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Abstract: A multiscale investigation of the microstructure and the mechanical behavior of TRIP steels
is presented. A multi-phase field model is employed to predict the microstructure of a low-alloy
TRIP700 steel during a two-stage heat treatment. The resulting stability of retained austenite is
examined through the Mσ

s temperature. The phase field results are experimentally validated and
implemented into a model for the kinetics of retained austenite during strain-induced transformation.
The kinetics model is calibrated by using experimental data for the evolution of the martensite volume
fraction in uniaxial tension. The transformation kinetics model is used together with homogenization
methods for non-linear composites to develop a constitutive model for the mechanical behavior of the
TRIP steel. A methodology for the numerical integration of the constitutive equations is developed and
the model is implemented in a general-purpose finite element program (ABAQUS). Necking of a bar in
uniaxial tension is simulated and “forming limit diagrams” (FLDs) for sheets made of TRIP steels are
calculated. The models developed provide an integrated simulation toolkit for the computer-assisted
design of TRIP steels and can be used to translate mechanical property requirements into optimised
microstructural characteristics and to identify the appropriate processing routes.

Keywords: TRIP steels; strain-induced transformation; retained austenite stability; phase-field
modeling; finite element methods; homogenization; elasto-plasticity; composite materials; forming
limit diagrams

1. Introduction

TRansformation Induced Plasticity (TRIP) steels is a new generation of low alloy steels that exhibit
an enhanced combination of strength and ductility. The microstructure of TRIP steels consists typically
of ferrite, bainite, and retained austenite. Their remarkable mechanical properties are attributed to
the TRIP phenomenon, i.e., the retained austenite transforms to martensite with plastic deformation.
In the present work, a multiscale investigation of the microstructure and the mechanical properties
of TRIP steels is presented. This investigation can be conducted for other steel grades applied in the
automotive industry with the appropriate calibration.

The stabilization of retained austenite against martensitic transformation is a key criterion
for the design of TRIP steels [1,2]. A common approach to stabilize the retained austenite, is to
perform a two-stage heat treatment, consisting of intercritical annealing prior to isothermal
bainitic transformation and quenching to room temperature [3,4]. During the isothermal bainitic
transformation the remaining austenite is enriched with sufficient carbon and stabilized as retained
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austenite. Several studies were carried out in order to investigate and predict the microstructural
evolution during intercritical annealing [5–7], bainitic isothermal transformation [8–10] and martensitic
transformation [11].

The determination of retained austenite stability, expressed by the Mσ
s temperature, and the

description of retained austenite strain-induced transformation kinetics are essential in predicting
the mechanical performance of TRIP steels. The chemical composition and grain size of retained
austenite, as well as the stress triaxiality and the strength of the austenite matrix were considered
to be the primary influencing factors on Mσ

s [12–15]. Several models, which are reviewed by
Samek et al. [16], were developed for the transformation kinetics of retained austenite. In addition,
Haidemenopoulos et al. [17] took into account the effect of austenite particle size on transformation
kinetics. Regarding the description of the mechanical behavior of TRIP steels, several constitutive
models were developed [18–20]. However, these models disregard the effect of austenite particle size on
transformation kinetics. Zhu et al. [21] and Shengyen [22] employed computational-based approaches
for the design of TRIP steels, yet a multiscale integrated model is required for the investigation of the
microstructure and the mechanical properties of the investigated steels. A brief description of each
section of the present work is given below.

In Section 2, an integrated simulation model is employed to predict the microstructural
characteristics of a cold rolled low-alloy TRIP700 steel subjected to a two-stage heat treatment.
The heat treatment consists of intercritical annealing and an isothermal bainitic transformation at
a lower temperature. A two-dimensional (2D) multi-phase field model (MPF) is developed for the
simulation of the intercritical annealing process after deformation in a ferrite-pearlite initial structure.
The concentration profiles, volume fractions of the phases, and microstructure obtained at the end of
the intercritical annealing are implemented into the MPF model for the simulation of the isothermal
bainitic treatment. The MPF model is used to determine the volume fractions and the average grain
size of the phases as well as their chemical content in the resulting microstructure at the end of the
heat treatment.

The experimental validation of the predictions for the heat treatment process is discussed in
Section 3. The average grain size diameter of ferrite and retained austenite are determined using
optical microscopy. The Saturation Magnetization (SM) technique is employed to evaluate the volume
fraction of retained austenite. By applying the SS-TV-TT technique to determine the Mσ

s temperature,
the austenite stability is measured.

The austenite stability, which influences the kinetics of transformation plasticity, is studied in
Section 4 by using the model of Haidemenopoulos and Vasilakos [15] for the stability of dispersed
austenite in low alloy steels. This model predicts the effects of several parameters on austenite
stability. An attempt is made to distinguish the effects of individual parameters on austenite stability.
The predictions of the model are consistent with the experimental results for the Mσ

s temperature.
Also, in Section 4, the model of Haidemenopoulos et al. [17] is employed to predict the evolution
of the volume fraction of martensite during the strain-induced transformation of retained austenite.
The microstructural characteristics calculated from the simulation of the heat treatment are used as
input to this model, which takes into consideration the chemical composition, the austenite particle
size, temperature, and stress state. The calibration of the model is based on experimental data for the
evolution of the martensite volume fraction in uniaxial tension tests.

In Section 5, the aforementioned transformation kinetics model is used together with non-linear
homogenization methods of Ponte Castañeda and co-workers [23–25] to develop constitutive equations
for the mechanical behavior of TRIP steels. The methodology of Papadioti et al. [26], in which TRIP
steels are treated as multi-phase (composite) materials, is used to estimate the effective yield function
and the average stress and strain fields in the constituent phases.

A methodology for the numerical integration of the resulting constitutive equations in the context
of a displacement driven finite element formulation is presented in Appendices A and B. The model
is implemented in the ABAQUS general-purpose finite element code, one-element finite element
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calculations for the problem of uniaxial tension are performed, and the simulation results are compared
with experimental data in Section 6. In Section 7, the constitutive model is employed for the study of
necking under uniaxial tension and forming limit diagrams (FLDs) are also calculated.

The scope of the present work, is to provide an integrated simulation toolkit, which will be used
for the design of TRIP steels. Starting with the simulation of the microstructure evolution with respect
to the heat treatment parameters, the chemical composition and the grain size of retained austenite are
calculated. These results are used as an input for the description of the stability of retained austenite
and the martensite volume fraction formed as a function of plastic strain in TRIP steels. After the
experimental validation of the heat treatment predictions and the Mσ

s temperature, a constitutive model
is developed for the mechanical behavior of TRIP steels with respect to the processing parameters and
microstructural features. The integrated model presented in this work links composition, processing,
microstructure and mechanical behavior and makes it a potential design tool for the development of
optimized TRIP steels.

Throughout the text, standard notation is used, while boldface symbols correspond to tensors,
the orders of which are indicated by the context. A fixed Cartesian coordinate system with base vectors
ei (i = 1, 2, 3) is used for the expression of all tensor components, and Greek indices take the values 1

and 2. The summation convention is applied for repeated latin and Greek indices (cα dα ≡
2
∑

i=1
cα dα).

A superscript T denotes the transpose, and a superposed dot the material time derivative. Let (A,
B) be second-order tensors and (C,D) fourth-order tensors; the following products are used in the
text (A · B)ij = Aik Bkj, A : B = Aij Bij, (A B)ijkl = Aij Bkl , (C : A)ij = Cijkl Akl , (A : C)ij = Akl Cklij.
A : C : B = Aij Cijkl Bkl , and (C : D)ijkl = CijpqDpqkl . The inverse C−1 of a fourth-order tensor C that
has the “minor” symmetries Cijkl = Cjikl = Cijlk is defined so that C : C−1 = C−1 : C = I , where I
is the symmetric fourth-order identity tensor with Cartesian components Iijkl =

1
2 (δik δjl + δil δjk), δij

being the Kronecker delta.

2. Materials and Modeling of the Heat Treatment

An integrated process chain model is employed for the prediction of the microstructural
features of a cold rolled (CR) TRIP700 steel during a two-stage heat treatment, which consists of
intercritical annealing prior to isothermal bainitic transformation at a lower temperature. TRIP 700
is a well-established TRIP steel, this is why it was used as a model steel in the investigation.
This investigation can be carried out for other steel grades used in the automotive industry with the
appropriate calibration. The chemical composition of the CR-TRIP700, provided by voestalpine Stahl
GmbH Linz, is described in Table 1. After cold-rolling, the aim is to form a 50%-50% ferrite-austenite
microstructure during intercritical annealing in the first stage and to stabilize the retained austenite
through an isothermal bainitic transformation in the second stage.

Table 1. Chemical composition of CR-TRIP700 in wt pct.

C Mn Si Al

0.202 1.99 0.348 1.07

2.1. Selection of Heat Treatment Parameters

An integrated process chain model is developed using multi-phase field modeling.
The thermodynamic calculations, required to set the bounds of the process, are performed using
the Thermo-Calc software [27] and the TCEF6 database for ferrous alloys. The limits for the
intercritical annealing are A1 = 693.4 ◦C and A3 = 917.8 ◦C, and the cementite solvus temperature
is Acem = 716.8 ◦C. During intercritical annealing, the target volume fraction of austenite is 50%.
Thermodynamic calculations show that the intercritical annealing should take place above 808.3 ◦C.
An intercritical annealing temperature at 890 ◦C is selected with a heating rate of 15 ◦C/s and an
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intercritical annealing time of 60 s, followed by an isothermal bainitic treatment consisting of cooling
with a rate of 60 ◦C/s and an isothermal holding at 400 ◦C for 120 s.

