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Abstract: Different modification methods, such as adding modifiers and pretreating crumb
rubber, have been developed to achieve decent engineering properties and reduce the viscosity
of rubberized bitumen. This study evaluated the influence of the modification methods
on the aging resistance for rubberized bitumen. Two types of crumb rubber—a 40-mesh
crumb rubber and a microwave-pretreated crumb rubber—and two kinds of modifiers—Sasobit
and Trans-polyoctenamer—were selected to prepare rubberized bitumen. The samples were
subjected to a Thin-Film Oven Test for the simulation of the short-term aging condition, while
a Pressure-Aging-Vessel test was used to simulate the long-term aging condition. The indexes
of rubberized bitumen, including softening point, elastic recovery ratio, maximum load, ductility,
fracture energy, phase angle, and dynamic modulus, were tested before and after aging. The result
showed that trans-polyoctenamer displayed the best resistance to short-term aging, while Sasobit
significantly improved the fracture energy of rubberized bitumen after short-term aging. Microwave
pretreated partially destroyed the internal structure of crumb rubber, leading to a decrease of
short-term aging resistance for rubberized bitumen. Compared with short-term aging, the changing
trends of various indexes were basically same, except the discrepancy of properties indexes was
reduced after long-term aging.

Keywords: rubberized bitumen; microwave-pretreated; warm mix additive; trans-polyoctenamer;
aging resistance

1. Introduction

Rubberized bitumen was extensively used in the bitumen pavement because of its excellent
performance [1,2]. It has been proved that crumb rubber (CR) effectively improved the resistance
to the rutting, low temperature and fatigue cracking, and thermal oxygen aging of pavement [3,4].
However, the differences of density and polarity are the main causes for incompatibility between
CR and bitumen, which results in the lack of storage stability. The swelling of CR also leads to an
excessively high viscosity of rubberized bitumen. To resolve the limitation of rubberized bitumen,
different modification methods have been proposed to reduce the incompatibility and high viscosity
of rubberized bitumen [5–10]. Warm mix additives (WMA) and pre-degradation CR were two effect
methods to decrease the high viscosity of rubberized bitumen. Another method is to add reactive
modifiers such as trans-polyoctenamer (TOR), the purpose of which is to improve the compatibility
between CR and bitumen [11]. Previous studies proved that the effects of these methods on the
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compatibility between CR and bitumen were effective, while few studies focused on the aging
resistance for rubberized bitumen prepared with these methods.

To ensure the workability of bituminous mixtures, the mixing and compaction temperatures need
to exceed 160 ◦C, creating the volatilization and light components oxidation (short-term aging (STA)).
The oxidation, steric hardening, and ultraviolet radiation will gradually conduct under the vehicle
loads and environmental impact during the pavement in service (long-term aging (LTA)) [12,13].
The incorporation of CR to bitumen transforms rubberized bitumen to a solid–liquid two-phase system
at high temperature, which significantly complicates the aging process of bitumen [14,15]. The aging
of bitumen, continuous swelling, and the degradation behavior of CR determine the aging process
of rubberized bitumen [16]. Therefore, multiple factors have great influence on the aging resistance
of rubberized bitumen such as aging conditions, CR content, CR particle size, and source of base
bitumen [17]. It has been proved that CR was an efficient modification, which effectively improved the
resistance for the aging process of bitumen [3,18,19]. Lee et al. [12] found that the light components
were earlier absorbed by CR from the bitumen, which helped reduce the rate of asphaltenes formation.
According to the Thermogravimetry-Fourier Transform Infrared test, it has been proved that the CR
could significantly reduce the amount of released volatiles for the bitumen, and this phenomenon could
improve the aging resistance of bitumen [20]. Moreover, the components introduced by the dissolution
of CR can offset the light components volatilization during STA [3]. Wang et al. [13] investigated the
effects of laboratory STA and LTA on the chemistry and rheology of rubberized bitumen, and the
results showed that CR improved the aging resistance of rubberized, which reflected by the decreased
carbonyl and sulfoxide indices. Moreover, they found that a higher CR content could improve the
aging resistance of rubberized bitumen. In addition, carbon black and zinc oxide contained in CR can
also act as an antioxidant to mitigate the aging happening in rubberized bitumen [21].

