plain mortar and CNM/mortar composites are
provided in Figure 9.
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Figure 9. Plain and CNMs reinforced rupture modulus in different hydration periods: (a) flexural,
(b) compressive.

The results indicated significantly higher flexural modulus of CNM-reinforced composites as
compared to plain mortar. It is also clear that increasing CNMs concentration up to around 0.5%
presented more improvement in flexural and compressive modulus as compared to plain mortar.
The improvement in flexural and compressive modulus was quite high reaching up to 123% and 168%
respectively in the case of 0.5% reinforced samples after 90 days of curing. Specimens failure modes
under flexural and compressive loadings have been shown in Figure 10.
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Figure 10. Images of specimens after tests: (a) specimen GC (0.5%) after flexural test, (b) specimen GC
(0.5%) after compression test.
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In fact, incorporating cementitious composite by CNT + GNP leads to increasing mechanical
performance due to the bridging mechanism and reducing the porosities. However, an excessive
increase of CNMs concentration can cause agglomeration and porosities formation which consequently
can decrease flexural and compressive strengths [37]. Despite this decrease, it is noticed that the
flexural and compressive strengths values of specimen GC (1.0%) are still greater than the value of plain
mortar. These results demonstrate that the hybrid combination of these carbon nanoparticles CNT +

GNP is more efficient for mechanical properties enhancement than reinforced cementitious composites
that used individual CNMs (Table 4). This can be explained by the capacity of load carrying between
CNMs and the adjacent cementitious matrix. Besides, GNPs can facilitate the CNTs dispersion which
leads to an increase in overall strength [38]. Additionally, in nano intruded cementitious composite,
crack propagation is stopped by various types of inclusions: pores, grains, fibers, aggregates, and
particles [39]. CNTs and GNPs also block the cracks by deviating and/or arresting their propagating
tips, like an obstacle (Figure 11).

Table 4. Comparison of mechanical properties with previous studies for CNMs reinforced cementitious
mortar after 28 days of hydration.

Dispersion Method Nanoparticles Type and
Weight Fraction (% *)

Results and
Improvement (%) Standard References

Ultrasonication CNT (1%) (6%) Compressive N.A [40]

Nitric and sulfuric acid by
carboxylation plus

Sonication
CNT (0.5%) (19%) Compressive_(25%)

Flexural N.A [41]

Modified acrylic polymer
and acetone plus
sonication and

superplasticizers

CNT (0.5%) (11%) Compressive_(33%)
Flexural UNI-EN 196-1 [42]

Modified polycarboxylate
admixtures and

naphthalene-sulfonate
plasticizer

CNT (0.3%)
(12%) Compressive_(34%)

Splitting Tensile_(14%)
Modulus

NBR 7215,
8522,7222 [43]

Ultrasonication CNT (0.5%) (15%) Compressive_(36%)
Splitting Tensile ASTM C39 C496 [44]

Polycarboxylate
superplasticizer GO (1.5%) (48%) Tensile N.A [45]

Pluronic F-127 and
Tributyl phosphate by
optimized temperature

and ultrasonication

GNP + CNT (0.5% half
by half)

(36%) Compressive_(41%)
Flexural BS EN 196-1:1995 Present Study

* by weigth of cement.
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Figure 11. Scanning electron microscopy (SEM) morphology of CNT + GNP specimen after mechanical
strength test. (a) GC (0.5%), (b) GC (0.7%).
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3.2. Microstructural Investigation

The results of apparent porosities, dry bulk density, and ultrasonic wave passing time for different
nano-intruded cementitious mortar are shown in Figures 12 and 13, and Table 5.
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Figure 12. Apparent porosity of nano intruded cement mortars.
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Figure 13. Dry bulk density of nano-intruded cement mortars.

These results show that incorporating CNT + GNP into the cementitious composite generally
leads to reducing apparent porosities (denser microstructure) and consequently increases the density
and decreases the ultrasonic wave passing time. The addition of 0.1%, 0.3%, 0.5%, 0.7%, and 1% CNT +

GNP to the cementitious composite has decreased the apparent porosities by 2.1%, 4.0%, 5.2%, 3.4%,
1.6% after 7 days and 2.0%, 4.4%, 7.1%, 3.6% and 0.4% after 28 days of hydration period, respectively.
It is also noticed an increase of dry bulk density about 2% by increasing CNT + GNP concentration to
around 0.5%. However, by further increasing nanoparticles percentage, it will increase micro porosities
resulting from GNP + CNT agglomerates formation in cementitious composite inducing in a decrease
of the dry bulk density and mechanical properties of the composite.
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Table 5. Ultrasonic wave passing times of nano intruded cement mortars.

