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Abstract: This paper presents research dealing with the evaluation of the efficiency of concrete repairs
with polymer-cement mortars made at low temperatures with two types of cement and modified by
copolymer acrylic-styrene. The low temperature used for the tests, of about 8 ◦C, is representative for
Central Europe, and was established based on the analysis of mean temperatures in Poland during
the last 45 years. A comparative analysis of the basic properties of the mortar tested, important
from the point of view of repair efficiency, was performed, i.e., flexural and compressive strength,
modulus of elasticity, adhesion to the substrate, and porosity for mortars applied and cured at 8 ◦C
and 21◦, respectively. The studies were conducted using standard methods and supported with an
assessment of microscopic images (1000×magnification). It was shown that when the temperature
of polymer-cement composite (PCC) mortar application is lowered to values slightly exceeding the
minimum film-forming temperature (MFT) temperature of the polymer modifier, the type of cement
determines the effectiveness of the repair. Only for PCC mortar with CEM I sulfate-resistant types of
cement was it possible to achieve the same strength parameters as at 21 ◦C, during 28 days of mortar
curing, and at a lowered temperature. Starting from day seven of setting at both above-mentioned
temperatures, a relation between the values of the flexural and compressive strength expressed as a
quotient of these values, amounting to ca. 0.14–0.19, was found.

Keywords: polymer-cement repair mortars; curing temperature; flexural and compressive strength

1. Introduction

In Central Europe it has gradually become more common to do outdoor construction works
at temperatures lower than 10 ◦C, due to the need to construct complex structures in a fairly short
time. When the mean ambient temperature is lower than +10 ◦C for at least three subsequent days,
special requirements apply to the execution of concrete works. The temperature of +5 ◦C is regarded
as the boundary temperature below which the concrete mix shall be protected from heat loss [1–6].
The literature describes numerous cases of doing works in such temperature conditions, including the
cases showing negative effects of such operations [7–10]. Some of the most common repair concretes
and mortars are polymer-cement composites (PCC), and they are also used for repairs of concrete
constructions at temperatures below 10 ◦C.

Polymer-cement composites are obtained by adding polymer, oligomer, or monomer to the
concrete mix. After curing, the polymer and cement act as a co-binder. The amount of polymer
admixtures ≤5% of the cement mass is usually insufficient for creating the separate continuous phase
in the hardened concrete mix, while the polymer additives >5% of the cement mass can form such
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an additional, continuous network [11]. The mentioned value is not specified in the standard [12], in
which polymer in polymer-cement mortar or concrete is defined as “an amount appropriate to impart
specific properties”. Polymer can be added to cement mix in the form of water dispersion, redundant
powder, water solution, and also as a liquid synthetic resin [11,13]. According to the chemical reactivity
of the modifier, the PCC mortars can be categorized as:

• PCC–post mix: in which the polymerization runs simultaneously with the hydration of cement,
• PCC–pre mix: additives polymerized before mixing and their modifying action has a mainly

physical character.

In the first type there are chemosetting synthetic resins (e.g., epoxies), or suitable monomers or
pre-polymers. The second type consists of chemically inactive polymers, e.g., styrene-butadiene latex.
Polymer modified cement composites have higher values of: flexural and tensile strength, adhesion,
and more favorable barrier properties [11,13,14].

Table 1 presents a comparison of selected properties of polymer-cement concretes, polymer
concretes (cementless), and cement concretes.

Table 1. Comparison of selected properties of polymer-cement concretes (PCC), polymer concretes
(PC), and Portland cement concretes [11].

Properties Cement Concrete PCC PC

Density, kg/m3 2200–2400 1800–2200 1850–2400
Compressive strength, MPa 15–60 20–75 40–150

Flexural strength, MPa 1.1–7.2 2.5–20 4–55
Tensile strength, MPa 0.6–3.0 4–9 4–20

Modulus of elasticity, GPa 15–30 10–25 7–45

The engineering literature widely analyses the durability of polymer-cement products,
e.g., by analyzing the basic relationships concerning polymer-cement materials in the relation:
composition–microstructure–properties–application [15,16]. Well known and widely described in
the literature is the PCC pre-mix model of setting developed by A. Beeldens et. al. [17]. The setting
of the polymer-cement mixes in the case of PCC-premix consists in two processes, hydration of
cement, and formation of continuous polymer film (coalescence), resulting from “consumption” of
water by the cement and its partial evaporation [18]. A model is also known of forming a composite
microstructure with a post-mix modifier (polymerizing after being added to the concrete mix, studied
by Łukowski [19–21]), which revealed that the properties of polymer-cement composites greatly
depend on the curing conditions. The quoted model is complementary to the model concerning
composites with pre-mix modifiers. In the case of PCC-postmix, an additional chemical reaction
between the resin and amine hardener takes place, leading to spatial crosslinking of the polymer. The
hydration and coalescence are competitive processes. Premature formation of the polymer film hinders
or even precludes the cement hydration. The kinetics of those processes should be adjusted in such
way that the hydration precedes the coalescence.

