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Abstract: Nickel-based alloys, especially Monel 400™, is gaining its significance in diverse applications
owing to its superior mechanical properties and high corrosion resistance. Machining of these materials
is extremely difficult through the traditional manufacturing process because of their affinity to rapid
work hardening and deprived thermal conductivity. Owing to these difficulties a well-established
disruptive metal cutting process namely plasma arc cutting (PAC) can be widely used to cut the
sheet metals with intricate profiles. The present work focuses on an intelligent modeling of the PAC
process and investigation on the multi-quality characteristics of PAC parameters using the fuzzy logic
approach. The Box-Behnken response surface methodology is incorporated to design and conduct
the experiments, and to establish the relationship between PAC parameters such as cutting speed,
gas pressure, arc current, and stand-off distance and responses which include the material removal rate
(MRR), kerf taper (KT), and heat affected zone (HAZ). The quadratic regression models are developed
and their performances are assessed using the analysis of variance (ANOVA). Fuzzy set theory-based
models are formulated to predict various responses using the Mamdani approach. Fuzzy logic and
regression results are compared with the experimental data. A comparative evaluation predicted
an average error of 0.04% for MRR, 0.48% for KT, and 0.46% for HAZ, respectively. The effect of
variations in PAC process parameters on selected responses are estimated through performing the
sensitivity analysis.

Keywords: ANOVA; kerf taper; heat affected zone; material removal rate; response surface
methodology; intelligent modeling

1. Introduction

Cutting-edge engineering materials including composites, superalloys, and ceramics are
revolutionizing the industrial demand owing to their superior material properties such as high
strength-to-weight ratio, increased corrosive and wear resistance, and are also able to withstand at
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elevated temperatures [1]. Alloys in general, nickel and titanium in particular, are mostly utilized for
high temperature applications to obtain minimal deformation and high thermal stability [2]. Exclusively,
Monel 400 which is a nickel-based alloy is being widely used in marine ship building, aircraft engines,
nuclear and chemical processing industries [3]. Owing to its enhanced mechanical properties such
as inferior thermal conductivity, high toughness, better creep resistance, and superior yield strength,
as well as ease in cutting of intricate part profiles, which is extremely difficult to cut using traditional
cutting processes, made Monel 400 a potentially viable material in today’s manufacturing sectors.
In addition, advanced metal cutting processes such as laser cutting, abrasive waterjet cutting, electrical
discharge machining, plasma arc cutting, ultrasonic machining, etc. are very well suited for processing
these kinds of difficult-to-cut materials [4–7].

Among these non-traditional manufacturing processes, the plasma arc cutting (PAC) technology
is a well-recognized thermal energy based on the non-traditional machining process extensively
practiced for processing of widespread materials especially all electrically conductive materials and
superalloys [8]. Compared with a range of available traditional and non-traditional machining
processes, PAC exhibits a high potential due to its excellent speed of cutting, low cost, and manifest
mechanization. In the PAC process, a high intensity constricted plasma arc is produced between the
electrode and workpiece material by the ionization of gas through the application of high intensity arc
current. The high temperature arc of above 20,000 ◦C is used to melt the material and subsequently
the melted metal is ejected from the cutting zone by the application of high-pressurized gas supply.
At this junction, plasma is generated inside the torch and the ionization of cutting gas leads to the
plasma state. A high transfer of heat energy into the workpiece causes melting and the ejection
of smelted metal is achieved through kerf. PAC is considered to be cost efficient in comparison to
other machining processes to fabricate complicated profiles, it is able to machine the parts of a wide
range of materials effortlessly and rapid cutting is regarded as the most versatile non-conventional
machining process. Even though PAC has more potential benefits, achieving high quality of cutting
with reference to HAZ, surface roughness, and kerf characteristics is deliberated to be challenging
because the influence of diverse PAC process parameters affects the performance. It is essential to
investigate the key contributing PAC process variables and examine the influence in terms of part
quality characteristics. This study also signifies and apprehends the meagerness of the PAC process
in meeting the demand of manufacturing industries.