Sample ID Age Ultrasonic Wave Time Passing (µs) for 150 kH

Longitudinal Transverse

Plain Mortar
7D 36.46 10.69

28D 36.40 9.60

GC 0.1%
7D 35.90 10.17

28D 34.70 9.38

GC 0.3%
7D 35.20 9.61

28D 34.10 8.93

GC 0.5%
7D 33.24 9.21

28D 33.18 8.72

GC 0.7%
7D 33.70 9.43

28D 32.90 8.64

GC 1%
7D 34.10 9.93
28D 33.97 9.49

A similar trend was also observed for ultrasonic wave passing time (Table 5). Indeed, increasing
CNT + GNP to around 0.5% leads to reduced passing time, while increasing CNT + GNP more than
0.5% results in an increase of passing time. Furthermore, an increase of the curing age, e.g., of the
increase of hydration products, results in a decrease of apparent porosity and an increase of dry bulk
density with a decrease of ultrasonic waves passing time as a consequence of a denser microstructure.

3.3. Durability of CNT + GNP Reinforced Cementitious Mortar

Figure 14 shows the weight loss percentage of cementitious composites as a function of freeze–thaw
cycles numbers after 180 cycles.
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Figure 14. The weight loss rate of cementitious composites in different freeze–thaw cycles.

These results reveal the same trend of the previous test results with an optimal percent, around
0.5% of CNT + GNP concentration for the maximum resistance against climatic cycles. Moreover,
the increase of hydration rate of reinforced specimens due to nucleation effects of CNMs leads to a
decrease of the destruction of cementitious composite with the increase of the number of cycles. This is
clearly observed by the decrease ratio of weight loss with the number of cycles in comparison with the
results of the plain specimen.
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The same tendency of the optimum around 0.5% of CNT + GNP concentration was also observed
for the relative dynamic elasticity modulus after 180 freeze–thaw cycles as depicted in Figure 15.
Incorporating 0.1%, 0.3%, 0.5%, 0.7%, and 1.0% CNT + GNP into the cementitious mortar increases the
dynamic modulus by 5%, 19%, 23%, 17%, and 4%, respectively.
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Figure 15. Relative dynamic elasticity modulus of CNT + GNP intruded cement mortar after 180
freeze-thaw cycles.

3.4. Piezoresistive Behavior

3.4.1. Electrical Resistance Results

The results of electrical resistance of plain and CNT + GNP reinforced specimens in different
hydration period are presented in Figure 16.
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Figure 16. The electrical resistance of reinforced cementitious composite by different CNT + GNP
concentrations and curing time.

As can be noted, reinforcing cementitious composite by CNT + GNP leads to a significant decrease
in electrical resistance. Incorporating 0.1%, 0.3%, 0.5%, 0.7%, and 1% CNT + GNP (1:1) into the
cement mortar reduced electrical resistance 78%, 93%, 97%, 98%, and 99%, respectively after 7 days
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of hydration period compared to the plain specimen. These results after 90 days of curing slightly
decrease for 69%, 85%, 95%, 96%, and 98%, respectively. It also shows that the percolation threshold
for reinforced cementitious composite by CNT + GNP is probably between the concentration of 0.5%
and 0.7%. Additionally, it can be observed that in all reinforced and plain cementitious composites, the
electrical resistance increased by increasing curing age and hydration period. This is because of the
formation of finer pores due to cement hydration which leads to a decrease in pore water and cuts off

the conductive pathway of water [46]. Moreover, cement hydration process also can make a gap in
CNT + GNP conductive paths by changing in cementitious composite microstructure and surrounding
the CNMs as visible in Figure 17.
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However, the increase of electrical resistance with curing time for the specimens reinforced with
more than 0.5% concentration is lesser in comparison with other specimens, especially after 7 days
of curing. The reason for this can be explained by the fact that the concentrations of CNT + GNP
greater than the percolation threshold leads to the well-established continuous CNT + GNP conductive
pathways which are not affected significantly by dried pores [46,47]. Table 6 summarizes results of
other studies and shows the high efficiency of hybrid CNT + GNP used in this research. Indeed, the
synergic effects of CNT + GNP create more electrical conductive paths by lower concentration and
consequently reduces electrical resistivity significantly.