Excessively high viscosity leads to a higher operating temperature during rubberized bitumen
mixture production, which makes the STA behavior of binders more important. WMA is an effective
way to decrease the viscosity of rubberized bitumen, while due to lower viscosity, the processing and
compaction temperature of bitumen mixtures will decrease significantly [22,23]. Some researchers
indicated that WMA effectively improved the rutting resistance after the aging process, and the
Sasobit-modified mixture showed the highest load cycle among the mixtures [24,25].

It has also been found that enhancing chemical bonding could improve the compatibility of
rubberized bitumen [4–7,9]. Various crosslinking agents have been developed to enhance the interfacial
strength between CR and bitumen, among which TOR reveals efficient modification effect [26–30].
It has been noted that the properties of rubberized bitumen such as elastic recovery, high-temperature
stability, and modulus were improved by the use of TOR [4]. In addition, it also improved aging
resistance effectively [27,31]. However, Liang et al. [7] indicated that TOR-modified rubberized bitumen
hardens obviously because of the aging process.

The state of CR’s vulcanization directly affects the degradation and swelling of CR in bitumen.
Short-term microwave activation can result in the desulfurization and degradation of CR, which
accelerates the reaction course between CR and bitumen. It has been proved that bitumen modified by
microwave pretreatment CR had a lower viscosity [32–35]. Xiaolong Yang [20] determined that CR
modified by microwave activation had a more efficient swelling reaction than CR. The recoverability of
microwave-activated rubberized bitumen was improved after aging [36]. However, the desulfurization
and degradation give rise to the attenuation of CR’s elastic property, which decreased the resistance to
fatigue cracking for rubberized bitumen after aging.

As the most common methods applied in the rubberized bitumen preparation, the author had
evaluated the influence of the modification methods on the physical and rheological properties for
rubberized bitumen in the previous study [11]. The result showed that the modification methods had
significant influences on the rubberized bitumen properties. In consideration of few studies focus on the
influence of different modification methods on the aging property of rubberized bitumen at an identical
preparation process. In this study, six kinds of rubberized bitumen samples were prepared under high
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temperatures and high shear rates. The Thin-Film Oven Test (TFOT) and Pressure-Aging-Vessel (PAV)
test were used to simulate aging conditions. The comparison of various indexes before and after aging
was discussed to evaluate the aging resistance of rubberized bitumen.

2. Objective and Approach

The main objective of this study is to evaluate the influence of different modification methods
on the aging resistance of rubberized bitumen with an identical preparation process. The following
subtasks were implemented to achieve the objective of this study.
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Environmental Protection Technology Co., Ltd., Wuwei, China. A household microwave oven 
(Midea Co. Ltd., Shunde, China) was used to apply microwave radiation to the rubber. The dried and 
dehydrated CR was subjected to microwave oven under a power of 800 W for 150 s. The 
microstructures of CR and pretreated CR are shown in Figure 2. As can be seen from Figure 2, the 
surface of CR is relatively flat and smooth. After microwave irradiation, the surface of CR became 
porous and uneven. This phenomenon can increase the reaction area and promote the swelling of CR 
in bitumen [11]. 

TOR is a solid polymer with a double bond structure that can crosslink the sulfur of the 
asphaltene and the sulfur on the CR’s surface to form a ring and mesh structure composed of chain 
polymers [7]. It was supplied by EVONIK Company and its application rate was 4.5% by weight of 
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The WMA used in this research was Sasobit, which was supplied by Sasol—Wax Co., Ltd., 
Johannesburg, South Africa. The application rate of Sasobit was 1.0% by weight of bitumen. It is a 
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Indexes including softening point, elastic recovery ratio, maximum load, ductility, and fracture
energy were tested before aging, and after STA and LTA to evaluate the physical properties of
rubberized bitumen.
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Dynamic shear rheometer (DSR) tests were conducted on rubberized bitumen samples (before
aging, subjected to TFOT, and subjected to TFOT + PAV) to obtain the indexes including phase
angle and dynamic modulus.