The water included in the polymer dispersion is always taken into account while establishing
the water-cement ratio, w/c, of the PCC mixes. It was proven that conclusions about the influence
of polymer addition on the composite properties could be drawn based on the polymer content and
type, which means that reasonable designing of polymer-cement composite materials is possible.
As a result of the above described processes, the polymer-cement microstructure is formed with two
interpenetrating nets: the polymer and the cement. The efficiency of modification of the concrete using
thermoplastic polymer (PCC-premix) is dependent mainly on two polymer properties:

• minimum film-forming temperature, (MFT): a minimum temperature, above which the dispersed
polymer particles can form the continuous film,
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• glass transition temperature, (Tg), i.e., the temperature of transition of the polymer from elastic
state into the glass state.

Therefore, MFT should be lower than use temperature of the PCC. However, in some cases
satisfactory results are also obtained with a relatively high value of MFT, e.g., for SAE (styrene—acrylic
co-polymer) this temperature is 20–30 ◦C. This phenomenon is usually explained by a possible lowering
of MFT in the alkaline environment of the cement paste [22]. Moreover, the polymers with a higher
Tg usually have a higher mechanical strength [23]. The formation of the polymer-cement matrix is
more complicated in the case of PCC-postmix; the formation of the polymer film is accompanied by
the chemical reaction of polymer crosslinking. In practice, only epoxy resins are used here. During the
last decade, research has been conducted to significantly lower the MFT temperature compared to the
values given in Table 2, especially in the case of acrylic-styrene copolymers, even down to 3 ◦C.

Table 2. Examples of values of minimum film-forming temperature (MFT) and glass transition
temperature (Tg) of the polymers [21].

Polymer MFT, ◦C Tg, ◦C

SAE 20 ± 30 10 ± 20
SBR 5 10

PVAc 5 30
EVA 0 ± 10 −10 ± 15
PVA 0 ± 20 80 ± 145

PAE Dependently on the substituent,
e.g., polymethyl methacrylate (PMMA): 10

Dependently on the substituent,
e.g., polymethyl methacrylate (PMMA): 105

PVP 15 ± 30 10

Specific examples of repairs with PCC repair materials have been presented [24–29], but they
are usually done without assessment of the works influence on the repair durability. Furthermore,
besides the facts concerning conducting concrete works at lowered temperatures, another problem is
related to sudden temperature drops during the 28-day curing period, which can result in the repair
being ineffective or in the reduction of the designed life. Lower temperature during application of
repair materials, especially PCC mortars can effect a repair efficiency by a decrease of the mechanical
properties of mortar, and a decrease of adhesion between mortar and concrete substrate. In the first
results of tests concerning the flexural and compressive strength of repairing mortars at the temperature
of 8 ◦C, discussed in previous publications [30], it was shown at which point of the mortar curing the
temperature decrease contributes most to the loss in its strength.

The aim of the study presented in this paper was to evaluate the effectiveness of polymer-cement
repair mortars at temperatures occurring during repair works or mortar setting in lowered temperature,
with particular emphasis on the effect of low temperatures on the properties of PCC repair mortars
modified by acrylic-styrene copolymer with reduced MFT temperature up to 3 ◦C, and containing
different cements, i.e., CEM I and CEM I sulphate resistant. A minimum temperature of 8◦ C was
assumed in the study, after the analysis of average temperatures occurring in spring and autumn in five
selected regions in Central Europe, from the period of 45 years. The basic properties of selected PCC
mortars, important from the point of view of repair efficiency, i.e., flexural and compressive strength,
modulus of elasticity, adhesion to the substrate, and porosity were determined. The evaluation of the
effectiveness of the repair performed with polymer-cement mortars at a temperature reduced to 8 ◦C
was carried out, taking into account the results of parallel tests on reference samples, made and cured
throughout the entire setting period at a standard temperature, i.e., (21 ± 2) ◦C.
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2. Materials and Methods