Table 6. Comparison of electrical resistance for CNM reinforced cementitious composites after 28 days
of curing.

Matrix Nanoparticles
Type

Weight Fraction
(wt.%)

Electrical
Resistivity (Ω·m) References

Mortar GNP 5 21.02 [1]
Paste CNF 2 11 [16]

Mortar GNP 5 78.2 [1]
Mortar GNP 5 27.96 [1]
Mortar CNT 0.7 24 [48]
Mortar Graphene 1 4000 [49]
Mortar Carbon Black 10 4.53 [50]
Paste GNP 4.8 20 [3]

Mortar Short Carbon fiber 2 2.4 [51]
Mortar GNP + CNT 1 (half by half) 15.3 Present Study
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Figure 18 illustrate clearly that the combination of CNTs and GNPs with 1D and 2D geometrical
shapes can increase the possibility of the formation of long-range connectivity in a random system.
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The high specific surface area of GNPs can also increase the free surface for electron transmission
by the quantum tunneling mechanism schematically illustrated in Figure 19.
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3.4.2. Cyclic Compression Test Results

Figure 20 shows the results of the fractional change in resistivity together with cyclic compression
response for reinforced cementitious composite by different CNT + GNP concentration in function
of time.

As can be seen, increasing the compression load leads to a decrease in the electrical resistivity by
making conductive paths closer to each other and by contrast removing the load causes an increase in
electrical resistivity.
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Figure 20. The fractional change in resistivity together with cyclic compression response for reinforced
cementitious composite by different CNT + GNP concentration.

The maximum fractional change in electrical resistivity of cementitious composite was also
increased by increasing CNT + GNP concentration. In general, the fractional change in resistivity
(FCR) value was negative under compression loading due to the decrease in electrical resistance
during loading compared to the primary electrical resistance of the specimen which was measured
before loading (Equation (7)). However, in all CNT + GNP concentrations, except 0.5%, after full
load elimination the amount of specimen electrical resistance does not return to its original value.
This can be a consequence of some internal defects (i.e., holes, native cracks, etc.) in the microstructure
which are gradually reduced in the successive cycles of compression loading. In order to obtain more
information, these results are also presented in terms of the axial strain as illustrated in Figure 21.
It can be observed an increase of the strain level with the increase of number of loading cycles, except
for 0.5% of CNT + GNP concentration. Moreover, the residual strain is matched with initial electrical
resistivity at the end of each unloading.
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Figure 21. Cont.
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The ratio of the compressive modulus at rupture (Ecr) to the compressive modulus at 10 KN
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Figure 22. The ratio of rupture compressive modulus (Ecr) to compressive modulus at 10 KN loading (EC10).
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As can be seen, the difference of modulus between rupture moment and at the top of each loading
cycle (10 KN) for specimen CG 0.5% is greater compared to the rest. Hence, the residual strain of
specimen CG 0.5% was lower at the end of each loading cycle.

The relationship between the FCR with strain is shown in Figure 23 for the different CNT + GNP
concentrations. The results of adjustment of these relationships by power function regressions are
also presented.
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Figure 23. Variation of strain with the fractional change in resistivity for CNT + GNP
reinforced specimens.

It can be observed that increasing CNMs concentration causes an increase in the fractional change
in resistivity with an optimum sensitivity of the composite to strains around 0.7% of CNT + GNP
concentration. Indeed, an excessive increase of CNT + GNP concentration reduces the sensitivity of
the composite under compression loading due to specimen saturation of the conductive paths. It also
appears that the relation between variation of strain and electrical resistance becomes more non-linear
whatever the stiffness of the specimen is decreased by.

3.4.3. Cyclic Flexural Test Results

Figures 24 and 25 are the correspondent results for the flexural tests adopting the same analysis
as for the compression tests. From Figure 24 it can be observed that contrarily to the compression
tests the electrical resistivity increases with the flexural loading. This can be explained by the mixed
mechanisms of compression and tensile in the beam section in conjunction with the susceptibility of
the micro-cracking network created in the bottom of the section under tension. Therefore, conductive
paths are cut off by these cracks resulting in an overall increase of the electrical resistivity under the
increase of flexural loading
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Figure 24. The fractional change in resistivity together with the cyclic flexural response for reinforced
cementitious composite by different CNT + GNP concentrations.