2.2. Methodology

The multi-phase field model (MPF), developed by Steinbach et al. [28–31] and implemented in
MICRESS [32], is used for the description of microstructure evolution during intercritical annealing and
isothermal bainitic treatment. The adopted approach takes into account the effect of grain boundary
curvature and allows the determination of the spatial distribution of phases and their grain size [33].

2.2.1. Stage I—Intercritical Annealing

For the simulation of the intercritical annealing process after deformation of a ferrite-pearlite
initial structure, a 2D MPF model is employed. Since the heating rate is 15 ◦C/s, it is considered that
ferrite recrystallization is completed and austenite nucleates mainly in pearlite [5,7,34–36]. A very small
amount of austenite nuclei is allowed to form at ferrite grain boundaries, when it is thermodynamically
possible. Spheroidization of pearlite is neglected. A sufficiently large domain size is used in the
calculations, so that there are no significant statistical differences in the results [37]. However the
description of a fine lamellar pearlite structure is not possible in this study, since a smaller domain size
is required [38,39]. For this reason, pearlite is modelled as an effective phase with uniform eutectoid
composition of 0.86% wt. carbon and an equilibrium phase fraction of 22.9%. The simulations are
carried out in two steps. In the first step, reheating from the A1 temperature to the selected intercritical
annealing temperature takes place for a time period sufficient for complete dissolution of pearlite.
A rapid pearlite to austenite transformation occurs and austenite is assumed to inherit the carbon
content of pearlite; the substitutional elements are assumed to be immobile. The growth kinetics of
the phases and the redistribution of the alloying elements are described by non-partitioning local
equilibrium conditions (NPLE). Austenite is allowed to nucleate at ferrite grain boundaries. The second
step starts after the complete dissolution of pearlite. During the second step, ferrite transforms to
austenite and the austenite formed in the first step continues to grow. The ferrite to austenite phase
transformation takes place under ortho-equilibrium conditions.

The domain size is 85.5 µm× 40.5 µm. A grid of square cells with sides δx = 0.15 µm is used
in the calculations. The interface thickness is set to 0.6 µm. The initial structure is constructed
randomly and periodic boundary conditions are applied. The Thermo-Calc TCEF6 and MOB2
databases are used to derive diffusion data. The same diffusion coefficients are used for pearlite and
ferrite. Thermodynamic data for the ferrite-pearlite and pearlite-austenite interactions are obtained
using a linearized phase diagram; the TCEF6 database is used to get the corresponding data for the
ferrite-austenite interaction. The local equilibrium temperature is set according to the linearized phase
diagram at 744 ◦C, where the equilibrium carbon content is 0.86% wt. and 0.0063% wt. in pearlite and
ferrite respectively. Manganese and aluminum are considered immobile during the first step of the
simulations; their nominal compositions are selected as the equilibrium concentrations in the phases at
744 ◦C.

The interfacial energies σij for the phase interactions take the constant values listed
in Table 2 [35,37]. The interface mobility µij between phases i and j is considered to be
temperature-dependent:

µij = µo
ij exp

(
−

Qij

R T

)
, (1)

where µo
ij is the pre-exponential mobility factor, R the gas constant, and Qij the activation energy for

grain boundary migration. The pre-exponential factor is written in the form

µo
ij =

vD
k T

d4
ij, (2)
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where dij is the interatomic distance between phases i and j, vD the Debye frequency of the parent
phase, and k the Boltzmann constant. The mobility parameters for the phase interactions Qij and dij
are taken from the literature [40,41] and are listed in Table 2.

Table 2. Interfacial energy and interface mobility parameters of phase interactions.

a− a a− p p− p a− γ γ− p γ− γ

σij (J/m2) 0.5 0.9 1 0.4 0.5 0.7
dij (Å) 2.4 3.2 3.9 2.5 3.3 2.6

Qij (kJ/mol) 150 200 200 162.5 162.5 185

In the first step of simulations, austenite nucleates within pearlite and grows until complete
dissolution of pearlite. Nucleation of austenite within pearlite is assumed to be instantaneous
(site-saturated). The growth of austenite is controlled by carbon diffusion in austenite and the
partitioning of substitutional atoms in ferrite [42]. It is assumed that the critical surface area of a
nucleus is 1 µm2. The number of austenite potential nucleation sites in pearlite is Nn = 793 and
equals the product of the pearlite phase fraction and the domain size divided by the nucleus surface
area. Austenite nucleation is allowed to occur at ferrite grain boundaries both in the first and the second
step, if it is thermodynamically possible. The expression that defines the heterogeneous nucleation
rate of austenite in ferrite ṄS is based on classical nucleation theory under steady state conditions [35]
and is of the form

ṄS(t) = Nn(t)
k T
h

exp
[
− 1

k T

(
ψ

∆g2
v
+ QD

)]
, (3)

where Nn(t) is the number of potential nucleation sites as a function of time, a superposed dot denotes
derivative with respect to time, ψ is a constant related to the geometry of the nucleus (shape) and the
interfacial properties for the nucleus and the matrix, ∆gv is the driving force for nucleation of austenite
in ferrite per unit volume and was calculated using Thermo-Calc, h and k are the Planck and Boltzmann
constants accordingly, and QD is the activation energy for nucleation, which is approximately equal to
the activation energy of iron self-diffusion in ferrite and takes the value of 3.9× 10−19 J. The value of
ψa = 4.76× 10−10 J3/m6 is used for nucleation on ferrite grain boundaries (Savran [40]). The value
of Nn is kept constant in the calculations and its value equals the product of ferrite grain boundary
perimeter times the interface thickness divided by the nucleus surface area. In the 2D simulation
domain, the number of austenite potential nucleation sites is Nn = 2436.6µm× 0.6µm/1µm2 = 1462.
A random orientation of austenite nuclei is considered with isotropic austenite and ferrite grain growth.

2.2.2. Stage II—Isothermal Bainitic Treatment

Bainitic ferrite is assumed to form by diffusional nucleation and displacive transformation [43].
The nucleation and growth of the entire sheaf is considered instead of the formation of sub-units.
Diffusion of the alloying elements is allowed. Since excess Si and Al content in steels can suppress
carbide precipitation, cementite precipitation is not considered neither in bainite nor in austenite.
Plastic strains developed during the sub-unit growth are not accounted for and the plate shape
morphology of bainitic ferrite is acquired artificially by using the anisotropic interfacial properties.
Accordingly, the model cannot account the incomplete reaction phenomenon of bainite due to
dislocation debris. Solute drag effect of substitutional atoms are ignored in the interface kinetics
and Zener pinning forces due to the precipitation of carbonitrides are not included in this study.

The concentration profiles, volume fractions of the phases, and microstructure obtained at
the end of the intercritical annealing are implemented into the MPF model for the simulation of
the isothermal bainitic treatment. The same domain size and the interface thickness are used in
the calculations. The thermodynamic data for the interaction of ferrite and austenite are derived
by coupling the multi-phase field calculations with the Thermo-Calc TCEF6 and MOB2 databases.
To simplify the simulations, no phase interaction between ferrite and bainite is considered. For the
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description of austenite-bainite phase interaction, a linearized phase diagram is calculated at the local
equilibrium temperature of 744 ◦C. The same diffusion coefficients, interfacial energies, and interface
mobilities are used both for ferrite and bainitic ferrite phases. A value of σγ−a′ = 0.2 J/m2 [44] is
used for the interfacial energy between austenite and bainite; the interface mobility at 400 ◦C is set to
µγ−a′ = 9× 10−9 cm4/(J s).

Bainitic ferrite is modelled as an anisotropic phase with tetragonal symmetry. In TRIP steels there
is a Kurdjumov–Sachs (KS) orientation relationship that describes the relative orientation of retained
austenite and bainitic ferrite [45]. It is assumed that the misorientation angle between bainite grains
and parent austenite grains follows a KS relationship with a tolerance angle of 10◦. The transformation
model of Bhadeshia [46] is used for the calculation of the bainite start temperature. The required driving
force per mole for nucleation in austenite ∆gv and the diffusionless driving force for bainite formation
∆Gγ→a′ , which is regarded as the Gibbs free energy difference of ferrite and austenite, are calculated
using Thermo-Calc. Bainite start temperature is calculated as BS = 616.8 ◦C. The nucleation rate of
bainitic ferrite is calculated according to equation (3), where the activation energy for self-diffusion of
carbon in austenite QD = 142.1 kJ/mol is used [7]. For bainite nucleation at austenite grain boundaries
the value ψa′ = 6.33× 10−15 J3/mol2 is used [47]. The number of bainite potential nucleation sites
is represented by the total surface area of austenite grain boundaries, which is the product of the
austenite grain boundary perimeter times the interface thickness divided by the nucleus surface area,
and takes the value Nn = 2573.3µm× 0.6µm/1µm2 = 1544.

2.3. Simulation Results of the Heat Treatment

Figure 1a shows the initial structure, which consists of 99 recrystallized ferrite grains and
36 elongated pearlite grains. The initial average grain size is 5.65 µm for pearlite and 6.24 µm for ferrite,
where equivalent circular mean diameters are considered. The microstructure after the complete
dissolution of pearlite is depicted in Figure 1b. Symbols P, F, and A denote pearlite, ferrite and
austenite grains respectively. The simulation time required for the complete dissolution of pearlite
was 9 s at 828 ◦C. The formed austenite nuclei in pearlite are 164, whereas no austenite nuclei were
observed at ferrite grain boundaries during the first step of simulations.

(a) (b)

(c) (d)

Figure 1. Microstructures (a) at the beginning of the intercritical annealing, (b) after the complete
dissolution of pearlite, (c) at the end of the intercritical annealing, and (d) at the end of the isothermal
bainitic treatment. Symbols P, F, and A denote pearlite, ferrite, and austenite grains, whereas RA and
B correspond to retained austenite and bainitic ferrite.
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In the second step, the formed austenite grows at the expense of ferrite, while some austenite
nuclei grow at ferrite grain boundaries until the end of intercritical annealing at 890 ◦C. After 60 s
of intercritical annealing, a 51% volume fraction of austenite was achieved; the corresponding
microstructure is shown in Figure 1c. The microstructure at the end of the isothermal bainitic treatment
at 400 ◦C for 120 s is presented in Figure 1d. Symbols RA and B correspond to the retained austenite
and the bainitic ferrite.