2.1. Materials

The research was carried for two repair PCC mortars containing different cements, i.e., CEM I and
CEM I sulphate resistant, in both cases modified with the same acrylic-styrene copolymer with a MFT
of 3 ◦C. The selection of repair mortars used in the tests was followed by a review of the materials
produced, which confirmed that CEM I cement, with possible modifications, is mainly used for the
production of repair mortars. Following the initial screening tests for different repair materials in the
same group of materials, two types of PCC repair mortars, with CEM I cement and CEM I cement
sulfate resistant, were selected for further research. In both tested mortars the same polymer was used,
i.e., acrylic-styrene copolymer with a MFT of 3◦ C, but in a different amount in relation to the cement
mass, i.e., p/c = 8.3% and p/c = 7.1% for Mortar I and Mortar II respectively. The characteristics of the
PCC mortars were as follows:

• Mortar I–ingredients: CEM I cement (30.00%), quartz sand with a grain size of 0.1–2.0 mm (67.30%),
deaerating agent (0.15%), polymer powder (2.50%), and polypropylene fibers (0.05%); mixed with
water at 1 (mortar) to 0.132 (water) ratio.

• Mortar II-ingredients: CEM I sulphate resistant cement (28.00%), quartz sand with a grain size
of 0.1–2.0 mm (67.15%), deaerating agent (0.15%), polymer powder (2.00), polypropylene fibers
(0.15%), microsilica (2.50%), aerating agent (0.03%), and thickening agent (0.02%); mixed with
water at 1 (mortar) to 0.15 (water) ratio.

The basic identification characteristics of the tested PCC mortars are shown in Table 3.

Table 3. Basic identification characteristics of the tested PCC repair mortars.

Product Characteristic Mortar I Mortar II

Grain size [mm] ≤2 ≤2
Content of chloride ions [%] ≤0.05 ≤0.05

Bulk density, g/cm3 1.61 1.50
Volumetric density of fresh mortar, g/cm3 2.18 2.08
Volumetric density of cured mortar g/cm3 2.20 2.18

The above repair mortars should be applied with adhesion layers. In both cases, these adhesion
layers were PCC mortars of the same ingredients but different in the cement type used. An adhesion
layer with CEM I cement was used for Mortar I, and a adhesion layer with CEM I sulphate resistant
cement for Mortar II. Other ingredients of the adhesion layers were: quartz sand with a grain size of
0.1–0.5 mm, microsilica, deaerating agent, thickening agent, polymer powder (the same as in Mortar I
and II), and corrosion inhibitor.

The basic properties responsible for the repair efficiency, i.e., flexural and compressive strength,
modulus of elasticity, adhesion to the substrate, and porosity were determined. A detailed analysis of
increase rate of the compressive and flexural strength of mortar applied and cured at 8 ◦C in comparison
to the increase rate of the values for products cured during the entire setting period at 21 ◦C was
undertaken. The requirements of the mortars were checked after 28 setting days. The examinations of
increase in the flexural and compressive strength were done after 1, 2, 3, 7, 14, 21, and 28 days of curing
in two temperatures, i.e., 8 ◦C and 21 ◦C, and additionally after 42 days only in 8 ◦C. The examination
after 42 days was aimed to determine if at a longer curing period the mortar made and cured at a lower
temperature would reach the same strength as the value of 28 day’s strength for the product cured at
21 ◦C. The evaluation of the effectiveness of the repair performed with polymer-cement mortars at
a temperature reduced to 8 ◦C was possible thanks to parallel tests on reference samples, made and
cured throughout the entire setting period at standard temperature, i.e., (21 ± 2) ◦C.

The test samples were prepared from both mortars at 8 ◦C and 21 ◦C. The samples were prepared
in the following way:
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• samples cured at (21 ± 2) ◦C and (60 ± 10)% RH (relative humidity), after being put in the molds
and/or applied on concrete substrates were left in these conditions until reaching the required
curing time. After 24 h, all samples were removed from the molds and covered with foil for the
next 48 h.

• samples cured at a lowered temperature before making the mortars, the ingredients, and molds
were stored at 8 ◦C for at least 72 h. The mortars were mixed with water in laboratory conditions,
i.e., at (21 ± 2) ◦C and (60 ± 10)% RH, put in beam molds and/or applied on concrete substrates
and immediately moved to a climatic chamber with a temperature of (8 ± 1) ◦C and (90 ± 10)%
RH (Figure 1). After 24 h all samples were removed from the molds and covered with foil for the
next 48 h.
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2.2. Curing Conditions of PCC Mortars Samples