As for the compression tests, the FCR increases with the increase of CNT + GNP concentration
and after unloading it is also observed that the electrical resistance does not return to its initial value,
this being offset more significantly with the increase of the number of cycles (Figure 25). In contrast to
compression loading mode, the FCR values were generally positive under flexural loading due to the
increase in electrical resistance during loading compared to the primary electrical resistance of the
specimen which was measured before loading (Equation (7)).

The ratio of the flexural modulus at rupture (EFr) to the flexural modulus at 500 N loading (EF500)
are shown in Figure 26. As can be observed, specimen CG 0.5% and CG 1.0% showed higher and lower
stiffness respectively compared to the other specimens at the top of each loading cycle.
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Figure 25. Cont.
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Figure 25. The fractional change in resistivity together with axial strain under cyclic compression
loading. (a) GC (0.1%); (b) GC (0.3%); (c) GC (0.5%); (d) GC (0.7%); (e) GC (1.0%.
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Figure 26. The ratio of flexural modulus at rupture (EFr) to flexural modulus at 500 N loading (EF500).
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Concerning the relationship between the FCR with strain under flexural loading for the different
CNT + GNP concentrations a large scatter is observed (Figure 27) when compared with the compression
tests (Figure 23). It is noticed that increasing CNM concentration caused an increase in the slope of the
FCR curve which shows more sensitivity.
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specimens under flexural cyclic loading.

3.4.4. Gauge Factors

To better illustrate the strain sensing capabilities of CNT + GNP reinforced cementitious composite,
the gauge factor for both types of flexural and compression cyclic loading is presented in Figure 28.Materials 2020, 13, x FOR PEER REVIEW 23 of 26 
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Table 7 shows that higher gauge factors can be achieved, giving enhanced sensitivity, for CNT +

GNP reinforced cementitious composite for 0.5%, when compared with previous studies that used
individual CNTs or GNPs. These results are very encouraging showing that the hybrid combination
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of these nanoparticles (CNT + GNP) is very efficient to achieve a sensitive self-sensing cementitious
composite with good performance in terms of durability and mechanical performances.

Table 7. Comparison of gauge factors for cementitious composite under compressive loading.

Matrix Filler Filler Ratio (Vol%) GF References

Cement Paste Nanographite Plates 5 156 [26]
Mortar GNP 2.4 30 [25]
Mortar GNP 3.6 100 [25]
Mortar GNP 2.1 90.8 [1]
Mortar GNP 1.5 110 [1]
Mortar CNT 0.15 240 [52]
Mortar CNT + GNP 0.12 460 This study

4. Conclusions

In this study, the mechanical, microstructural, and durability properties of hybrid CNT + GNP
reinforced cementitious mortar were evaluated in different hydration periods (7, 28, and 90 d). The
sensitivity of specimens to the strain and stress were investigated under cyclic flexural and compression
loading by measuring fractional changes in the electrical resistivity. The dispersion of nanoparticles
(0.1%, 0.3%, 0.5%, 0.7%, and 1% CNT + GNP with equal proportions) was achieved by using Pluronic
F-127 and TBP with 3 h sonication at 40 ◦C and following outcomes were obtained:

• An optimal concentration of CNT + GNP around 0.5% (1:1) shows the best performance in terms
of durability (resistance against freeze–thaw cycles), microstructure and mechanical behaviour.

• Incorporating 0.5% CNT + GNP into the cementitious mortar led to increasing flexural strength by
37%, 41%, and 43% after 7, 28, and 90 days of curing respectively. These amounts for compressive
strength were 28%, 36%, and 46% respectively.

• The improvement in flexural and compressive moduli was quite high reaching up to 123% and
168% respectively in the case of 0.5% reinforced samples after 90 days of curing.

• Scan electron microscopy, dry bulk density, apparent porosities, and ultrasonic wave passing time
also showed the denser microstructure for reinforced mortar by 0.5% CNT + GNP.

• Evaluation of relative dynamic modules and weight loss of specimens after 180 freeze and thaw
cycles also showed the best performance in terms of durability for the reinforced specimen by
0.5% CNT + GNP.

• Incorporating 0.5% CNT + GNP into the cementitious mortar led to the sharp change in electrical
resistivity under cyclic loading which caused flexural and compression gauge factors by 398
and 460 respectively. This optimal percentage reveals significantly higher gauge factors when
compared with the available results using individual nanoparticles.

• The results of this study provide proof of the concept that incorporating a low concentration of a
hybrid combination of carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs) in a cement
mortar can provide self-sensing capabilities of the reinforced cementitious composite, enhancing
microstructure, durability and mechanical performances.
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