The differences of the indexes before aging, and after STA and LTA were compared and analyzed
to evaluate the effect of the modification methods on the aging resistance of rubberized bitumen.
The flowchart of research steps is presented in Figure 1.
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3. Experimental

3.1. Materials and Samples Preparation

Table 1 presents the physical properties of SK#90 bitumen. CR was supplied by Xinyuda Environmental
Protection Technology Co., Ltd., Wuwei, China. A household microwave oven (Midea Co. Ltd., Shunde,
China) was used to apply microwave radiation to the rubber. The dried and dehydrated CR was subjected
to microwave oven under a power of 800 W for 150 s. The microstructures of CR and pretreated CR
are shown in Figure 2. As can be seen from Figure 2, the surface of CR is relatively flat and smooth.
After microwave irradiation, the surface of CR became porous and uneven. This phenomenon can
increase the reaction area and promote the swelling of CR in bitumen [11].
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Table 1. Physical properties of SK-90# bitumen.

Test Items Unit Results Specification

Penetration (25 ◦C, 100 g, 5 s) 0.1 mm 94.5 T0604
Ductility (15 ◦C, 5 cm/min) cm >150 T0605

Softening point ◦C 45.9 T0606

RTFOT aging
Mass change % +0.4 T0610

Residual ductility (10 ◦C) cm 12 T0605
Residual penetration ratio (25 ◦C) % 57.8 T0604
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TOR is a solid polymer with a double bond structure that can crosslink the sulfur of the asphaltene
and the sulfur on the CR’s surface to form a ring and mesh structure composed of chain polymers [7].
It was supplied by EVONIK Company and its application rate was 4.5% by weight of CR.

The WMA used in this research was Sasobit, which was supplied by Sasol—Wax Co., Ltd.,
Johannesburg, South Africa. The application rate of Sasobit was 1.0% by weight of bitumen. It is a
granular and opaque pellet polymer, which has long chain aliphatic hydrocarbon obtained from coal
gasification [37].

The six rubberized bitumens used in this study adopted the same preparation process. The details
and labels of samples are shown in Table 2. CR and modifiers were gradually added to bitumen
at a certain temperature and blended under high shear condition. The specific processes are given
as follows.

(1) Blend the CR (or pre-treated CR) modifiers with the virgin bitumen previously conditioned at
150 ◦C by a 300 rpm stirring for 30 min.

(2) Shear the blended mixture at 4000 rpm and 200 ◦C for 60 min.
(3) Stir the blended mixture at 300 rpm and 180 ◦C for 60 min.
(4) Condition the prepared rubberized bitumen at 140 ◦C for 30 min.
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Table 2. Details and labels of different rubberized bitumen samples.

Samples Details Labels

Un-modification rubberized bitumen CR: 24% by weight of bitumen URB

Rubberized bitumen modified with TOR CR: 24% by weight of bitumen
TOR: 4.5% by weight of CR RBT

Rubberized bitumen modified with WMA CR: 24% by weight of bitumen
WMA: 1% by weight of bitumen RBS

Rubberized bitumen contained microwave
pretreated CR Pre-treated CR: 24% by weight of bitumen RBM

Rubberized bitumen contained microwave
pretreated CR and WMA

Pre-treated CR: 24% by weight of bitumen
WMA: 1% by weight of bitumen RBMS

Rubberized bitumen contained microwave
pretreated CR and TOR

Pre-treated CR: 24% by weight of bitumen
TOR: 4.5% by weight of CR RBMT

3.2. Aging Methods

The TFOT at 163 ◦C for 5 h was used to simulate the STA of rubberized bitumen during bitumen
mixture mixing, transportation, and paving progress, while the LTA samples were obtained by PAV
tests for 20 h at 100 ◦C and 2.1 MPa [38]. In addition, the samples used in PAV test were aged by TFOT
at 163 ◦C for 5 h first.

3.3. Analysis Methods

The softening point test and elastic recovery test were conducted in accordance with ASTM D36
and ASTM D6084, respectively [39,40]. The recovery test was conducted at 25 ◦C. The force ductility
test (FDT) was conducted at 5 ◦C by using the samples apply for elastic recovery test. The complex
shear modulus (G*) and phase angle (σ) were measured through temperature sweep test and frequency
sweep test in accordance with ASTM D7175 [41]. The details of the experimental settings are shown in
Table 3.