Concrete constructions should be repaired with polymer-cement mortars at the recommended
temperature values, ranging from 5 ◦C to 30 ◦C. These values refer both to the application and curing
of polymer-cement mortars. One should remember that despite the above-mentioned performance
range of the reference products, their strength characteristics are usually determined, according to
standard requirements [11], in tests carried out at (21 ± 2) ◦C, which means the upper, optimum
values of the above-mentioned operating range. Since the temperature range is extensive, before the
assessment of the effectiveness of repairs done at lowered temperatures, the lowest mean temperature
was established occurring in the majority of the territory of Poland in spring and autumn when repair
works can already be or are still done; the obtained value was regarded as representative for the Central
European area, as well as other countries worldwide. The analyses did not include the winter period
because it was assumed that such works should not be carried out in winter due to the characteristics
of the repair materials. From the conducted analyzes of temperature condition it was found that the
average temperatures above 5 ◦C occur in the period from April to October, and for these months the
average temperature for 5 selected measuring points in Poland (every point from different geographic
regions, i.e., one from: central, west, east, north, and south) was 8 ◦C (Figure 2). Such a temperature
value was adopted for the research assumptions. The value of relative humidity at the temperature of
8 ◦C was adopted in accordance with [30,31] for the stated average value of the daily course of water
vapor pressure in spring and autumn, recorded in the climatic region of Central Europe at the level of
8.0 hPa to 12 hPa. This value, with reference to the maximum water vapor pressure at 8 ◦C, according
to EN ISO 13788 [32] corresponds to a relative humidity of 90 ± 10%.
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2.3. Methods of Tests

2.3.1. Flexural and Compressive Strength Testing

The flexural and compressive strength was tested according to EN 196-1 [33], for assessing the
stability of the characteristics of mortars cured at a lowered temperature. The tests were carried out
for both mortars after 1, 2, 3, 7, 14, 21, and 28 days of the samples cured at the temperature and
RH values of (8 ± 1) ◦C/(90 ± 10)%, respectively, and (21 ± 2) ◦C/(60 ± 10)% after 1, 2, 3, 7, 14, 21,
and 28 days of curing, on six samples in each case used for flexural strength tests and twelve for
compressive strength tests. The additional test after 42 days of curing was aimed to check whether the
mortars cured at a lowered temperature are capable of reaching the same strength as when curing at
standard temperatures, but for a longer time. The tests after 42 days on mortars cured at (8 ± 1) ◦C and
(90 ± 10)% RH were also performed on respectively: six samples, for flexural strength tests, and twelve
for compressive strength tests. The test was carried out on a CONTROLS testing strength machine
with a maximum load of 3000 kN.

2.3.2. Adhesion Test

The adhesion test was carried out in accordance with the EN 1542: 2000 [34] standard. The samples
were made in the same way as described in point 2.1, additionally using an adhesion layer (application
of the adhesion layer by intensive rubbing into a mat-damp substrate, followed by application of
a repair mortar using the “wet on wet” method), and then stored for 28 days at temperatures and
relative humidity of (8 ± 1) ◦C/(90 ± 10% and (21 ± 2) ◦C/(60 ± 10)%, respectively. After conditioning,
10 determinations were made for each mortar. The incisions and the sticking of the measuring stamps
were made on the day preceding the tests. The test was performed with a DY-216 pull-off tester
(Manufacturer-Proceq, maximum breaking force-16 kN, measuring range 0.5–16 kN).

2.3.3. Modulus of Elasticity

The test of the modulus of elasticity under compression was performed according to EN 13412 [35].
For both mortars, the tests were performed after 28 days of maturing the samples at temperatures and
relative humidity of (8 ± 1) ◦C/(90 ± 10)% and (21 ± 2) ◦C/(60 ± 10)%, respectively, on three samples in
each case. The test was performed on a CONTROLS strength testing machine.
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2.3.4. Examination of Pore Distribution by Mercury Porosimetry

The pore distribution was done with the use of a mercury porosimeter by Quantachrome
Instruments 1900 Corporate Drive Boyn model PM608, on cylindrical samples with a base diameter
of about 2 cm. The rollers were cut from plates with dimensions of approx. 130 × 160 × 40 mm
prepared as described in point 2.1 after 2 days of maturing at temperatures and relative humidity of
(8 ± 1) ◦C/(90 ± 10)% and (21 ± 2) ◦C/(60 ± 10)%, respectively, followed by further maturation under
the same conditions. After 28 days from forming, the samples were placed in anhydrous ethyl alcohol
99.8%, and then under reduced pressure (6 kPa) for approx. 4 h, in order to stop hydration until the test
was performed. Before the pore distribution measurements were carried out, the samples were dried
at 40 ◦C for 24 h and then stored for 4 h under reduced pressure (2 kPa) at the laboratory temperature.
For each mortar, the test was carried out on 3 samples.