Most of the earlier works concentrated on theoretical and experimental strategies to evaluate the
part quality and machining characteristics such as HAZ, MRR, recast layer formation, surface roughness,
and geometrical kerf qualities. In the literature, few PAC studies are performed for machining
metals, ceramics, and composites. Adalarasan et al. [8] investigated the consequence of various
process parameters such as arc current, torch stand-off, cutting speed, and gas pressure on quality
characteristics of the PAC process such as surface roughness and kerf taper during cutting of a 304 L
stainless steel using the grey taguchi statistical hybrid approach. They found that the quality of
plasma arc cutting parts can be enhanced through maintaining lower arc current and stand-off distance.
Ramakrishnan et al. [9] utilized genetic algorithm for optimizing the PAC parameters to obtain enhanced
cut quality characteristics during cutting of a SS321 steel. Their results reveal that the enhanced surface
quality and minimized heat affected zone can be obtained by reducing the cutting speed. Further, they
have reported that metaheuristic optimization techniques such as genetic algorithm can be effectively
used for optimization of the PAC process. Salonitis et al. [10] experimentally investigated the heat
affected zone, cut quality, and conicity of cut geometry of a PAC processed S235 mild steel. They have
proposed that the HAZ can be reduced by minimizing the arc current and the stand-off distance which
are the most influencing factors on the cut quality of conicity of cut geometry. Celik [11] studied
the effects of cutting parameters such as cutting speed, arc current, and arc voltage on the plasma
arc cutting of sheet metals with different thickness. His investigation results proposed that the heat
affected zone increases when the cutting speed decreases, whereas surface roughness decreases with the
reduction of the cutting speed. Abdulnasser et al. [12] experimentally investigated the rate of material
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removal and surface quality of an aluminium sheet with different thickness. Their results indicated
that the cutting characteristics are mostly influenced by the arc current and cutting speed followed by
the stand-off distance. Subbarao et al. [13] investigated the PAC performance characteristics during
cutting of a Hardox–400 alloy by varying its governing parameters using the design of experiments.
They have found that the irregularity in cutting surface has been controlled by decreasing the cutting
speed and arc voltage. Maity et al. [14] studied the impact of PAC parameters on the cut quality for
an AISI 316 stainless steel. The results show that the cut quality is solely influenced by the stand-off

distance whereas other parameters have no obvious impact. Gariboldi et al. [15] investigated the
quality responses of PAC on a titanium sheet with varying thickness and found that the oxygen and
nitrogen shield gases that were produced enhanced the cut quality.

Earlier studies of the authors dealt with various optimization techniques to investigate the
PAC process. Rajamani et al. [16] investigated the influence of PAC parameters on kerf width,
surface roughness, and microhardness of the machined Monel 400 alloy. They have proposed
a statistical desirability approach for the optimization of PAC process parameters. Results of their
investigation reveal that the surface roughness is significantly influenced by the stand-off distance
and arc current, whereas kerf width and microhardness are influenced by the cutting speed and gas
pressure. In another study [17], they have successfully utilized the TOPSIS statistical approach for the
optimization of PAC process parameters to improve the cut qualities such as material removal rate,
minimized kerf taper, and heat affected zone.

These studies are utilized as conventional methods of modeling and optimization which necessitate
a lot of experimentation that is time consuming and huge efforts are required to achieve the desired
part quality. In order to alleviate from these issues, various artificial intelligent (AI) techniques are
employed in the literature to model the system and evaluate the performance of the developed system.
However, fuzzy logic (FL) is considered to be a prominent AI technique, comprising of linguistic terms
with reference to establishing a membership function for the given input and output parameters that
has more degree of uncertainty and vagueness [18]. Therefore, FL is fascinating in its attention to
solve complex mathematical and engineering problems in various fields. In recent times, many of the
researchers have implemented the FL theory for modeling of advanced manufacturing processes.

Rahul et al. [19] exploited the performance characteristics of electric discharge machining on
the Inconel superalloy using a hybrid fuzzy-Taguchi approach. Kuriachen et al. [20] utilized FL and
particle swarm optimization for the development of the system and optimization of the micro-wire
electric discharge machining process. They reported that a high correlation exists between fuzzy
predicted system and experimental values that have proven that the developed system is accurate and
demanding. Hossain et al. [21] experimentally studied the kerf quality of laser beam machining using
the fuzzy expert system. The findings of their research show that the Mamdani fuzzy approach can be
used for investigating the kerf quality of the laser machining process with a lower relative error and
higher prediction efficiency. Bikash et al. [22] incorporated the grey-fuzzy methodology to investigate
the influence of wire electric discharge machining (WEDM) variables on quality characteristics.
The validation results of their investigation designate that the suggested approach can be successfully
used for modeling and optimization on WEDM of AISI steels.