The evolution of the volume fraction of the phases and the average grain diameter of pearlite,
ferrite, and austenite during intercritical annealing are depicted in Figure 2a. Continuous lines
correspond to volume fractions and dashed lines indicate the average grain size. The vertical dotted
lines indicate the end of the first step and the time (∼60 s) at which 51% volume fraction of austenite
was achieved; the horizontal dotted line marks the targeted 50%-50% ferrite-austenite microstructure.
It should be noted that austenite grows faster in pearlite during the first step; the rate of austenite
growth in ferrite is slower in the second step. The average grain diameters of ferrite and austenite at
the intercritical annealing time of t = 60 s are 5.31 µm and 3.72 µm respectively.

The average concentration of carbon, aluminum, and manganese in ferrite and austenite are
plotted versus time in Figure 2b. At the beginning of the second step, there is a carbon enrichment in
ferrite. However, after 13 s, when the intercritical temperature of 890 ◦C has been reached, the average
carbon content in ferrite starts decreasing due to the decrease of the maximum soluble amount of
carbon in ferrite at this temperature. This temporal carbon enrichment in ferrite is favourable for the
austenite formation at the ferrite grain boundaries. Carbon depletion in austenite is still observed due
to the increase of austenite phase fraction. Regarding the substitutional atoms, there is manganese
depletion and aluminum enrichment in ferrite.

The evolution of the volume fractions and the average grain diameter of ferrite, retained austenite,
and bainitic ferrite during the isothermal bainitic treatment are shown in Figure 2c. Continuous lines
correspond to volume fractions and dashed lines indicate the average grain diameter of the phases.
Bainitic ferrite starts to form after 6 s of cooling and isothermal holding. When bainite is formed,
the austenite shrinks and ferrite grains grow slowly. After 120 s, the resulting microstructure in the
new TRIP steel consists of 50.7% ferrite, 16.6% retained austenite, and 32.7% bainitic ferrite, and their
average grain diameters are 5.39 µm, 1.62 µm, and 0.96 µm accordingly. For the rest of the paper,
the term “TRIP steel A” is used to refer to this microstructure.

The average concentration of carbon, aluminum, and manganese in ferrite, retained austenite,
and bainitic ferrite are depicted in Figure 2d. During bainite transformation, carbon and manganese
are ejected from bainite in austenite, while aluminum diffuses into bainite and ferrite until equilibrium
is reached. The carbon content in retained austenite after 120 s is 1.17% wt.
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(d)
Figure 2. Temporal variation of (a) the volume fraction (solid lines) and average grain diameter (dashed
lines) of ferrite, pearlite, and austenite, (b) average concentration of C, Al, and Mn in ferrite and
austenite during intercritical annealing at 890 ◦C, (c) the volume fraction (solid lines) and average grain
diameter (dashed lines) of ferrite, retained austenite, and bainitic ferrite, and (d) average concentration
of C, Al, and Mn in ferrite, retained austenite, and bainitic ferrite during isothermal bainitic treatment
at 400 ◦C.

3. Experimental Study

3.1. Heat Treatment

A TRIP700 steel which consists of ferrite, retained austenite, bainitic ferrite with traces of
martensite, was employed for the experimental validation of the heat treatment process presented in
Section 2. An austenitization process was performed above the A3 temperature, at 950 ◦C, to erase
its current microstructure. After the austenitization, the material is air cooled to room temperature,
and a mixed microstructure consisting of ferrite, pearlite, and a small amount of bainitic ferrite was
formed. It should be noted that for the simulation of the heat treatment process, an initial deformed
ferrite-pearlite structure was assumed prior to the intercritical annealing process. This assumption
leads to different initial microstructures for the intercritical annealing between the experimental
study and the phase-field simulations. As a result, minor deviations between experimental data and
simulation results, regarding the morphology and the phase volume fractions, are observed.

The heat treatment process is presented schematically in Figure 3.
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Figure 3. Heat treatment process of studied material.

The heating process consists of three steps that include austenitization, intercritical annealing,
and austempering for bainitic transformation. Six specimens with dimensions 120 mm ×100 mm
×1.5 mm were preheated in a front-load furnace, at 400 ◦C for 60 s and then directly inserted in a
second furnace for the austenitization process at 950 ◦C for 240 s and air cooled to room temperature.
Oxidation products from the surface of the samples were carefully removed by grinding with
emery paper.

Intercritical annealing and austempering treatments were performed in furnaces with molten salt
baths using GS750 and AS140 salts respectively. Following the austenitization process the samples
were firstly preheated for 60 s at 400 ◦C and annealed at 890 ◦C for 60 s. Subsequently the samples
cooled down to 400 ◦C for 120 s and air cooled to room temperature.

3.2. Evaluation of the Mσ
s Temperature

The stability of retained austenite (RA) was evaluated by measurements of the Mσ
s temperature,

which defines the critical boundary between the stress-assisted and strain-induced martensitic
transformation in TRIP steels. Mσ

s was determined experimentally with the SS-TV-TT technique [48,49]
using the experimental setup shown in Figure 4. Loading-unloading was carried out in an INSTRON
8801 servo-hydraulic machine at a constant crosshead velocity of 0.5 mm/min, while a Real Time
Strain Sensor (RTSS) video-extensometer was used to measure the longitudinal tensile strains during
testing (Figure 4). Testing at low temperatures was performed using a plastic container with cooling
bath attached at the gauge length area of the specimen. The desired temperatures, ranging from
20 ◦C to −30 ◦C, were achieved using appropriate concentrations of water, salt, ice, acetone, dry ice,
and ethylene-glycol in the cooling bath.
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(a) (b)

Figure 4. Experimental setup for the evaluation of Mσ
s temperature. (a) RTSS Video-extensometersetup,

(b) Graphical representation of specimen setup.

The Mσ
s temperature was estimated from the stress-strain behavior during successive loading

of the material up to yielding with decreasing temperature. The stress-strain curves obtained are
depicted in Figure 5. They reveal an onset of stress relaxation at −19 ◦C, a result of the volume
expansion accompanying the martensitic transformation phenomenon, i.e., the Mσ

s temperature is
found to be −19 ◦C, meaning that below that temperature martensitic transformation can only be
stress-assisted; above −19 ◦C, strain-induced martensitic transformation takes place when austenite
deforms plastically at temperatures below an upper limit (MD).
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Figure 5. Stress – strain response under uniaxial tensile testing with decreasing temperature.

3.3. Microstructural Characterization

The microstructure after heat treatment was assessed using optical microscopy. Standard
metallographic techniques of grinding and polishing were used in mounted sample. Consecutively,
a stepped color tint-etching procedure was applied to reveal the microstructure. The sample was first
etched with a 3% Nital solution for 3–4 s, and then with a 10% Na2S2O5 solution for 60 s. After etching
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in both solutions, the specimen was thoroughly washed with water, immersed in ethanol, and dried in
hot air.

The average grain diameter of retained austenite (RA) and ferrite were estimated using an image
analysis software [50]. Since there is a large dispersion of phases, several micrographs were taken
at different depths. This method is suitable for structures with high grain shape irregularity [50].
Approximately 1000 retained austenite and 100 ferrite grains were used for the quantification of the
above microstructural characteristics.

The RA-white colour, ferrite-blue/straw brown, and bainite-dark, microstructural characteristics
are displayed in Figure 6, revealing a ferritic-bainitic matrix with a fine dispersion of RA. The average
size of RA particle was 0.59 µm, while the average grain size of ferrite was 6.19 µm.

Figure 6. Micrograph of the TRIP material.

3.4. Retained Austenite Measurements

The %RA volume fraction in bulk material was measured with the Saturation Magnetization (SM)
technique from small extracted samples of dimensions 14 mm ×3.5 mm. The SM measurements were
performed in the Steel Division Department of voestalpine in Austria. Detailed description of the
performed technique is presented in [51,52].

The advantages of this method are the ability to measure the entire volume of the specimen,
the good repeatability [52], and the high precision compared to other methods [53] employed for the
determination of the RA volume fraction. However, small uncertainties in the measurements may
occur due to the existence of alloying elements, which can affect the saturation magnetization. For this
reason, certain scatter in RA volume fraction measurements should always be taken into consideration.

An initial %RA volume fraction of 15.9% was measured, which is in a good agreement with the
value of 16.6% calculated from the simulation of the heat treatment described in Section 2.3.

4. Stability and Transformation Kinetics of Retained Austenite

A thorough investigation regarding the stability of dispersed austenite in TRIP steel A is conducted
based on the work of Haidemenopoulos and Vasilakos [15]. The Ms temperature is used for the
characterization of austenite stability against transformation on cooling, whereas the Mσ

s temperature
for the stability of dispersed austenite against mechanically induced transformation. During the
isothermal bainitic transformation, the retained austenite is chemically enriched in carbon and
manganese [54]. Primarily, the carbon content is a strong stabilizer of the retained austenite, leading to
suppression of the Ms temperature. However, a mechanically induced martensitic transformation
can take place in dispersed austenite by strain-induced or stress-assisted nucleation [55,56]. A good
combination of all the interrelated factors, which have a strong stabilizing influence on the kinetics
of the mechanically induced transformation, is required so as to achieve the maximum TRIP effect.
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The aforementioned interrelation makes it difficult to separate the individual effect of each factor on
austenite stability. This model is used to predict the Mσ

s temperature and to identify and quantify
the primary stabilizing factors in the TRIP steel. The model predictions (Mσ

s temperature) are also
compared with the experimental data obtained with the SS-TV-TT technique as described in Section 3.2.
Furthermore, the model developed by Haidemenopoulos et al. [17] is employed to predict the evolution
of the strain-induced martensitic transformation kinetics in the TRIP steel.