Table 3. Technological tests, normative standards, and details performed on bitumen samples.

Test Standard Details

Softening point ASTM D36 -

Elastic recovery ASTM D6084 Temperature: 25 ◦C

Force-ductility - Temperature: 5 ◦C

Temperature sweep

ASTM D 7175
Plates diameter: 25 mm

Gap: 1 mm

Temperature: 30~80 ◦C
Frequency: 0.1 Hz

Frequency sweep Temperature: 60 ◦C
Frequency: 0.1~10 Hz

4. Results and Analysis

4.1. Physical Properties

4.1.1. Softening Point

The effect of aging on the high-temperature stability of rubberized bitumen can be evaluated with
softening point, which is also suggested to relate to the interaction between CR and bitumen [42].
Figure 3 shows the softening points of different samples before and after STA and LTA. The softening
point of RBT was the highest before the aging process. It has reported that TOR could promote the
distribution of CR, which increased the high-temperature performance of rubberized bitumen [9].
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The unaged RBM showed the lowest softening point, as the microwave destroyed the vulcanization
of CR partially. The softening point of unaged RBS improved slightly compared with unaged
URB. In addition, for all samples, the softening point increased after aging to varying degrees.
Liu [43] indicated that the softening point increment could be an effective index to evaluate the
aging resistance of rubberized bitumen. Rubberized bitumen has a smaller softening point increment
indicating an excellent resistance to the high temperature deformation. It was calculated following the
equations below,

∆T1 = T2 − T1 (1)

∆T2 = T3 − T1 (2)

where T1, T2, and T3 are average softening point before aging, after 5 h TFOT, and after
5 h TFOT + 20 h PAV, respectively.
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Figure 3. Effect of modification methods on the softening point of rubberized bitumen.

The results of softening point increment are shown in Figure 4, in which the RBT was the smallest
among the results of ∆T1, followed by RBS and RB. The rubberized bitumen contained CR with
40-mesh size had a smaller ∆T1 compared with the rubberized bitumen contained CR activated by
microwave. During the STA at 163 ◦C, the swelling reaction and degradation of CR will gradually
advance [36,44]. Therefore, the main reactions happening in STA can be divided into the aging of
bitumen and the swelling and degradation of CR. The microwave irradiation broke down the external
and internal chemical bonds of the CR partially [7,11]. The destruction of chemical bond accelerated
the desulfurization and degradation of CR particles, and the light component in the bitumen absorbed
by the swelling action was released partly. This process weakened the aging resistance of rubberized
bitumen, which resulted in a higher softening point increment of RBM.
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Figure 4. Effect of modification methods on the softening point increment of rubberized bitumen.

According to Figure 4, the softening point increment of rubberized bitumen had a further increase
after LTA. RBM had the highest ∆T2, and RBMT showed the lowest ∆T2 after LTA. Compared with
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URB, the addition of modifiers reduced the softening point increment of rubberized bitumen after
LTA. ∆T2 of URB and RBM was impaired more heavily, indicating there relatively poor performance in
LTA. RBMT and RBMS showed lower ∆T2, and this indicated that the combined effect of microwave
activation and the modifiers had a favorable influence on the LTA.

4.1.2. Elastic Recovery Ratio

Figure 5 presents the effects of STA and LTA on the elastic recovery ratio of different rubberized
bitumens. As can be seen, the elastic recovery ratio decreased obviously after LTA. RBT still had
the highest elastic recovery ratio after STA, while RBM showed the lowest elastic recovery ratio.
This behavior was consistent with the unaged samples. It has been proved that virgin bitumen was
viscous and barely exhibited recovery at 25 ◦C [30]. The presence of CR with higher elasticity endows
the rubberized bitumen with resilience. The STA generally stiffened the bitumen because of the
components and the volatilization of light fractions [3]. The hardened bitumen made the CR particles
face a greater resistance when its recover.
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Figure 5. Effect of modification methods on the elastic recovery ratio of rubberized bitumen.