2.3.5. Microstructure Examination

The microstructure was examined with a scanning electron microscope from JEOL 35 JSM, 1000×
magnification, on cylindrical samples with the base diameter of ca. 2 cm. The cylinders were cut out
from a beam prepared according to the description in item 2.1 after two days of curing the samples,
and then they were divided into two groups. The first group of samples was stored for 4 h in a
lowered pressure conditions (4.5 kPa), and then in lowered pressure conditions in anhydrous 99.8%
ethyl alcohol. The total time of storing under reduced pressure conditions was 4 h. This was meant
to stop hydration until performing the test. The other group of samples were cured for 28 days at
8 ◦C and 21 ◦C, respectively, and were then subjected to the same procedure as the samples cured for
two days. Immediately before the test, the samples were removed from the alcohol and conditioned
under reduced pressure conditions (2 kPa) for about 4 h. Then the samples were fractured, and the
fractures were sprayed with gold for better picture contrast.

3. Results

This paragraph presents the results of the research which was done to determine the usability of
two PCC repair mortars cured at temperature 8 ◦C and at the standardized laboratory temperature,
i.e., (21 ± 2) ◦C, typically used for evaluating the performance of the reference products. The main
properties influencing the efficiency of the repair mortars are given in Table 4.

Table 4. The main properties of the tested repair mortars after curing in two temperatures: 8 ◦C and
21 ◦C.

Properties Average Value after 28 days of Curing/Coefficient of Variation [%]

8 ◦C 21 ◦C 8 ◦C 21 ◦C
Mortar I Mortar II

Compressive strength, MPa 44.2 (2.73) 58.1 (1.73) 46.8 (1.84) 52.4 (1.43)
Flexural strength, MPa 7.4 (0.92) 9.8 (0.93) 7.0 (1.56) 7.8 (0.77)

Adhesion strength/main failure mode, MPa 1.59 (4.32)/B * 2.51 (3.67)/B * 1.67 (4.66)/B * 2.03 (4.32)/B *
Modulus of elasticity, GPa 24.4 (1.42) 27.5 (3.74) 23.5 (4.83) 25.4 (2.46)

Total porosity, % 19.5 (1.85) 17.6 (2.15) 23.0 (1.74) 20.5 (7.93)

* B–cohesion failure in the adhesion layer.

The results of compressive strength tests for PCC Mortar I and PCC Mortar II cured at 8 ◦C and
21 ◦C after 1, 2, 3, 7, 14, 21, and 28 days of curing are shown in Table 5, and the results of the flexural
strength for the evaluation ranges mentioned above are shown in Table 6. Moreover, Tables 5 and 6
show the compressive and flexural strength, respectively, for mortars cured at 8 ◦C after 42 days.
Additionally to the given average value, the tables show the coefficient of variation. Figures 3 and 4
show the dynamics of changes in compressive and bending strength, respectively, for mortars curing
at temperatures 8 ◦C and 21 ◦C.
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Table 5. Average value of compressive strength and coefficient of variation of mortars cured at 8 ◦C
and 21 ◦C, following subsequent curing periods.

Curing Time [Days] Average Value of Compressive Strength [MPa]/Coefficient of Variation [%]

8 ◦C 21 ◦C 8 ◦C 21 ◦C
Mortar I Mortar II

1 3.7 (2.85) 21.2 (3.95) 4.5 (6.01) 23.4 (1.19)
2 18.1 (1.99) 32.1 (2.22) 17.2 (3.38) 35.5 (1.57)
3 26.7 (1.22) 34.3 (1.32) 22.0 (2.39) 36.7 (1.06)
7 32.5 (3.94) 48.3 (1.53) 27.6 (1.94) 38.6 (1.39)

14 39.4 (2.14) 51.5 (1.76) 30.7 (3.21) 41.8 (2.36)
21 41.7 (2.93) 54.5 (1.44) 38.3 (2.99) 46.4 (1.35)
28 44.2 (2.73) 58.1 (1.73) 46.8 (1.84) 52.4 (1.43)
42 48.7 (1.79) - 51.7 (1.17) -

Table 6. Average value of flexural strength and coefficient of variation of mortars cured at 8 ◦C and
21 ◦C, following subsequent curing periods.