4.1. Methodology for the Calculation of Mσ
s

In the present work, the Mσ
s temperature is chosen as the single parameter characterizing the

stability of dispersed austenite particles in the TRIP microstructure. A variation of the methodology
developed by Haidemenopoulos and Vasilakos [15] is used for the calculation of Mσ

s . According to the
Olson-Cohen theory of heterogeneous martensitic nucleation [57–59], the dissociation of an existing
defect serves as a potential nucleation site for the formation of a martensitic embryo. The energy per
unit area γ f (n) (J/m2) of an embryo with a thickness of n crystal planes is

γ f (n) = n ρ
(

∆Gch + Estr + W f

)
+ 2 γs, (4)

where ρ is the atomic density in the close-packed fault plane (mol/m2), ∆Gch (J/mol) the
thermodynamic driving force for martensitic transformation, Estr (J/mol) the elastic strain energy
related to the distortions in the interface plane of the fault structure, W f (J/mol) the frictional work of
interfacial motion accompanying the dissociation process, and γs (J/m2) the fault/matrix interfacial
energy. The thickness n refers to the number of crystal planes forming the defect and its value can be
interpreted as a potency measure of the nucleation site. Barrierless dissociation of an existing defect
occurs when its thickness n is such that γ f ≤ 0. The condition γ f (n∗) = 0 defines the critical thickness
n∗ of a defect:

n∗ = − 2 γs

ρ
(

∆Gch + Estr + W f

) . (5)

If the thickness n of the defect is greater than or equal to n∗, martensitic transformation takes
place at that defect. The critical nucleation thickness of a defect n∗ depends on temperature through
∆Gch and on the chemical enrichment of the austenite, which affects ∆Gch and W f .

To take into account the stress-dependence of n∗, the mechanical driving force ∆Gσ (J/mol) is
introduced in the denominator of Equation (5). Then, the total driving force is ∆G = ∆Gch + ∆Gσ, so
that Equation (5) yields

n∗(T, X, σ) = − 2 γs

ρ
[
∆Gch(T, X) + ∆Gσ(σ) + Estr + W f (X)

] , (6)

where ∆Gσ(σ) is a function of the stress tensor σ, T is temperature, and X denotes dependence
on chemical composition. The last equation is based on the assumption that the orientation of the
operative nucleation sites is optimum for maximum interaction with the applied stress (Patel and
Cohen [60]). At the other extreme of a random distribution of nucleation sites, the term ∆Gσ should be
replaced by ∆Gσ/3 in (6) (Olson et al. [61]).

In isotropic materials, ∆Gσ(σ) is in general a function of the von Mises equivalent stress σe, the
“stress triaxiality” Σ, and the “Lode angle” θ:

∆Gσ = ∆Gσ(σe, Σ, θ), (7)

where Σ = p
σe

, p = σkk
3 is the hydrostatic stress, θ = 1

3 arcsin
(
− 27

2
dets
σ3

e

)
, s = σ − p δ is the stress

deviator, and δ is the second-order identity tensor.
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Based on the small-particle experiments of Cech and Turnbull [62] in Fe–30%Ni alloys,
Cohen and Olson [63] derived the following expression for the cumulative defect potency distribution
per unit austenite volume Nv

(
m−3):

Nv(T, X, σ) = N0
v exp (−a n∗) = N0

v exp

(
2 a γs/ρ

∆Gch + ∆Gσ + Estr + W f

)
, (8)

where (6) was used, N0
v
(
m−3) is the total number of all potential nucleation sites per unit austenite

volume and a is a shape factor constant. Nv defines the number of nucleation sites per unit austenite
volume with sufficient potency to nucleate martensite (operational sites).

A uniform distribution of austenite particles with average volume vp is considered. It is assumed
that a single nucleation event transforms the particle into martensite. Therefore, the fraction f of
particles to transform through sites of cumulative number density Nv corresponds to the probability of
finding at least one nucleation site in the particle (Cohen and Olson [63]):

f (T, X, σ) = c(a) (1− exp
(
−vp Nv

)]
=

= c(a)

{
1− exp

[
−vp N0

v exp

(
2 a γs/ρ

∆Gch + ∆Gσ + Estr + W f

)]}
, (9)

where (8) was used and c(a) is the available volume fraction of retained austenite for transformation.
For given temperature T, composition X, and average particle size vp, Equation (9) defines f in

terms of stress σ. Equation (9) can be described by the equivalent form

ln

− ln
(

1− f
c(a)

)
vp N0

v

 =
2 a γs/ρ

∆Gch(T, X) + ∆Gσ(σe, Σ, θ) + Estr + W f (X)
. (10)

For given triaxiality Σ and Lode angle θ, last equation defines implicitly σe in terms of temperature
T, chemical composition X, average particle size vp, and martensite volume fraction f , i.e., it yields a
relationship of the form

σe = σe

(
T, X, vp,

f
c(a)

, Σ, θ

)
. (11)

The temperature Mσ
s is defined as the maximum temperature at which transformation is induced

by a stress below the yield stress of the parent phase (Bolling and Richman [64], Olson and Cohen [65]).
For temperatures below Mσ

s , an elastic stress-assisted transformation takes place at the same
pre-existing nucleation sites, which are responsible for the spontaneous transformation on cooling.
Let σy(T) be the temperature-dependent yield stress of austenite. The experimental data of Olson and
Azrin [1] show clearly that for T ≤ Mσ

s , the 1% martensite curves are almost coincident with the 0.2%
yield stress curves (Figures 5 and 6 in [1]), i.e., σ = σy and f /c(a) ≡ f1 = 0.01 at T = Mσ

s . Therefore,
by balancing the transformation stress in (11) with the σy(T), the Mσ

s temperature can be obtained,
i.e., Mσ

s is defined from the condition

σe
(

Mσ
s , X, vp, f1, Σ, θ

)
= σy (Mσ

s ) . (12)

Equation (10) leads to the following solution for Mσ
s :

ln

[
− ln(1− f1)

vp N0
v

]
=

2 a γs/ρ

∆Gch(Mσ
s , X) + ∆Gσ(σy(Mσ

s ), Σ, θ) + Estr + W f (X)
. (13)
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Last equation defines implicitly the Mσ
s temperature in terms of chemical composition X,

average particle size vp, and the stress state parameters (Σ, θ):

Mσ
s = Mσ

s (X, vp, Σ, θ). (14)

A detailed calculation of Mσ
s for the TRIP steel under consideration is developed next.

Haidemenopoulos et al. [66], based on the data of Olson and Cohen [65], suggest the following
expression for ∆Gσ, which depends on σe and Σ, but is independent of θ:

∆Gσ(σe, Σ) = −(0.715 σe + 0.3206 p) = −σe (0.715 + 0.3206 Σ)
J

mol
(p, σe in MPa) . (15)

The individual terms of the chemical driving force ∆Gch and the frictional work of interfacial
motion W f in Equation (6) were discussed in detail in the work of Haidemenopoulos and Vasilakos [15],
who propose the following forms

∆Gch(T, XC, XMn) = −
[
7381.6− 69447 XC − 19296 XMn + 38776 XC XMn −

−(6.7821− 33.45 XC)T
] J

mol
, (16)

W f (XC, XMn) = 1169 + 8777 XC + 2246 XMn + 19900 XC XMn
J

mol
, (17)

where XC, XMn are the mole fractions of C and Mn in the retained austenite respectively, and T is the
temperature in K. According to Olson and Cohen [58], the elastic strain energy is Estr = 500 J/mol.

The yield stress data of Samek et al. [16] for the austenite present in TRIP steels show that the
austenite flow stress decreases with temperature at a rate of 1 MPa/◦C. Therefore, σy(T) is described by

σy(T) = σ0 − B(T − T0), (18)

where σ0 = 530 MPa is the austenite flow stress at a temperature T0 = 25 ◦C = 298.15 K and
B = 1 MPa/K.

Substitution of (15)–(18) in (13) leads to the following solution for Mσ
s :

Mσ
s =

A + 5712.6− 78224 XC − 21542 XMn + 18876 XC XMn +
(
0.715 + 0.3206 Σ

)(
σ0 + B T0

)
6.7821− 33.45 XC +

(
0.715 + 0.3206 Σ

)
B

, (19)

with

A =

2 a γs
ρ

ln
[
− ln(1− f1)

vp N0
v

] , (20)

where A is determined from (20) in J/mol, σ0 is in MPa, B in MPa/K, T0 in K, and Mσ
s is calculated

from (19) in K.

4.2. Calculation of Mσ
s and the Effects of the Variants on Austenite Stability

Based on the small-particle experiments of Cech and Turnbull [62] in Fe–30%Ni alloys,
Cohen and Olson [63] evaluated the shape factor a in (8) to be α = 0.84. The size of the particles

involved in those studies was of the order of 10 µm. In the TRIP steel under consideration the austenite
particles are dispersed and their size is smaller than 1 µm. Therefore, the shape factor takes the smaller
value a = 0.12 (Haidemenopoulos et al. [17]). The values of the remaining parameters in Equation (20)
are as follows [15,55]: γs = 0.15 J/m2, ρ = 3× 10−5 mol/m2, and N0

v = 2× 1017 m−3. Under the
assumption that the austenite particles are spheroidal, the austenite particle volume vp = 4

3 π R3 was
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calculated using the mean austenite particle radius R = 0.8 µm, as determined in the phase field
calculations of Section 2.3. The yield strength of retained austenite is equal to σ0 = 530 MPa.