Later on, Prabhu et al. [23] presented the fuzzy response surface methodology approach for
building the system and performed optimization studies on the EDM process. They found that
the developed fuzzy approach is utilized to map the affiliation among the machining variables
and corresponding responses. Parthkumar Patel et al. [24] utilized the Mamdani based fuzzy logic
intelligent approach to investigate the influence of PAC variables on the surface quality of metal
removal rate during cutting of an AISI D2 steel. Cebeli et al. [25] studied the surface quality of an AISI
4140 steel during plasma arc cutting by varying the process parameters. They found that the fuzzy
approach can be effectively used for analyzing the impact of input parameters on quality responses.

Intelligent modeling of the PAC process leads towards the continual improvement of quality
characteristics in final products and processes including the modeling of input–output and in-process
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parameters through cost-effective modeling approaches such as FL, ANN, ANFIS, etc. Though the FL
approach is widely used for modeling modern manufacturing processes, no obvious investigation is
found to model the PAC process for machining of nickel-based alloy materials. Therefore, the present
research work focuses on modeling of PAC using the FL technique and evaluating its performance
characteristics. Firstly, experimental trials are planned and executed based on the Box-Behnken
response surface method and a mathematical model is established. The competence of the established
models is legalized using the multi-factor analysis of variance. Further, the Mamdani based fuzzy logic
intelligent approach is exploited to associate the PAC process for specified input process parameters
such as cutting speed, gas pressure, arc current, and stand-off distance in evaluating the output features
such as MRR, KT, and HAZ. A comparative evaluation of the regression model, FL, and experimental
results are performed. Finally, the quantitative influence of these PAC variables on selected responses
is attained through conducting the sensitivity analysis.

2. Methodology

2.1. Response Surface Methodology

Response surface methodology (RSM) is employed for modeling and optimizing the governing
parameters [26]. The Box-Behnken design (BBD) is a RSM-based approach which is utilized to minimize
the experimental runs, establish the quadratic model, and also study the interactions between the
PAC governing parameters. The second-order polynomial equation formed from RSM was utilized to
manifest the behaviour of the PAC process as shown in Equation (1). In this investigation, the viscoelastic
properties of sintered specimens are modeled in accounting the selected process parameters.

Y = C0 +
n∑

i=1

CiXn +
n∑

i=1

diXi
2
± ε (1)

In the present investigation, a second-order quadratic model is developed using RSM for correlating
process variables and the responses. Additionally, ANOVA is exploited to justify the consequence of
developed quadratic models.

2.2. Fuzzy Logic Expert System

Fuzzy logic (FL) is proven to be an effective artificial intelligence (AI) technique for modeling the
process parameters of complex processes which are largely probabilistic rather than deterministic [27].
FL consists of three conceptual components such as fuzzification (adapt crisp inputs into fuzzy values),
fuzzy inference system (define fuzzy rules by adopting membership functions), and defuzzification
(translate fuzzy outputs to crisp values) during the development of the model as shown in Figure 1.
It is functioning based on imprecision; exclusively, it mimics the decision of human beings through
uncertain and vogue information. Owing to its superior capability in establishing a relationship
between input and output of any processes with a powerful decision-making ability bounded by
minimal fuzzy linguistic rules, it is widely utilized in diverse applications in comparison to other
statistical and AI techniques. The present investigation considers the FL approach to model the PAC
process and is also useful to determine the appropriate PAC process parameters.

Generally, three categories of FL methodologies such as Mamdani, Tsukamoto, and Sugeno are
employed to solve the non-linear problems [28]. However, due to the simplified structure, enhanced
computational speed, and translating of rules, the Mamdani fuzzy inference engine is widely used to
examine multifarious engineering issues. [29]. The present investigation considers input PAC process
variables such as cutting speed (A), gas pressure (B), arc current (C), and stand-off distance (D) to
evaluate the output responses namely MRR, KT, and HAZ. In FL, the construction of membership
functions (MFs) are considered to be critical and it is the graphical illustration of extent of each process
variable. Due to the existence of high computational efficiency and uncertainty during the splitting
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of values, triangular MFs are selected for modeling PAC process variables. The expressions in the
MF curve to designate input process variables are selected as ‘Low’, ‘Medium’, and ‘High’ for input
process variables. Similarly for output responses such as MRR, KT, and HAZ, the following expressions
are accounted: ‘Very very low (VVL)’, ‘very low (VL)’, ‘low medium (LM)’, ‘low (L)’, ‘medium (M)’,
‘high (H)’, ‘high medium (HM)’, ‘very high (VH)’, and ‘very very high (VVH)’. The triangular MFs for
input variables are specified using the following relation:

Triangle MF (a; x, y, z) =


0, a ≤ a

a−x
y−x , x ≤ a ≤ y
z−a
z−y , y ≤ a ≤ z
0, z ≤ a

(2)

where a is a variable, and x, y, z specifies fuzzy triangular levels. The MFs and Mamdani rules are
intended to achieve preferred predictor variables. In this present study, thirty ‘IF-THEN’ fuzzy rules
are developed to achieve the desired MRR, KT, and HAZ through utilizing MATLAB 8.5.0. Finally,
the centroid method is utilized for defuzzification to extract the crisp output from the earlier formulated
fuzzy set and the centroid is calculated using the following relation [30]:

yo =

∑
y×

[
µCi

(
y j

)]
∑[
µCi

(
y j

)] (3)

The crisp value yo gives the output response value and y j indicates the center value of regions
(i.e., responses).Materials 2020, 13, x FOR PEER REVIEW 5 of 26 
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Figure 1. Schematic of the fuzzy inference system.

3. Experimental Details

Experimental investigations on PAC of the Monel 400 alloy having a material composition of
63% nickel, 31.6% copper, 2.5% steel, 2% manganese, 0.5% silicon, and 0.3% carbon is performed.
A rectangular specimen of 3 mm thickness with 200 mm × 200 mm is considered as a workpiece
material. Straight cuts of 25 mm long are made with two repetitions for each experimental run. The cut
specimens are removed from the base material for recognizing the responses. The experimental
investigations were performed using an industrial purpose plasma arc cutting system (Pro arc welding
and cutting system, India). The PAC experimental system is presented in Figure 2. The PAC setup is
furnished with the PlasmaCAM CNC software to confirm the accurate motion of plasma jet through the
nozzle. Compressed air is used as a shield gas to generate high-energy plasma to thaw out and spew
the smelted metal in the substrate surface. The precision in the cutting operation was accomplished
through a servo-operated torch devising a copper nozzle with an air-cooled swirl.
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A series of experiments are conducted according to the designed matrix and a range of selected
process parameters as shown in Table 1. The range of selected PAC parameters are established with
an aid of the existing literature, machine capability, and conducting exhaustive pilot experiments.
A nozzle diameter of 1.5 mm, arc voltage of 110 V, and piercing time (0.3 s) are kept constant throughout
the experiment. Each response is calculated based on experimental measures and tabulated for
further investigations.

Table 1. Plasma arc cutting variables and their levels.

S. No. Process Variables
Levels

Unit
Low Medium High

1 Cutting speed (A) 2200 2400 2600 mm min−1

2 Gas pressure (B) 3 3.5 4 Bar
3 Arc current (C) 45 50 55 A
4 Stand-off distance (D) 2 2.5 3 mm

The removal of metal during the cutting process is calculated using the following expression:

MRR(g/min) =
Metal removed f rom the workipece

Cutting time
(4)
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MRR is quantified using an Infra IN210 (Infra Instruments Ltd., Chennai, India) electronic weight
balance with a precision of 0.0001 gms. Similarly, the kerf taper (Figure 3) is measured on an automated
profile projector (Scientico Instruments, India) and the following relation is used to evaluate KT:

Ker f taper(Degree) =
(Top KW − Bottom KW) × 180

2πt
(5)

where t is the thickness of the sheet and KW is the kerf width. For each sample, three measurements
on the kerf width are conducted and their average are accounted.
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The region of heat affected near the cut surface (distance perpendicular to the length of cut)
is considered as HAZ and is measured using a tool makers microscope BX53 (Made: Olympus
Corporation, Tokyo, Japan) with a magnification of 40×. The measured responses corresponding to
various experimental trials are listed in Table 2. The surface morphology of the machined surface is
assessed by a field-emitted scanning electron microscope (FESEM). The analysis is performed by using
a Sigma 300 (Make: Carl Zeiss, Jena, Germany) apparatus with a maximum accelerating voltage of
15 keV.

Table 2. Experimental design and measured response values.

Run
Input Parameters Responses

Cutting Speed (mm min−1) Gas Pressure (Bar) Arc Current (A) Stand-off Distance (mm) MRR (g min−1) KT (Degree) HAZ (mm)

1 2200 3 50 2.5 32.183 4.491 4.44
2 2600 3 50 2.5 33.57 8.557 4.5
3 2200 4 50 2.5 27.753 6.912 3.21
4 2600 4 50 2.5 24.319 4.935 2.475
5 2400 3.5 45 2 46.371 2.52 6.21
6 2400 3.5 55 2 34.107 6.632 4.56
7 2400 3.5 45 3 27.572 7.472 3.69
8 2400 3.5 55 3 35.718 3.815 4.785
9 2200 3.5 50 2 34.779 5.897 4.26