After LTA, the elastic recovery ratio of different rubberized bitumens decreased consistently.
However, the magnitude of the decline was significantly reduced. It was because LTA conditions had
a weak effect on the elasticity of CR particles. RBT had the highest elastic recovery ratio after LTA.
TOR can effectively enhance the incorporation between CR and bitumen, and it stimulated rubberized
bitumen to form an elastic structure. RBS had a similar elastic recovery ratio with URB whether it was
unaged binder or after STA and LTA, which may be attributable to limit interaction between Sasobit
and CR.

4.1.3. Force Ductility

Numerous studies have asserted that the cohesive strength of polymer-modified bitumen could be
evaluated by FDT effectively [3,45,46]. The typical force–ductility curve of rubberized bitumen is shown
in Figure 6. One of the biggest differences between rubberized bitumen and other binders is that it will
present two yielding points in the force–ductility curve of rubberized bitumen. This phenomenon is
associated with the elastic recovery ability of CR [3,47]. It can be seen that the force and ductility show
a linear relationship until the maximum load (Fmax) is attained. In this region, the force is determined
by the cohesive strength of bitumen (Figure 6A) [45,48]. The force declines after reaching Fmax, and
this phenomenon is due to the flow of bitumen and slight deformation of CR (Figure 6B). Thereafter,
the deformation of CR reaches a certain level, and the resilience of CR reacts to bitumen, resulting
in a slight increase in force (Figure 6C) [46,49]. Eventually, the bitumen was fractured and reached
failure ductility (Figure 6D). Indexes including Fmax, ductility, and fracture energy (W) were analyzed
to evaluate the cohesive strength of rubberized bitumen.
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Figure 6. The force–ductility curve of rubberized bitumen.

The Fmax and ductility of rubberized bitumen before and after aging are shown in Figures 7 and 8.
For the unaged rubberized bitumen, the ductility of RBM was largest and its Fmax was the lowest.
This can be attributed to the desulfurization and depolymerization of CR, which can generate light
components and modify the ductility of the binder. The ductility of RBT was the lowest and its Fmax

was the highest. TOR had limited effect on the desulfurization and depolymerization of CR, and its
main function was to link the CR surface and binders. The ductility of RBS was close to URB, and
the difference was 5.5 mm. Sasobit primarily modified the molecular structure of free bitumen at
high temperature, and the influence on the flexibility of rubberized bitumen at low temperature was
influenced by the properties of CR and its reaction process with bitumen [11].
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Figure 8. Effect of modification methods on the ductility of rubberized bitumen.

After STA, the Fmax of different rubberized bitumens increased to various degrees. However, the
ductility of different rubberized bitumens had no consistent trend with Fmax. The ductility of RBM and
RBMS decreased after STA, and the others tended to increase. This phenomenon may be explained
by the swelling and degradation of CR in aging process. Swelling can excite the elasticity of CR,
while the degradation of CR can supplement the light component volatilized in the aging process.
The constituents of matrix bitumen are volatilized and reconstituted during STA, which led to the
stiffness of bitumen. Fmax was mainly affected by the hardness of the bitumen.

It also can be seen from Figures 7 and 8 that Fmax of different rubberized bitumens increased and
their ductility decreased after LTA. LTA transforms the bitumen into a stiffer binder. Therefore, the
variation tendency of the Fmax and ductility of rubberized bitumen was opposite. In addition, it was
interesting that the results of ductility had only a small difference. The Fmax of rubberized bitumen
contained microwave activation; CR had a more obvious increase compared with that of rubberized
bitumen containing untreated CR.

Figure 9 presents the W of rubberized bitumens. The inconsistency of W is associated with the
swelling and disintegration of CR, and the aging stages of bitumen [3]. As shown in Figure 9, besides
RBM, the W of rubberized bitumens increased after STA. Further, all samples had enhanced W after
LTA compared with unaged binders. After STA, RBT and RBS showed a higher W and RBM showed
the lowest W. After LTA, RBM showed a lower W than URB. Compared with the results of W after
STA, the W of rubberized bitumens increased after LTA, except URB.
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4.2. Rheological Properties