The calculation of the Mσ
s temperature is carried out in two steps. First, the effects of various

parameters on the retained austenite stability are thoroughly examined. Then, the Mσ
s temperature is

calculated using (19) together with (20).
For the case of uniaxial tension (Σ = 1/3), Mσ

s is plotted as a function of the yield strength of
austenite σ0 in Figure 7.
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Figure 7. Mσ
s temperature as a function of yield strength σ0 of retained austenite.

An increase in the yield strength leads to an increase in the Mσ
s temperature.

Figure 8 shows the calculated Mσ
s temperature with respect to the mean austenite size in uniaxial

tension. The effect of particle size refinement on the austenite stability is evident: Mσ
s decreases as the

austenite dispersion becomes more refined. The predictions of the model are in agreement with the
multitechnique investigation of Haidemenopoulos et al. [67].
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Figure 8. Mσ
s temperature as a function of mean austenite particle in retained austenite.
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The effect of stress state on Mσ
s is shown in Figure 9 for R = 0.8 µm. Four cases regarding the

stress triaxiality are marked on the triaxiality axis: Σ equals −1/3 in uniaxial compression, 0 in pure
shear, 1/3 for tension, and 1/

√
3 = 0.5777 in plane strain tension. The destabilizing effect of stress

triaxiality is evident: the higher the value of stress triaxiality Σ, the higher the Mσ
s . Between the two

extreme cases A (uniaxial compression) and D (plane strain tension) a 30 ◦C rise in Mσ
s is observed.
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Figure 9. Mσ
s temperature as a function of stress triaxiality (Σ = p/σe) in retained austenite.

(A): Uniaxial compression (Σ = −1/3), (B): Pure shear (Σ = 0), (C): Uniaxial tension (Σ = 1/3),
(D): Plane strain tension (Σ = 1/

√
3 = 0.577).

For the TRIP steel under consideration the Mσ
s temperature in uniaxial tension is predicted to

be −20.3 ◦C. This is in reasonable agreement with the measured value of −19 ◦C with the SS-TV-TT
technique, as reported in Section 3.2.

4.3. Transformation Kinetics of Retained Austenite

The model developed by Haidemenopoulos et al. [17], for the description of the strain-induced
martensitic transformation kinetics of dispersed austenite, is calibrated using available experimental
data for the evolution of martensite volume fraction f in a uniaxial tension test for the TRIP700 steel
under consideration (Bellas [68], Haidemenopoulos et al. [67]).

Kuroda [69] suggested that, in strain-induced transformation, the potency distribution Nv in
Equation (8) should depend on both stress and strain, so that Nv = Nσ

v + Nε
v, where Nσ

v
(
m−3) is still

defined by an equation similar to (8):

Nσ
v (σe, Σ) = Nσ0

v exp [−aσ n∗(σe, Σ)] , (21)

in which Nσ0
v
(
m−3) denotes the pre-existing nucleation sites and aσ is a constant shape factor.

During plastic deformation, the austenite phase generates new more potent nucleation sites Nε0
v(

m−3), which are calculated by an expression of the form (Haidemenopoulos et al. [17])

Nε0
v

(
ε̄(a)
)
= N

{
1− exp

[
−k
(

ε̄(a)
)m f

]}
, (22)
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where ε̄(a) is the average equivalent plastic strain in austenite, N
(
m−3) is the maximum number

of sites that can be produced by plastic strain, and (k, m f ) are constants. As discussed in
Haidemenopoulos et al. [17], the total number of operational sites due to the plastic strain in the
austenite Nε

v
(
m−3) is

Nε
v

(
σe, Σ, ε̄(a)

)
= Nε0

v

(
ε̄(a)
)

exp [−aε n∗(σe, Σ)] , (23)

where aε is the shape factor in the strain-modified potency distribution. Then, (9) takes the form [17]

f
(

σe, Σ, ε̄(a)
)
= c(a) [1− exp

(
−vp Nv

)]
, Nv

(
σe, Σ, ε̄(a)

)
= Nσ

v (σe, Σ) + Nε
v

(
σe, Σ, ε̄(a)

)
. (24)

Equation (24) shows that the size of the austenite particles affects the amount of martensite
produced during the transformation through the vp term.

Calibration of the Model to the Available Experimental Data

Equation (24) that describes the kinetics of strain-induced transformation was fitted non-linearly
to available experimental data [67]. The maximum sites that can be formed by plastic deformation per
unit volume N and the pre-existing nucleation sites Nσ0

v are the parameters to be determined.
The high chemical stability of the retained austenite (Figure 2d) prevents stress assisted

transformation, i.e., the high value of ∆Gch prevents the vanishing of γ f (n). In the TRIP steel under
consideration, only the strain-induced transformation of retained austenite to martensite takes place.
Therefore, the only parameter to be determined is N and the resulting value is 2.45 × 1022 m−3.
The predicted evolution of f curve in uniaxial tension together with experimental data is presented in
Section 6.

The values of the mean particle radius of the retained austenite, the chemical composition,
the elastic strain energy Estr and the rest of the parameters and constants are the same as those used in
the calculation of Mσ

s in Section 4.2. Since the experimental data of the volume fraction of martensite f
were obtained at room temperature, the values of ∆Gch = −1828 J/mol and W f = 1710 J/mol were
calculated at 25 ◦C using Equations (16) and (17) respectively.

The constants k, m f , and aε take the values [17]: m f = 3.45, k = 46, and aε = 0.03.

5. Description of the Constitutive Model

In this section, a constitutive model for TRIP steels is developed. A four-phase TRIP steel that
consists of a ferritic matrix with a fine dispersion of bainite and austenite is considered; due to plastic
deformation, the retained austenite transforms gradually into martensite. For each phase, the following
labels are used: (1) for ferrite, (2) for bainite, (3) or (a) for austenite, and (4) or (m) for martensite.
The constitutive equations are developed for finite strain problems.

The strain softening which results from the strain related to the transformation process, is an
important characteristic of the martensitic transformation. An additional deformation rate is introduced
into the constitutive model to take into account this strain softening. The total deformation rate can be
written as the sum of an elastic, a plastic, and a transformation part:

D = De + Dp + DTRIP. (25)

The elastic properties of all phases are essentially the same and standard isotropic linear
hypoelasticity of homogeneous solids is used to define the elastic behavior of the composite material.
The methodology presented by Papadioti et al. [26,70] is used to describe the plastic part Dp.
The transformation part DTRIP has both deviatoric and volumetric parts and is in proportion to
the rate of change of the volume fraction of martensite during martensitic transformation. Herein,
the transformation kinetics model developed by Haidemenopoulos et al. [17] is used to describe the
evolution of the volume fraction of martensite.
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5.1. The Elastic Part De of the Deformation Rate

The constitutive equation for De is expressed as

De =Me : σ
5

or σ
5
= Le : De, (26)

where σ
5

is the Jaumann derivative of the stress tensor σ,Me is the elastic compliance tensor defined as

Me =
1

2 G
K+

1
3 κ
J , Le =Me−1 = 2 GK+ 3 κJ , J =

1
3

δ δ, K = I −J , (27)

where G and κ stand for the elastic shear and bulk moduli, δ and I for the second- and
symmetric fourth-order identity tensors, with Cartesian components δij (the Kronecker delta) and
Iijkl = (1/2)(δik δjl + δil δjk).

5.2. Yield Criterion

The TRIP steel is treated as a rate-independent composite material with a yield function of the
form (Papadioti et al. [26,70])

Φ
(

σ, c(i), ε̄(i)
)
= σe(σ)− σ̃0(c(i), ε̄(i)) = 0, (28)

where σ is the stress tensor, s = σ − p δ the stress deviator, p = σkk/3 the hydrostatic stress, and σe the
von Mises equivalent stress defined as

σe =

√
3
2

s : s , (29)

c(i) (i = 1, 2, 3, 4) the volume fractions of the phases, and ε̄(i) the average equivalent plastic strain in
phase i. The effective yield stress σ̃0 depends on the hardening behavior and the volume fractions of
the constituent phases and is calculated from a constrained optimization problem:

σ̃0(c(i), ε̄(i)) =

√√√√√√ inf
y(i)≥0
y(1)=1

(
N

∑
r=1

c(r)σ(r)
0

2
y(r)
)(

N

∑
q=1

c(q)

3 y(q) + 2

)(
N

∑
s=1

c(s) y(s)

3 y(s) + 2

)−1

, (30)

where N = 4 is the number of phases, and σ
(i)
0 (ε̄(i)) are the flow stresses of the individual phases.

The methodology developed by Kaufman et al. [71] and the CONMAX software (http://www.
netlib.org/opt/conmax.f) are used to solve the constrained optimization problem in (30).

5.3. The Plastic Part Dp of the Deformation Rate

The plastic part of the deformation rate Dp is determined from “normality” to the yield surface:

Dp = ˙̄εp ∂Φ
∂σ

= ˙̄εp N, N =
3

2 σe
s, ˙̄εp =

√
2
3

Dp : Dp, (31)

where ε̄p is the non-negative equivalent plastic strain.
Homogenization theory also provides estimates for the average value of the deformation rate D(i)

in the individual phases, which are written in the form (Papadioti et al. [26,70])

D(i) = α(i) Dp, α(i) =
ŷ(i)

3 ŷ(i) + 2

(
N

∑
s=1

c(s) ŷ(s)

3 ŷ(s) + 2

)−1

, (32)

where ŷ(r) are the optimal values of y(r) calculated from the optimization problem in (30).

http://www.netlib.org/opt/conmax.f
http://www.netlib.org/opt/conmax.f
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The average equivalent plastic strain rate in the phases ˙̄ε(i) is defined as

˙̄ε(i) =

√
2
3

D(i) : D(i) .