10 2600 3.5 50 2 32.764 7.455 4.38
11 2200 3.5 50 3 28.736 7.07 3.84
12 2600 3.5 50 3 25.899 7.707 3.045
13 2400 3 45 2.5 40.611 4.447 5.7
14 2400 4 45 2.5 31.004 2.87 3.885
15 2400 3 55 2.5 38.015 4.185 5.355
16 2400 4 55 2.5 29.467 4.655 3.81
17 2200 3.5 45 2.5 39.209 3.027 5.25
18 2600 3.5 45 2.5 25.602 6.874 3.42
19 2200 3.5 55 2.5 27.482 5.615 3.675
20 2600 3.5 55 2.5 33.989 5.39 4.38
21 2400 3 50 2 40.284 7.083 5.4
22 2400 4 50 2 36.345 4.55 4.335
23 2400 3 50 3 33.84 5.792 4.74
24 2400 4 50 3 25.574 7.227 2.88
25 2400 3.5 50 2.5 31.423 6.907 4.005
26 2400 3.5 50 2.5 32.554 7.591 4.26
27 2400 3.5 50 2.5 30.629 7.145 3.945
28 2400 3.5 50 2.5 30.347 7.892 4.065
29 2400 3.5 50 2.5 30.257 7.402 4.05
30 2400 3.5 50 2.5 29.364 7.437 4.23
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4. Results and Discussion

4.1. Regression Modeling and Statistical Analysis

The second-order mathematical models are developed to statistically analyze the relative
importance of PAC governing parameters. The competency of established mathematical models is
substantiated through the analysis of variance (ANOVA) with a 95% confidence interval using the
Design Expert 7 software. Table 3 shows the ANOVA outcomes for the quality characteristics such as
MRR, KT, and HAZ. It is perceived from the tables that p < 0.05, which illustrates that the developed
models are at a 95% assurance level. Moreover, the factor of determination (R2) for the MRR, KT,
and HAZ are also found to be 0.9772, 0.9839, and 0.9904, respectively. It illustrates that the established
mathematical models reasonably fit with the real data. The adequate precision (AP) values obtained
for selected responses are well above 4, that signposts the acceptable model perception. The model F
values denote that the models are significant. From the established models, certain variables can be
observed as insignificant terms due to their “Prob. > F” value presence of more than 0.05. The backward
elimination approach was utilized to remove the insignificant terms from the developed mathematical
models. The remaining terms are retained for further estimation. The final mathematical models are
given by:

MRR(g/min) = 894.842 + 0.0623×A + 3.757× B− 29.547×C− 137.812×D
−0.01205×A× B + 5.028× 10−3

×A×C− 4.327× B×D + 2.041×C×D
−5.779× 10−5

×A2 + 4.092× B2 + 0.1218×C2 + 8.604×D2
(6)

Ker f taper(Degree) = −542.946 + 0.107×A + 45.884× B + 12.156×C
+25.781×D− 0.0151×A× B− 1.018× 10−3

×A×C + 0.204× B×C
+3.968× B×D− 0.776×C×D− 4.335× B2

− 0.0843×C2
(7)

HAZ(mm) = 82.091 + 0.0341×A + 5.167× B− 4.350×C− 10.578×D
−1.98× 10−3

×A× B + 6.337× 10−4
×A×C− 2.287× 10−3

×A×D
−0.795× B×D + 0.274×C×D− 1.128× 10−5

×A2 + 0.022×C2 + 0.819×D2
(8)

Table 3. Analysis of variance and model validation.

Source Sum of Square DOF Mean Square F Prob. > F R2 Adj. R2 Adeq. Precision

MRR
Model 742.06 14 53 45.96 <0.0001 0.9772 0.956 29.68
Total 759.36 29

Residual 17.3 15 1.15
Lack of fit 11.25 10 1.13 0.93 0.5706
Pure error 6.05 5 1.21

KT
Model 79.64 14 5.69 65.39 <0.0001 0.9839 0.9688 29.625
Total 80.95 29

Residual 1.3 15 0.087
Lack of fit 0.72 10 0.072 0.61 0.7637
Pure error 0.59 5 0.12

HAZ
Model 19.66 14 1.4 109.99 <0.0001 0.9904 0.9813 46.155
Total 19.85 29

Residual 0.19 15 0.013
Lack of fit 0.11 10 0.011 0.71 0.6972
Pure error 0.079 5 0.016