Curing Time [Days] Average Value of Flexural Strength [MPa]/Coefficient of Variation [%]

8 ◦C 21 ◦C 8 ◦C 21 ◦C
Mortar I Mortar II

1 1.3 (4.77) 4.6 (1.28) 1.3 (4.17) 4.8 (1.92)
2 3.8 (2.59) 5.2 (1.64) 3.7 (1.49) 5.1 (1.28)
3 5.3 (0.76) 5.9 (1.03) 4.3 (1.12) 5.7 (1.09)
7 5.9 (1.40) 7.9 (1.19) 5.1 (2.16) 6.6 (0.94)

14 7.6 (0.77) 9.0 (1.20) 5.8 (0.75) 7.5 (1.06)
21 7.5 (0.79) 9.3 (1.89) 6.3 (1.18) 7.5 (0.76)
28 7.4 (0.92) 9.8 (0.93) 7.0 (1.56) 7.8 (0.77)
42 7.5 (1.44) - 7.0 (1.81) -
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Figures 5 and 6 show the microscopic images of fracture surfaces of PCC mortar I and PCC mortar
II samples cured at 21 ◦C and 8 ◦C, after 2 and 28 days of setting, respectively.
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Figure 6. SEM image of fracture of mortar II sample cured at 21 ◦C ((a)–after two days of curing,
(b)–after 28 days of curing) and 8 ◦C ((c)–after two days of curing, (d)–after 28 days of curing);
1000×magnification.

4. Discussion

The obtained results of the basic properties of two polymer-cement repair mortars confirm an
influence of cement type on the effectiveness of the repair mortar when applied and cured at a lower
temperature compared to the standard laboratory temperature, i.e., at 8 ◦C instead of 21 ◦C. The first
mortar had in its composition CEM I cement, the second one had CEM I sulfate resistant cement.
In both repair mortars, the same acrylic-styrene copolymer was used in a similar amount to the cement
weight, i.e., in the case of mortar I–8.3%, in the case of mortar II–7.1%. Polymer used in tested mortars
has the MFT temperature of 3 ◦C. The tests’ temperature was 8 ◦C which was higher than 3 ◦C so,
according to the literature data [21], the particles of dispersed polymer at this temperature should
already form a continuous polymer film. In both examined cases, the polymer film is not visible in
Figures 4 and 5, but this can be explained by the insufficient magnification of the microstructure images.
However, in some cases satisfactory results are also obtained with relatively high value of MFT, e.g., for
SAE this temperature is 20–30 ◦C. This phenomenon is usually explained by a possible lowering of
MFT in the alkaline environment of the cement paste [13,22]. The results of total porosity [%] after
28 days of curing at temperatures of 8 ◦C and 21 ◦C for both PCC mortars indicated that the decrease
of curing temperature to 8 ◦C causes an increase of total porosity of about only 2%. Analyzing the
influence of the type of used cement on the effectiveness of repair mortars, it is clear that only CEM I
sulphate-resistant cement allows obtaining similar properties for repair mortar setting at a temperature
of 8 ◦C compared to the values obtained at 21 ◦C. Both the modulus of elasticity (Figure 7) and adhesion
to the substrate after 28 days of setting (Figure 8) are at a similar level (modulus of elasticity: 23.5 GPa
and 25.4 GPa, adhesion 1.67 MPa and 2.03 MPa). It is true that in the case of the elasticity modulus
at the temperature of 8 ◦C, a greater variation of the results was obtained than at the temperature of
21 ◦C, which is visible in the higher value of the coefficient of variation, but it can be explained by more
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difficult temperature conditions during setting, which results in lower reproducibility of the obtained
intermediate values.Materials 2020, 13, x FOR PEER REVIEW 11 of 16 
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Figure 7. Differences in the values of the elasticity modulus for PCC mortars curing at two temperatures:
8 ◦C and 21 ◦C.
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Figure 8. Differences in adhesion of PCC mortars curing in two temperatures: 8 ◦C and 21 ◦C.

In the adhesion test, there was a cohesive failure in the adhesion layer for both tested mortars.
With regard to the value of adhesion for mortar I, the coefficient of variation at both temperatures is
similar. Unfortunately, in the case of the repair mortar with cement CEM I, big variations were found
both in the values obtained at the temperature of 8 ◦C and at 21 ◦C in the entire analyzed test range,
i.e., smaller in relation to the elasticity modulus (24.4 GPa and 27.5 GPa, respectively), but significant
in terms of adhesion (1.59 MPa and 2.51 MPa).

Since adhesion is one of the basic properties that determine the repair efficiency, in the case of a
PCC Mortar I with cement CEM I, one may have doubts as to its effectiveness at temperatures of 8 ◦C,
despite the fact that the MFT temperature of the applied polymer is 5 ◦C lower than execution and
curing temperature.