Then, (32a) yields
˙̄ε(i) = α(i) ˙̄εp. (33)

The average equivalent plastic strain in the phases ε̄(i), which is calculated from the time
integration of ˙̄ε(i), is used to describe the hardening of the phases. In particular, the flow stress
σ
(i)
0 of each phase is assumed to be a function of the corresponding average equivalent plastic strain in

the phase, i.e., σ
(i)
0 = σ

(i)
0 (ε̄(i)).

5.4. The Transformation Part DTRIP of the Deformation Rate

Finally, the transformation part DTRIP is defined as (Stringfellow et al. [18]):

DTRIP = ḟ
[

A(σe)N +
1
3

∆v δ

]
, where N =

3
2 σe

s, A(σe) = A0 + A1
σe

s∗a
, (34)

f = c(4) denotes the volume fraction of martensite, a superposed dot stands for the material time
derivative, A0, A1 and ∆v are dimensionless parameters, and s∗a is a reference stress. In (34a), the first
term is deviatoric and accounts for “shape changes” caused by martensitic transformation, and the
second term is volumetric (DTRIP

kk = ḟ ∆v).

5.5. The Total Inelastic Deformation Rate Din ≡ Dp + DTRIP

The inelastic deformation rate is defined as the total of the plastic and transformation parts:

Din ≡ Dp + DTRIP, (35)

so that
D = De + Din.

Use of the constitutive equations for Dp and DTRIP leads to

Din =

(
˙̄εp +

A
∆v

ε̇
p
v

)
N +

1
3

ε̇
p
v δ, where ε̇

p
v = Din

kk = ∆v ḟ . (36)

5.6. Evolution of the Volume Fraction of the Phases

According to the transformation kinetics model presented in Section 4.3, the evolution equation
for the volume fraction of martensite can be expressed as

ḟ = ċ(4) = c(a) A f ˙̄ε(a) ≡ g(4) ε̇
p
v, or ε̇

p
v = ∆v ḟ = ∆v c(a) A f ˙̄ε(a), (37)

where c(a) = c(3) denotes the volume fraction of austenite, ε̄(a) = ε̄(3) is the average equivalent plastic
strain in the austenite, and A f is determined by Haidemenopoulos et al. [17]

A f

(
ε̄(a), Σ

)
= vp a

[
N − Nε0

v

(
ε̄(a)
)] (

ε̄(a)
)m f−1

exp [−aε n∗(Σ)] , (38)

where Nε0
v is determined in Equation (23).
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Next, the evolution equations for c(1), c(2), and c(a) are derived. Use of the definition c(1) = V(1)/V
leads to ċ(1) = −c(1) V̇/V. The contribution of elastic deformations to local volume change is ignored,
so that V̇/V = ε̇

p
v = ∆v ḟ and

ċ(1) = −c(1) ε̇
p
v ≡ g(1) ε̇

p
v. (39)

Likewise
ċ(2) = −c(2) ε̇

p
v ≡ g(2) ε̇

p
v, (40)

and, since c(1) + c(2) + c(a) + c(m) = 1, ċ(a) = −( ḟ + ċ(1) + ċ(2)) or

ċ(a) = −
(

1
∆v
− c(1) − c(2)

)
ε̇

p
v ≡ g(3) ε̇

p
v. (41)

5.7. The Elastoplastic Tangent Modulus

An equation relating the Jaumann derivative
∇
σ to the deformation rate D through the elastoplastic

tangent modulus tensor L is derived from the elastoplastic constitutive equations. The derivation is
as follows.

The elastic deformation rate De is written as follows

De = D−Din = D−
[(

˙̄εp +
A
∆v

ε̇
p
v

)
N +

1
3

ε̇
p
v δ

]
.

Since ε̇
p
v = ∆v c(a) A f α(a) ˙̄εp ≡ m ˙̄εp, last equation yields

De = D− ˙̄εp
[(

1 + m
A
∆v

)
N +

m
3

δ

]
.

Substitution of the above expression for De into the hypoelastic constitutive Equation (26)

(
∇
σ = Le : De) results in

∇
σ = Le :

{
D− ˙̄εp

[(
1 + m

A
∆v

)
N +

m
3

δ

]}
= Le : D− ˙̄εp

[
2 G

(
1 + m

A
∆v

)
N + m κ δ

]
, (42)

where L : N = 2 G N and L : δ = 3 κ δ were taken into consideration.
Φ is an isotropic function, therefore the “consistency condition” Φ̇ = 0 can be expressed as [72]

Φ̇ =
∂Φ
∂σ

:
∇
σ +

4

∑
i=1

(
∂Φ

∂ε̄(i)
˙̄ε(i) +

∂Φ
∂c(i)

ċ(i)
)
= 0. (43)

Substitution of (42) for
∇
σ and of the evolution equations of ˙̄ε(i) and ċ(i) into the consistency

condition leads to

N :
(
Le : D− ˙̄εp

[
2 G

(
1 +

A
∆v

m
)

N + m κ δ

])
+

4

∑
i=1

(
∂Φ

∂ε̄(i)
α(i) ˙̄εp +

∂Φ
∂c(i)

g(i) ε̇
p
v

)
= 0, (44)

or

2 G N : D− 3 G ˙̄εp
(

1 +
A
∆v

m
)
+ ˙̄εp

4

∑
i=1

(
∂Φ

∂ε̄(i)
α(i) + m

∂Φ
∂c(i)

g(i)
)
= 0, (45)

where N : L = 2 G N, N : N = 3/2, N : δ = 0, and ε̇
p
v = m ˙̄εp were taken into consideration.

Last equation leads to

˙̄εp =
2 G
L

N : D, (46)
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where

L = 3 G
(

1 + m
A
∆v

)
+ H, H = −

4

∑
i=1

(
∂Φ

∂ε̄(i)
α(i) + m

∂Φ
∂c(i)

g(i)
)

. (47)

Substitution of the expression for ˙̄εp from (46) into (42) leads to

∇
σ = L : D with L = Le − 2 G

L

[
2 G

(
1 + m

A
∆v

)
N N + m κ δ N

]
, (48)

where m = ∆v A f c(a) α(a).
The numerical integration of the constitutive equations in the context of a finite element

formulation is discussed in Appendices A and B.

6. Comparison of the Constitutive Model with Experimental Data

The flow stresses in the phases are written as follows

σ
(r)
y = σ

(r)
y

(
ε̄(r)
)

, (49)

where r denotes the number of the phase, σ
(r)
y the yield stress, and ε̄(r) the equivalent plastic strain.

The hardening behavior of the phases is determined through detailed literature search.
The hardening behavior of ferrite, bainite, and martensite were acquired from experimental data
presented in “Technical Steel Research” [73]. In particular, data for the annealed ferritic steel DOCOL
600 were used to determine the flow curve σ

(1)
y of ferrite. To determine σ

(2)
y for the bainitic phase,

data from uniaxial tension tests conducted on a 0.5% C steel subjected to bainitic treatment (coiling
temperature at 950 ◦C) are used. Data for the partially martensitic steel DOCOL 1400 with a high
volume fraction (95%) of martensite are used to find σ

(m)
y . The resulting expressions at 25 ◦C are

σ
(1)
y = 350

(
1 +

ε̄(1)

0.0042

) 1
5.7

, σ
(2)
y = 825

(
1 +

ε̄(2)

0.0104

) 1
10.36

, σ
(m)
y = 1132

(
1 +

ε̄(m)

0.0004

) 1
16.65

, (50)

where the flow stresses σ
(i)
y are in MPa.

It appears that there are no reliable data for the flow curve of pure austenite in the literature.
An estimation for σ

(a)
y is given in Equation (51) below, based on the following reasoning. In the

production of TRIP steels, the final step that follows intercritical annealing is isothermal holding in
the bainite transformation range. During the formation of bainitic ferrite, carbon is rejected to the
retained austenite, and the carbon content of the retained austenite is raised to values above 1 wt% [74].
This provides chemical stabilization and raises the austenite yield strength considerably; values in the
range of 500–550 MPa were reported [16,75]. Therefore, the stress-strain curve of retained austenite is
expected to lie above that of ferrite, which exhibits a lower yield strength due to its very low carbon
content. The following expression is used for the flow curve austenite at 25 ◦C:

σ
(a)
y = 530

(
1 +

ε̄(a)

0.08

) 1
4.2

in MPa. (51)

Figure 10 illustrates the hardening curves of the individual phases as given by (50) and (51).
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Figure 10. Hardening behavior of the constituent phases for the four-phase TRIP steel.

Experiments

The mechanical properties of the TRIP material were evaluated via uniaxial tension tests.
An INSTRON 8801 servo-hydraulic machine with 100 kN load capacity was employed for the tensile
tests. Mechanical properties were determined according to the ASTME8M at a constant crosshead
velocity of 0.5 mm/min. Two specimens were tested in the longitudinal (L) direction using a 25-mm
gage length clip-on extensometer. The geometry of the specimen used for the tensile tests is depicted
in Figure 11.

The mechanical properties derived from the stress-strain curve are presented in Table 3. The yield
stress and ultimate tensile strength is 530 MPa and 762 MPa, respectively. A high strain hardening
rate at early stages of plastic straining is observed. The stable RA microstructure results in a gradual
austenite transformation [76] and progressive hardening until necking at a uniform elongation of
25.4% [77,78].

Figure 11. Geometry of tensile specimen (ASTM E8M).

Table 3. Mechanical properties of TRIP steel.

σy 0.2 [MPa] σUTS [MPa] A f [%] Ag [%] n K [MPa]

TRIP700 530 762 28.6 25.14 0.166 1182

According to the simulation results of the heat treatment presented in Section 2.3, the initial
volume fractions for the individual phases are c(1) = 0.507, c(2) = 0.327, c(a) = 0.166, and c(m) = 0.0.