Moreover, the normal probability plots shown in Figure 4a–c indicated that the residuals are
dispersed normally, which implies that the proposed models are legitimately accurate and acceptable.
Hence, the established second-order mathematical equations are realistically satisfactory in place of
the PAC process.
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4.2. Fuzzy Modeling of PAC Process Parameters

With a due consideration on four input PAC process variables and three output responses (Figure 5),
thirty fuzzy rules are formulated using the Mamdani approach to build an inter-relationship between
them which is shown in Figure 6. Here, the triangular shape is used as a membership function because
of its advantage of simplicity. Thus, for the four input parameters and their three-membership values,
the number of fuzzy rules formed are 30. From the fuzzy rule viewer, the rows are considered to be the
developed rules and columns signify input and output variables and also the MF values are represented
as the height of triangles. Each triangle location indicates the input and output response and the height
of darkened region of the triangle corresponds to the fuzzy membership value. After performing
the simulation, defuzzified values for MRR of 31.2 g min−1, KT of 7.42◦, and HAZ of 4.11 mm are
obtained for the given input process variables: Cutting speed = 2400 mm min−1, gas pressure = 3.5 bar,
arc current = 50 A, and stand-off distance = 2.5 mm in the 25th experimental run as presented in Table 2.
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Figure 6. Fuzzy rule viewer with a triangular membership function.

Three-dimensional fuzzy plots shown in Figure 7a–f indicate the impact of PAC governing
parameters on MRR, KT, and HAZ. The influence of arc current and gas pressure on MRR shown
in Figure 7a describes that MRR decreases with a rise in gas pressure (3.5 to 4 bar) and it increases with
a surge in arc current from 45 to 55 A. It is due to the fact that a high concentration of plasma energy is
transferred to the workpiece at higher arc current which leads to quick melting and the vapourization
of metal resulted in higher MRR.
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Figure 7b exhibits the variation in MRR as a function of change in cutting speed and stand-off

distance. It is evident that the maximized MRR is obtained at the combination of lower cutting
speed (2200 mm min−1) with a lower stand-off distance (2 mm). Increasing of the cutting speed
and stand-off distance beyond 2400 mm min−1 and 2.5 mm, respectively reduces the removal of
material. At higher cutting speed and stand-off distance, heat energy ejected from the plasma is not
sufficiently transferred to the interaction zone that ensures a low material interaction time and hence
MRR decreases. Microstructural observation (Figure 8a) of the top cut surface reveals that the enlarged
keyhole and higher dross formation is due to the reduction in kinetic energy of plasma at obtrusion
when the cutting speed increases (2600 mm min−1). During lower cutting speed, perpendicular
draglines are formed on the workpiece due to a sudden increase in the arc current. Dross formation
occurs at the bottom edge of the cut surface during high speed cutting and it varies according to the
speed. At low speed, the kerf gets wider and becomes hardened where in the jet it was unable to
flash out the smelted material. However, at high cutting speed, the unstable arc is formed without
an increase in the current [17].

The impact of cutting speed and gas pressure on KT depicted in Figure 7c signifies that, KT becomes
wider with an increase of these parameters, whereas a lower KT is observed at low cutting speed
(2200 mm min−1) and gas pressure (3 bar). Above this cutting speed, the torch travels along the
workpiece at a faster rate to maintain the plasma arc stability. However, it may not be able to remain
perpendicular to the cutting edge causing a wider kerf [8,12]. However, the cut surface is more
consistent and the accurate kerf is obtained during low cutting speed and gas pressure. From the
micrograph of kerf side surface (Figure 8b), a reduced striation pattern with fewer molten pool
adherence and enhanced surface finish is observed [10].
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Figure 7d portrays the discrepancy of KT as a function of the stand-off distance and arc current.
It can be noted that a minimal KT is attained through upholding lower stand-off distance and arc
current, whereas an increase in these parameters caused the widening of KT. At high stand-off distance
and arc current, the uncertainty of plasma arc occurs leading to a lack of expelled energy from the
plasma nozzle. Consequently, an indiscriminate melting and eradication of molten material transpires,
moreover the plasma arc cannot extend the bottom of the sheet metal with the necessary energy density
which results in the increased kerf width [31,32]. Examining the side cut surface conditions through
the SEM analysis (Figure 8c), deep striation lines are observed due to the flow of re-solidified molten
metal at a higher stand-off distance. An increase in the stand-off distance resulted in the long curve of
plasma arc and drag-lines, and the surface waves are formed over the workpiece surface. The same
trending has been found by Salonitis and Vatousianos [10].