4.2.1. Temperature Sweep Test

The temperature sweep test of rubberized bitumen before and after aging was tested by DSR.
According to Figure 10, the phase angles of the unaged binders decreased slightly before the temperature
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at 50 ◦C, and then increased with the temperature rising. From Figure 10d, after STA, the phase angle
curves presented a same trend with the unaged samples. However, the difference between the phase
angle curves was reduced. Moreover, the rising slope of the curve slowed down. In Figure 10f, phase
angle generally increased with the temperature rising after LTA, and a plateau existed in the phase
angle curves. The difference between the phase angle curves further decreased.Materials 2020, 11, x FOR PEER REVIEW  10 of 16 
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Figure 10. Effect of modification methods on the complex modulus and phase angles of rubberized
bitumen depends on temperature sweep test.

For the unaged rubberized bitumen, the binders modified by TOR had a smaller phase angle
than others. RBM shown the largest phase angle, which could be explained by the degradation and
desulfurization of CR. RBS shown a lower phase angle than URB, but the extent of the improvement
was insignificant.

After STA, RBT, and RBMT still maintained small phase angles, but the difference between them
increased. RBS had a lower phase angle than URB from 30 ◦C to 65 ◦C, but when the temperature
beyond 65 ◦C, the phase angle of RBS was gradually larger than URB. This phenomenon may relate to
the change of rheological property of Sasobit with temperature.

After LTA, RBT displayed the lowest phase angle and RBM showed the highest, but the difference
between them significantly reduced. In Figure 10a,c,e, the regularity of difference of G* between six
binders was basically uniform and consistent with the phase angle. As anticipated, RBT and RBM
displayed the highest and lowest G* respectively before and after aging.

4.2.2. Frequency Sweep Test

As indicated in Figure 11, the phase angles declined smoothly while frequency rose for the unaged
binders and binders suffered from STA and LTA, which was mainly because of the existence of CR [50].
It can be observed in Figure 10b that the phase angle of RBT was the lowest and that of RBM was the
largest; the orderliness was consistent with the temperature sweep test.
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Figure 11. Effect of modification methods on the complex modulus and phase angles of rubberized
bitumen depends on frequency sweep test.

Figure 11c,d presents the phase angles and G* of rubberized bitumen after STA. RBT and RBMT
showed lower phase angles than others, and RBT was the lowest. This demonstrated that in the
frequency sweep test, TOR has a relatively massive impact on the rheological property after STA. RBM
showed the highest phase angle and the lowest G* compared with others. This demonstrated that
microwave activation has an adverse effect on the high temperature rheological property after STA.

Figure 11e,f shows the results of phase angle and G* of rubberized bitumen after LTA. It can be
seen that at low frequency, the difference of phase angles between different rubberized bitumen was
evident, but with the frequency increasing, it was gradually decreasing.

From Figure 11a,c,e, it can be seen that the G* of rubberized bitumen increased as the frequency
increased and that it showed the linear dependence of G* with the frequency in the double
logarithmic coordinates.

5. Conclusions

The main objective of this paper is to evaluate the influence of different modification methods
on the aging resistance of rubberized bitumen at an identical preparation process. The preliminary
findings are concluded as follows.

(1) TOR and Sasobit improved the high-temperature stability and elastic recoverability of rubberized
bitumen, but the effect of Sasobit was barely noticeable. However, microwave-activated rubberized
bitumen had an adverse effect on these properties.

(2) STA had a significant effect on the high-temperature stability and elastic recoverability of
rubberized bitumen. The TOR-modified rubberized bitumen showed the best aging resistance
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among the six rubberized bitumens. The CR activated by microwave has worse aging resistance
compared with other modification methods. From the temperature sweep test and frequency
sweep test, it can be seen that compared with unaged binders, the difference between the
rheological properties of various rubberized bitumen after STA was reduced.

(3) Among various modification methods, TOR modifier showed the best aging resistance to LTA,
while microwave activation resulted in a weaker aging resistance due to the cracking of CR. From
the temperature sweep test and frequency sweep test, it can be seen that the difference between
the rheological properties of various bitumen after LTA was further reduced.

(4) This study evaluated the influence of the modification methods on the aging resistance for
rubberized bitumen by analyzing the difference in its properties before and after aging. Future
research is suggested to investigate the mechanism of different modification methods before and
after aging.
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