The constitutive model was used together with the ABAQUS general purpose finite element
code to study the problem of uniaxial tension and the results are compared with the corresponding
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experimental data. One four-node isoparametric axisymmetric finite element (CAX4H in ABAQUS) is
used to solve the uniaxial tension problem.

In the calculations, the Young’s modulus is E = 220 GPa and the Poisson ratio is ν = 0.3.
The relative volume change related to the martensitic transformation ∆v, used in the constitutive
equation for DTRIP (Equation (34)), is taken to be ∆v = 0.02.

A very important part of the problem is the evolution of the volume fraction of martensite
f during the uniaxial tension test. It is well known that the f -ε curve (ε = uniaxial strain) has
a sigmoidal shape (Olson and Cohen [79]). The values of the parameters in the transformation
kinetics model were defined in Section 4.3. Figures 12 and 13 display the calculated f -ε and σ-ε
curves and the corresponding experimental data, where σ is the nominal stress. The sigmoidal shape
of the strain-induced transformation is predicted quite well by the transformation kinetics model.
Initially, the transformation rate d f /dε increases with strain, then reaches a rather constant rate and
finally decreases at higher strains as saturation is achieved. Finally, for the temperature considered,
the saturation level is lower than the value of 1, which corresponds to complete transformation.
The model predictions agree well with the experimental data.
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Figure 12. Calculated f -ε curve together with the experimental data (red triangles).



Materials 2020, 13, 458 24 of 40

0.00 0.05 0.10 0.15 0.20 0.25 0.30

100

200

300

400

500

600

700

800

 

 

N
O

M
IN

A
L 

ST
R

ES
S 

[M
Pa

]

NOMINAL STRAIN

 FEM
 EXPERIMENT

Figure 13. Calculated σ-ε curve (blue line) together with the experimental data (red line).

7. Applications

7.1. Necking of a Bar

The constitutive model developed for the TRIP steel is used together with the finite element
method to study the development of a neck in an axisymmetric tension specimen with a geometric
imperfection. A cylindrical specimen with aspect ratio L0/R0 = 3 is considered, with 2 L0 being the
initial length and R0 the initial radius. A cylindrical system is introduced as it is shown in Figure 14.
Symmetric solutions are considered and only one half of the cylindrical specimen is studied. Figure 14
illustrates the finite element mesh used in the calculations; it comprises 1350 four-node isoparametric
axisymmetric elements (CAX4H in ABAQUS) in a 15× 90 grid. The following geometric imperfection
is introduced to encourage necking:

R(z) = R0 − ξ R0 cos
π z
2 L0

, (52)

where R(z) is the perturbed radius and ξ is set equal to 0.005. Figure 14 shows the imposed geometric
boundary conditions.

The deformation is driven by the uniform prescribed end displacement in the z-direction on the
shear-free end z = L0; the lateral surface on r = R0 is kept traction free. The initial values of the
volume fractions of the constituent phases are: c(1)0 = 0.507, c(2)0 = 0.327, c(a)

0 = 0.165, and c(m)
0 = 0.001.

The flow curves σ
(r)
y (r = 1, 4) of the phases are those presented in Section 6. Calculations are also

performed for a non-transforming TRIP steel, in which the volume fractions of all phases are kept
constant and equal to their initial values.

The uniaxial stress-strain curves of the imperfect specimen for both a transforming and a
non-transforming material are depicted in Figure 15. The points of maximum load, which coincide
with the end of uniform elongation in the corresponding specimen are denoted by the arrows. For the
TRIP steel, the end of uniform elongation occurs at a nominal strain of 18.4% and 750 MPa stress,
while for the non-transforming steel at 16% and 705 MPa respectively. Figure 15 shows that the
TRIP phenomenon, in addition to strengthening the material, increases considerably the range of
uniform elongation.
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Figure 14. The finite element model employed for the analysis and a schematic representation of the
boundary conditions imposed.
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Figure 15. Stress-strain curves for a transforming steel and a “non-transforming” steel. The arrows
show the position of the maximum load.

Figure 16 depicts the evolution of the radius at the minimum cross section of the specimen for
the transforming and non-transforming materials, and Figure 17 shows the corresponding deformed
configurations. At a nominal strain of 35%, the minimum cross section in the TRIP steel contracts 39.2%,
whereas in the non-transforming material it contracts 44.7%. The formation of martensite stabilizes the
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neck and leads to its propagation down the length of the specimen. This result is consistent with the
findings of Papatriantafillou et al. [19,80].
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Figure 16. Evolution of the radius at the minimum cross section of the specimen for a transforming
steel and a “non-transforming” steel.

(a) (b)

Figure 17. Deformed configurations for a nominal strain of 35%: (a) transforming,
(b) “non-transforming” steel.

7.2. Forming Limit Diagrams

“Forming limit diagrams” for the TRIP steel under investigation are calculated using the
constitutive model presented in the previous sections. Forming limit diagrams show the maximum
deformation a sheet metal can be subjected to before the material fails by flow localization in a narrow
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straight band. Calculations are also carried out for a non-transforming steel with the same initial
values of the volume fractions of the phases.

A sheet made of TRIP steel is deformed uniformly on its plane in a way that the in-plane principal
strain increments increase proportionally. The possibility of the formation of an instability in the form
of a narrow straight band (Figure 18) is studied.

Figure 18. Narrow band in biaxially stretched sheet.

As discussed in Section 5.7, the constitutive equations can be expressed as (Equation (48a))

∇
σ = L : D, (53)

where L is the elastoplastic tangent modulus tensor defined in (48b).
The formulation of the problem is more straightforward if “nominal” quantities are used. It can

be readily shown that using the 1st Piola-Kirchhoff stress tensor t = J F−1 · σ, the rate-constitutive
Equation (53) can be written as

ṫ =R : ḞT or ṫij = Rijkl Ḟlk,

where J = detF,

Rijkl = J F−1
im F−1

kn

(
Lmjnl + Vmjnl

)
, and Vijkl =

1
2

(
σik δjl − δik σjl − σil δjk − δil σjk

)
+ σij δkl .

A state of uniform plane stress is assumed inside and outside the band and the possibility of the
formation of a neck (band) as shown in Figure 18 is investigated. Let X1 − X2 be the plane of the sheet
and H the initial thickness of the sheet. Greek indices (α, β, γ, δ) are introduced and take values in the
range (1, 2). The in-plane displacements are continuous, therefore their spatial derivatives parallel
to the band remain uniform. Let

[
∂uα/∂Xβ

]
be the displacement gradient discontinuities across the

band, where [ ] denotes the difference of the field within the band and outside the band, uα is the
α-component (in-plane) of the displacement field, and Xβ the β-component of the position vector X of
a material point in the undeformed configuration. It is a well known result in Mechanics of Materials that
the only discontinuities in the displacement gradient are restricted kinematically to the following form
(Hadamard [81], Hill [82], Rice [83]) [

∂uα

∂Xβ

]
= Gα Nβ, (54)

where Nβ is the β-component of the unit vector N normal to the band in the undeformed configuration,
and Gα the α-component of the vector G that defines the “jump” in the normal derivative of u,
i.e., [∂u/∂N] ≡ [(∂u/∂X) ·N] = G. The vector G takes a constant value within the neck and depends
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on the imposed uniform deformation outside the neck. Next, a methodology for the calculation of G
is presented.

Equation (54) leads to the conclusion that the in-plane components of the deformation gradient
inside the band can be written as

Fb
αβ = Fαβ + Ga Nβ,

with superscript b denoting quantities inside the band, whereas quantities with no superscript refer to
the uniform field outside the band. The deformation gradients in a matrix form are

[F] =

 λ1 0 0
0 λ2 0
0 0 λ3

 and
[

Fb
]
=

 λ1 + G1 N1 G1 N2 0
G2 N1 λ2 + G2 N2 0

0 0 λb
3

 , (55)

where λi are the stretch ratios. The plane stress condition σ33 = 0 insinuates t33 = 0. The condition
ṫ33 = 0 is solved for Ḟ33, so that the in-plane constitutive relations required for the sheet necking
analysis are written in the form:

ṫαβ = Cαβγδ Ḟδγ with Cαβγδ = Rαβγδ −Rαβ33
R33γδ

R3333
. (56)

Similarly, the in-plane constitutive relations within the band are

ṫb
αβ = Cb

αβγδ Ḟb
δγ = Cb

αβγδ

(
Ḟδγ + Ġδ Nγ

)
with Cb

αβγδ = Rb
αβγδ −Rb

αβ33

Rb
33γδ

Rb
3333

. (57)

Equilibrium across the neck requires that

T = Tb, where Tα = H Nβ tβα and Tb
α = Hb Nβ tb

βα. (58)

The rate form of this equilibrium relationship is

Ṫα ≡ H Nβ ṫβα = Hb Nβ ṫb
βα ≡ Ṫb

α . (59)

Substitution of Equations (56) and (57) in (59) and use of Equation (55) for F and Fb leads to
the expression

A · Ġ = B · ḃ, (60)

where

Aαβ = Nγ Cb
γαδβ Nδ, Bαβ = Nγ

(
H
Hb Cγαββ − Cb

γαββ

)
(no sum on β), bα = λα.

Equation (60) expresses the rate of equilibrium equation across the band, i.e., the rate of (58),
in terms of Ġ. In (60), the jump G in the normal derivative of u across the band is determined in terms
of the imposed uniform stretching through b (bα = λα).

In the case of a perfect sheet (Hb = H), the right hand side of (60) vanishes, since Hb = H and
Cb = C lead to B = 0, and the deformation continues to be homogenous (Ġ = 0) until the condition
for local necking bifurcation det[A] = 0 is met.