Similar conclusions were possible to be drawn according to the flexural and strength values
obtained during the tests for the two tested repair mortars. To characterize the effect of setting time on
the increase in strength of the tested mortars, the rate of growth of these two parameters over time
was analyzed. For both tested PCC mortars the increase in the flexural and compressive strength was
slower when they were setting at 8 ◦C than when the process took place at 21 ◦C, whereby starting from
day 3 of curing, the strength increase curves are similar in all tested cases (Figures 3 and 4). For the first
three days, the increase in the flexural and compressive strength is much quicker when the samples are
cured at 21 ◦C than for their setting at 8 ◦C. After 24 h the flexural strength of the PCC mortar cured
at 21 ◦C is 4.6 MPa for mortar I and 4.8 MPa for mortar II, while the compressive strength amounts
to 21.2 MPa and 23.4 MPa, respectively. Whereas, for the same mortars cured at 8 ◦C the obtained
values were: flexural strength, 1.3 MPa and 1.3 MPa, and compressive strength, 3.7 MPa and 4.5 MPa.
A similar disproportion is observed after 48 h when the flexural strength of the mortars cured at 21 ◦C



Materials 2020, 13, 4254 12 of 16

amounts to 5.2 MPa and 5.1 MPa, respectively, and the flexural strength of the mortars cured at 8 ◦C
is 3.8 MPa and 3.7 MPa, respectively; the compressive strength values amounted to 18.1 MPa and
17.2 MPa. After 72 h the values of the flexural strength for both temperatures become similar, i.e., for
21 ◦C, mortar I 5.9 MPa, mortar II 5.7 MPa, while for 8 ◦C it was 5.3 MPa and 4.3 MPa. After 72 h
of setting, the discrepancies between the compressive strength values for the two test temperatures,
i.e., 21 ◦C and 8 ◦C, are still significant, and amount to 34.3 MPa versus 26.7 MPa, and 35.5 MPa
versus 22.0 MPa, respectively. On the following days the increase rate of the presented strength values
was similar, only with minor deviations from the quoted regularity, but still at much lower values of
flexural and compressive strength for the samples setting at 8 ◦C. It can be observed that only the PCC
mortar I with cement CEM I is much more susceptible to a reduction in strength as a result of lowered
temperatures, especially within the range of flexural strength whose increase is hampered after 14 days
of setting. PCC mortar II at 8 ◦C revealed a constant increase in both flexural and compressive strength
during the whole 28 days’ setting process, but unfortunately also with no significant increase in the
flexural strength between setting day 28 and 42. After 42 days of curing at 8 ◦C, the value of the
flexural strength achieved by mortar II with cement CEM I sulphate resistant was just a little bit lower
than the 28 days’ strength determined in standardized laboratory conditions, i.e., at 21 ◦C. However,
the two values mentioned are already in the same range after adjusting for the coefficient of variation
of the results with respect to the mean value. After 28 days of setting at 8 ◦C, a constant increase in
the compressive strength was observed for mortar II and the value obtained after 42 days of setting
(i.e., 51.7 MPa) was only slightly lower than the 28 days’ compressive strength (i.e., 52.4 MPa) for the
same product setting at 21 ◦C. It is clearly visible that the modification of the repair mortar, which
includes CEM I sulfate resistant cement polymer with an MFT temperature of 3 ◦C, allows obtaining a
high value of compressive and flexural strength of the repair performed, including at a temperature
reduced to 8 ◦C. Unfortunately, in case of the repair mortar with CEM I cement, the results were not as
satisfactory. Both, the flexural strength and the compressive strength were lower when the mortar was
cured at the temperature of 8 ◦C than the corresponding values obtained at the temperature of 21 ◦C,
although the same acrylate, styrene copolymer, was used in both repair mortars. The obtained results
allow the conclusion that when the temperature of repair mortar application is lowered to values
slightly exceeding the MFT temperature of the polymer additives, the type of cement determines the
effectiveness of the repair mortar under such specific conditions of use. The above considerations
are summarized in the diagrams presenting changes of relative compressive strength (Figure 9) and
relative flexural strength (Figure 10) for mortars cured at 8 ◦C, in reference to the values obtained in
the same period for mortars setting at 21 ◦C. The diagrams clearly show that in both test cases the
first three days are crucial. During the first 24 h of the samples curing at 8 ◦C, the obtained value for
flexural strength increase amounted to 27% of the strength value for the samples cured for 24 h at
21 ◦C, and after 28 days, 75% to 90% of the strength achieved for samples cured at 21 ◦C.
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Figure 9. Compressive strength increase rate of mortars cured at 8 ◦C, in reference to the values
obtained in the same period for mortar setting at 21 ◦C.
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Figure 10. Flexural strength increase rate of mortars cured at 8 ◦C, in reference to the values obtained
in the same period for mortar setting at 21 ◦C.