The effect of arc current and cutting speed on HAZ is shown in Figure 7e revealing that,
HAZ decreases with an increase in the arc current and cutting speed. A minimal HAZ is obtained
during the combination of higher cutting speed with lower arc current. However, at greater cutting
speed, heat that inflows into the workpiece is reduced which decreases the size of HAZ [10]. Moreover,
an increase in the arc current leads to the penetration of more heat energy into the workpiece causing
a larger HAZ [8].

The cumulative impact of stand-off distance and gas pressure on HAZ is presented in Figure 7f
demonstrating that HAZ decreases with an increase in gas pressure from 3 to 3.5 bar and a further
increase in gas pressure has not affected HAZ. However, an increase in the stand-off distance from 2 to
2.7 mm resulted in a decrease in HAZ and a further increase in the stand-off distance improved the
HAZ. It might be due to the fact that expansion of plasma arc before impingement of the workpiece
during a higher stand-off distance leads to higher HAZ. Subsequently, the morphology of the top cut
surface at high stand-off distance depicted in Figure 8d denotes an improved heat affected region with
oxide inclusions owing to the increased jet diameter. Therefore, it is expected to reduce the stand-off

distance and increase the gas pressure to increase the cut quality [15] by means of decreasing HAZ.

4.3. Assessment of Fuzzy and Response Surface Models

To investigate the prediction accuracy of the developed fuzzy logic and RSM approach, the results
predicted by FL and RSM are validated using statistical methods via investigating the determination of
coefficients (R2) and root-mean-square error (RMSE), using the following relations:

R2 = 1−

n∑
i=1

(
SExp − SPr

)2

n∑
i=1

(
SExp − SPr

)2
(9)

RMSE =

 1
M

m∑
i=1

(
SExp − SPr

)
1
2

(10)

where SExp indicates experimental measured value, SPr specifies fuzzy or RSM predicted value, and M
is the number of experiments performed. The estimated outright fraction of variance and RMSE
values for selected responses using fuzzy and RSM models are presented in Table 4. It is evident
that the assessed RMSE and R2 values using the fuzzy logic approach for MRR, KT, and HAZ are
minimal in comparison to the anticipated RSM values. Therefore, the established fuzzy approach is
efficiently used to predict multi-response characteristics through varying PAC process parameters
without performing experimental studies within the selected bounds of parameters.
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Table 4. Comparison of fuzzy and RSM responses.

Models
MRR KT HAZ

R2 RMSE R2 RMSE R2 RMSE

Fuzzy 0.9961 2.51 0.9996 3.9 0.989 2.95
RSM 0.9673 2.8 0.9782 4.66 0.9625 5.24

The performance validation of developed fuzzy and response surface models with experimental
results for MRR, KT, and HAZ are graphically presented in Figure 9a–f. Figure 9a,b indicates the
comparison between normal probability plots of regression and fuzzy predicted values for MRR,
Figure 9c,d indicates the comparison between normal probability plots of regression and fuzzy
predicted values for KT and Figure 9e,f indicates the comparison between normal probability plots of
regression and fuzzy predicted values for HAZ, respectively. From the figures, it is found that the
fuzzy and RSM predicted values are closely scattered on both sides on a 45◦ inclined line that endorses
the unified capability of the established methods. In addition, the fuzzy algorithm achieved a better
and accurate prediction than the RSM with a high R2 value.
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Moreover, in order to evaluate the accuracy and efficiency of developed models in terms of
predicting MRR, KT, and HAZ, the average prediction error is estimated and calculated using the
following relation:

Avg. prediction error(λ) =
SPr − SExp

SExp
× 100 (11)

The average error observed (Figure 10a–c) between the fuzzy and experimental values are about
0.04% for MRR, 0.48% for KT, and 0.46 for HAZ and between the RSM predicted and experimental
results are about 0.51%, 0.51%, and 0.68% for MRR, KT, and HAZ, respectively.
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Therefore, it is observed that the predicted values by the fuzzy approach was more accurate
than RSM. Due to the low order non-linear behaviour of RSM having a trivial factors region, it is
cumbersome to fit the data over an asymmetrical investigational dominion. Hence, the prediction
ability of the RSM technique declines due to the complexity in the PAC process and the fuzzy approach
exhibits a more accurate prediction that even many experiments are considered for the development of
the fuzzy based model. Though, generation of a fuzzy rule requires experimentation and experience
which lead to high computational time than a response surface model.
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4.4. Sensitivity Analysis

The sensitivity analysis is used to examine the response of PAC variables qualitatively and
quantitatively and also provide ranking through their order of performance. It has significance
in validating the model where efforts are attempted to associate the deliberated output to the
distinguished data [33]. The objective function for this analysis is derived from the fractional derivative
of the function under consideration to the equivalent process variables [34].