Figure 11 presents the relation between the values of the flexural and compressive strength
expressed as a coefficient ff/fc, defined as a quotient of the values mentioned above, for subsequent days
of the repair mortar setting at 21 ◦C and 8 ◦C, respectively. The potential correlation was assumed to
enable forecasting of the expected strength values based on the obtained partial results of the tests.
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Figure 11. Quotient of the values of flexural and compressive strength for subsequent days of repair
mortar setting at 21 ◦C and 8 ◦C, respectively.

An analysis of ff/fc quotient reveals an apparent discrepancy in the obtained values up to day 7
of the repair mortars curing both for the process temperature of 21 ◦C as well as for the temperature
lowered to 8 ◦C. As curing progresses, the discrepancy is reduced. Starting from day 7, for all analyzed
test results, the ratio between the flexural and compressive strength values ranges from 0.15 to 0.19,
reaching 0,17 and 0,15 for Mortar I and Mortar II, respectively. A clear relationship of the achieved
results at low uncertainty values leads to the conclusion that one parameter can be determined with
high probability when only the other value is known.

The final stage of the research included an attempt to explain a mechanism which is the cause
of lower strength values obtained for the same PCC mortars but when they are cured at 8 ◦C, as
compared to the values obtained for mortars setting at 21 ◦C. Microscopic images (1000×magnification)
was analyzed for mortar I and mortar II, comparing the appearance of the surface structure after 2
and 28 days, respectively, for mortars cured at two temperatures, i.e., 8 ◦C and 21 ◦C. The images
shown in Figure 5 show apparent differences in the structure of mortar I at two curing temperatures.
When it cures at the laboratory temperature, the CSH stage is amorphous and compact, while as
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curing progresses, it becomes evidently more compact. When it cures at 8 ◦C, the CSH stage is
amorphous and quite porous, and after 28 days of curing no significant differences in the structure
can be observed. The images shown in Figure 6 for mortar II show no clear differences resulting from
different setting temperatures. The CSH stage is amorphous, and as setting progresses it becomes less
and less porous. Such a structure of the mortar confirms the observed trends obtained in the presented
research, in particular, compressive and flexural strength and adhesion to the substrate. The study
of the pore distribution showed slight differences in the total porosity of both analyzed mortars, not
shown clearly in the study of the image under the microscope

5. Conclusions

The paper presents the results of the tests for two randomly selected commercially available PCC
repair mortars. Both PCC mortars were modified with the same polymer. On the basis of the results
obtained the following conclusions can be drawn:

• when the temperature of PCC mortar application is lowered to values slightly exceeding the MFT
temperature of the polymer additive, the type of cement mainly determines the effectiveness of
the repair mortar under such specific conditions of use.

• taking into account the influence of the type of used cement on the effectiveness of repair mortars,
it is clear that only CEM I sulphate-resistant cement allows obtaining similar properties for repair
mortar setting at a temperature of 8 ◦C compared to the values obtained at 21 ◦C. Both the modulus
of elasticity and adhesion to the substrate after 28 days of setting are at a similar level.

• for repair, mortar with CEM I sulfate resistant cement, modified by acrylate-styrene copolymer
with an MFT temperature of 3 ◦C, allows obtaining a high value of compressive and flexural
strength of the repair performed, including at a temperature reduced to 8 ◦C.

• in the case of the PCC repair mortar with CEM I cement, both, the flexural strength and
the compressive strength were lower when the mortar was cured at the temperature of 8 ◦C
compared to the corresponding values obtained at the temperature of 21 ◦C, even though the
same acrylate-styrene copolymer, with an MFT temperature of 3 ◦C, was used.

• curing of samples at lowered temperatures of ca. 8 ◦C contributes to a decrease in the value of
flexural and compressive strength, especially during the first days of setting. On the first day,
the samples cured at 8 ◦C achieved a flexural strength increase amounting to 27% of the strength
obtained for samples cured for 24 h at 21 ◦C. For the compressive strength, the value amounted
to 18%. An apparent increase in this respect is observed on day 2, amounting to 60–70% for the
flexural strength and 50–60% for the compressive strength. Unfortunately, the increasing trend
slowed down significantly on setting day 3 at 8 ◦C.

• starting from day 7 of the mortar setting at both temperatures mentioned above, i.e., 8 ◦C and
21 ◦C, there was a clear relationship between the values of the flexural and compressive strength,
expressed as a coefficient, and determined as a quotient of these values, amounting to 0.14–0.19.

• the microscopic image revealed the differences in the structure of mortars, resulting from different
curing temperatures. The mortar cured at a lowered temperature at the first stage had a porous
microstructure, while the mortar cured at a laboratory temperature had a compact microstructure.
After 28 days the total porosity was higher by about 2% for both PCC mortars when they were
cured at a temperature of 8 ◦C.
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