The current study aims to investigate the affinity of MRR, KT, and HAZ with reference to diverse
PAC process variables such as cutting speed, gas pressure, arc current, and stand-off distance. The facts
of sensitivity can be inferred by means of a mathematical representation of derivatives. The optimistic
sensitivity of certain process variables for an objective indicates an augmentation in the objective due
to a variation in design parameters, whereas adverse sensitivity indicates the contrary.

Through partially differentiating the equations (Equations (6)–(8)) with respect to four accounted
PAC process variables, sensitivity relationships are established (Equations (12)–(23)). They are further
utilized to predict the variation in response with respect to each process variable:

∂SMRR

∂A
= 0.0623− 0.01205B + 0.005028C− 0.000116A (12)

∂SMRR

∂B
= 3.757− 0.01205A− 4.327D + 8.184B (13)

∂SMRR

∂C
= −29.547 + 0.005028A + 2.041D + 0.2436C (14)

∂SMRR

∂D
= −137.812− 4.327B + 2.041C + 17.208D (15)

∂SKT

∂A
= 0.107− 0.0151B− 0.00108C (16)

∂SKT

∂B
= 45.884− 0.0151A + 0.204C + 3.968D− 8.67B (17)

∂SKT

∂C
= 12.156− 0.001018A + 0.204B− 0.776D− 0.1686C (18)

∂SKT

∂D
= 25.781 + 3.968B− 0.776C (19)

∂SHAZ
∂A

= 0.0341− 0.00198B + 0.00064C− 0.0023D− 0.00023A (20)

∂SHAZ
∂B

= 5.167− 0.00198A− 0.795D (21)

∂SHAZ
∂C

= −4.35 + 0.00064A + 0.274D + 0.044C (22)

∂SHAZ
∂D

= −10.578− 0.0023A− 0.795B + 0.274C + 1.638D (23)

The sensitivity analysis results are presented in Figures 11–13 by solid bars with respect to different
settings of plasma arc cutting as premeditated using the design matrix shown in Table 2. It is observed
from Figure 11 that, MRR is found to be more sensitive to the stand-off distance in comparison to other
process parameters. However, KT is highly sensitive to the gas pressure followed by variation in the
stand-off distance (Figure 12). In particular, the gas pressure is more sensitive in the negative direction
whereas the stand-off distance is sensitive in the positive direction. It signifies that, KT increases with
an increase in the stand-off distance and decreases with an increase in the gas pressure. Figure 13
depicted that HAZ is highly sensitive to the variation in the stand-off distance in a negative sense than
other parameters. The sensitivity analysis results reported in Figures 11–13 exposed that both stand-off
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distance and gas pressure partake an inordinate impact on quality and performance characteristics,
which can be in tune to regulate the superiority of PAC end use components.
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5. Conclusions

Investigations are accomplished to examine the effect of PAC system variables on MRR, KT,
and HAZ through developing a regression and fuzzy logic expert system. The PAC experiments
were planned and conducted using the BBD-RSM approach. Based on mathematical and stochastic
modeling and also experimental analysis, the following conclusions are drawn:

• The ANOVA table reveals that the developed quadratic models for MRR, KT, and HAZ are found
to be adequate with an experimental result within 95% of assurance level to envisage the responses
precisely within the boundaries of considered PAC variables.

• Experimental results showed that MRR improves with an increase in the arc current and stand-off

distance, whereas it significantly decreases with an increase in the cutting speed and gas
pressure. KT is found to be minimal when all the selected parameters are kept at a lower level.
The combination of higher cutting speed and lower arc current with intermediate values of gas
pressure and stand-off distance produced lower HAZ.

• Morphological examination of cut surfaces reveals that, the presence of striation lines,
dross formation, and micro cracks significantly affected the surface quality.

• The average prediction error between the fuzzy and experimental values are 0.04% for MRR,
0.48% for KT, and 0.46 for HAZ, whereas the average error observed between regression models
and experimental results are 0.51%, 0.51%, and 0.68% for MRR, KT, and HAZ, respectively. It is
evident that the fuzzy logic expert system is found to be superior in predicting the responses
in PAC of the Monel 400 alloy.

• The sensitivity analysis results suggested that the stand-off distance (+12 to −25) is the most
sensitive parameter to MRR. The gas pressure (+7 to −8) and stand-off distance (+7 to −5) are more
sensitive to KT, whereas the stand-off distance (−123) is a highly sensitive parameter to HAZ.
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