The methodology of Marciniak and Kuzyski [84] is used in the calculations. A small initial
imperfection is assumed to exist in the sheet and gradual localization of the strains at the imperfection
leads to necking. In particular, a straight narrow band of reduced thickness Hb < H is considered
(Figure 18). A state of uniform plane stress inside and outside the band is assumed and the problem
is to determine the uniform state of deformation within the band that is conforming kinematically
and statically with the prescribed uniform state outside the band (Tvergaard [85,86], Needleman and
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Tvergaard [87]). When the sheet is not perfect (Hb < H), the right hand side of (60) does not eliminate
(Cb 6= C), so (60) can be solved for Ġ. Since the initial sheet thickness inside and outside the band,
and the imposed uniform deformation history F outside the band are known, Equations (60) are solved
incrementally for ∆G = Ġ ∆t to acquire the deformation history within the band. Localization takes
place when the ratio of some scalar measure of the amount of incremental straining within the band to
the corresponding value outside the band becomes unbounded.

The deformation gradient outside the band F is prescribed in a way that the principal logarithmic
strains ε1 and ε2 outside the band increase proportionally:

dε2

dε1
=

ε2

ε1
= ρ = const. so that λ2 = λ

ρ
1.

The plane stress algorithm discussed in Appendix B is used to acquire the uniform solution
outside the band. At the end of each increment, ∆G is calculated using Equation (60) and subsequently
the deformation gradient within the band Fb is defined. Next, the plane stress algorithm is used again
to acquire the uniform solution within the band. The localization condition is met when d|G|/dλ1 = ∞,
i.e., when det[A] = 0 within the band.

To increase the precision of the calculations, instead of the rate of equilibrium Equation (60),
equilibrium itself (58) is used:

Tn+1 = Tb
n+1, (61)

where the subscript n + 1 denotes values at the end of the increment. Then, the approximations
Tn+1 ' Tn + Ṫn ∆t = Tn + H N · ṫn ∆t and Tb

n+1 ' Tb
n + Ṫb

n ∆t = Tn + H N · ṫb
n ∆t are used in (61).

Finally, (56) and (57) are used for ṫn and ṫb
n, and (55) is used for F and Fb, to find

An · ∆G = Bn · ∆b +
1

Hb (Tn − Tb
n), (62)

which is used for the determination of ∆G instead of (60). The last term on the right hand side of (62)
takes into consideration any unbalanced forces at end of the previous increment.

The initial values of the volume fractions of the constituent phases are: c(1)0 = 0.507, c(2)0 = 0.327,

c(a)
0 = 0.165, and c(m)

0 = 0.001. The curves σ
(r)
y , r = 1, 4 that define the variation of the flow stress of the

phases and the material data used in the calculations are those presented in Section 6. Calculations are
also conducted for a non-transforming TRIP steel with the same initial values of the volume fractions
of the phases.

The unit vector N can be expressed as N = cos Ψ e1 + sin Ψ e2, with Ψ being the angle of
inclination of the band relative to the X1 axis in the undeformed configuration. For each value
of ρ = dε2/dε1, calculations are conducted for values of Ψ covering the range 0 ◦ ≤ Ψ ≤ 90 ◦ and
determine the strain level at which the localization condition det[A] = 0 is first met. The critical value
Ψcr for each ρ is defined as the one resulting in the minimum localization strain.

Figure 19 depicts “forming limit curves” for proportional straining for a case without imperfection
(Hb/H = 1) and for two different values of the initial thickness imperfection, namely Hb/H = 0.999
and Hb/H = 0.99. The three solid curves denote the TRIP steel, while the dashed curves correspond
to the non-transforming steel. It is observed that the TRIP phenomenon increases in general the
necking localization strains. This result is consistent with the findings of Papatriantafillou et al. [19,80],
who used a rate dependent constitutive model for TRIP steels (as opposed to the rate independent
model used here). For the case of plane strain (ρ = 0) and no imperfection, the critical strain εcr

1
increases from 0.1608 for the non-transforming steel to 0.1759 for the TRIP steel. The values of εcr

1
for Hb/H = 0.999 and ρ = 0 are 0.1417 for the non-transforming steel and 0.1575 for the TRIP steel;
for Hb/H = 0.99 and ρ = 0, εcr

1 is 0.1083 for the non-transforming steel and 0.1254 for the TRIP steel.
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Figure 19. Forming limit curves for two different values of initial thickness inhomogeneities
Hb/H = 0.999 and Hb/H = 0.99. The solid lines correspond to the TRIP steel, whereas the dashed
lines are for a non-transforming steel.

8. Conclusions

The mechanical properties of TRIP steels are intrinsically associated with the stability of retained
austenite, which results from the heat treatment design. In the current work, models for the heat
treatment of TRIP steels, the austenite stability, the transformations kinetics of austenite as well as the
mechanical behavior of the composite material were developed. The predictions of the models were
then verified with an experimental study.

In particular, a 2D multi-phase field (MPF) model was employed for the prediction of the
microstructural features of a CR-TRIP700 steel during a two-stage heat treatment, consisting of
intercritical annealing, followed by an isothermal bainitic treatment. The MPF model is able to describe
the temporal evolution of the volume fractions and the average grain size of the phases, as well as
their average concentration in carbon, aluminum, and manganese. The phase-field results, obtained at
the end of the heat treatment, were implemented in the Mσ

s temperature model. Both the chemical
enrichment and the size refinement of the retained austenite resulted in a rather stable retained
austenite dispersion.

An experimental validation of the heat treatment process was performed. The measurements
concerning the volume fraction and the average grain size of retained austenite were compared to the
respective phase-field results. A good agreement between the experimental data and the phase-field
simulation results was observed.

The Mσ
s temperature model was employed to predict the stability of the retained austenite.

In order to take advantage of the strain-induced transformation occurring in TRIP steels,
Mσ

s temperature should be bellow room temperature. The value of the Mσ
s temperature predicted by

the model is consistent with the experimental measurements of the SS-TV-TT technique. The yield
strength, the mean particle size, and the stress state influence austenite stability. An increase in any of
those parameters results in an increase in the Mσ

s temperature, leading to a decrease in the stability of
the retained austenite.
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The phase-field results, obtained at the end of the heat treatment, were also implemented in a
model for the transformation kinetics of retained austenite. The sigmoidal shape of the strain-induced
transformation was predicted quite well by this model.

The transformations kinetics model and non linear homogenization techniques for non-linear
composites were used to develop a constitutive model to describe the mechanical behavior of the
TRIP steel under investigation. A method for the numerical integration of the constitutive model
in the context of a finite element formulation was presented, and the model was introduced in
a general-purpose finite element code (ABAQUS). In addition, a methodology for the numerical
integration of the constitutive equations under plane stress conditions was discussed. One-element
finite element calculations for the uniaxial tension problem were conducted, and the results were
compared with experimental data obtained from uniaxial tension tests. The model predictions
agree well with the experiments. The problem of necking under tension was analyzed thoroughly,
and “forming limit diagrams” were calculated. In both cases it is evident that the TRIP phenomenon
not only strengthens the material, but also increases considerably the range of uniform elongation.

The models developed provide an integrated simulation toolkit for the computer-assisted design
of TRIP steels, which can be used to translate mechanical property requirements into optimised
microstructural characteristics and to identify the appropriate processing routes. This methodology can
be employed for other steel grades used in the automotive industry with the appropriate calibration.
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Appendix A. Numerical Implementation of the Constitutive Model

In a finite element environment, the solution is developed incrementally, and the constitutive
equations are integrated at the element Gauss integration points. At a Gauss point, the solution(

Fn, σn, c(r)n , ε̄
(r)
n

)
at time tn as well as the deformation gradient Fn+1 at time tn+1 = tn + ∆t are known,

and the problem is to determine
(

σn+1, c(r)n+1, ε̄
(r)
n+1

)
.

Let An and An+1 stand for the values of A at the start tn and at the end tn+1 of the increment;
the notation ∆A = An+1 − An is used.

The effective flow stress σ̃0(c
(i)
n+1, ε̄

(i)
n+1) of the TRIP steel is assumed to remain constant over the

time increment (tn, tn+1) and can be calculated from the optimization problem in (30), in which the
flow stresses σ

(i)
0 of the phases take values (Papadioti et al. [26,70])

σ
(i)
0 = (1− β)σ

(i)
0 (ε̄

(i)
n ) + β σ

(i)
0 (ε̄

(i)
n+1), 0 ≤ β ≤ 1. (A1)

The optimal values of ŷ(i)n+1, which are used to define the strain concentration factors α(i) in (32b) for
the increment, are also calculated from the optimization problem (30). The calculation is implicit in
general, except when β = 0 is used in (A1).

In the following, an algorithm suitable for three-dimensional, plane strain, and axisymmetric
problems is presented.
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The constitutive equations are written as [19,80]

D = De + Din ⇒ Ė = Ėe + Ėin, (A2)

σ
5
= Le : De ⇒ ˙̂σ = Le : Ėe, (A3)

Din =

(
˙̄εp +

A
∆v

ε̇
p
v

)
N +

1
3

ε̇
p
v δ ⇒ Ėin =

(
˙̄εp +

A
∆v

ε̇
p
v

)
N̂ +

1
3

ε̇
p
v δ, (A4)

D(i) = α(i) Dp ⇒ ˙̄ε(i) = α(i) ˙̄εp, (A5)

Φ(σ, c(i), ε̄(i)) = 0 ⇒ σe(σ̂)− σ̃0(c(i), ε̄(i)) = 0, (A6)

where the assumption was made that the Lagrangian triad associated with ∆F(t) = F(t) · F−1
n =

R(t) ·U(t) (polar decomposition) remains fixed over the time increment (tn, tn+1), E(t) = ln U(t) is the
Lagrangian logarithmic strain relative to the start of the increment (En = 0), σ̂(t) = RT(t) · σ(t) ·R(t),
and N̂(t) = RT(t) ·N(t) · R(t).

The evolution equations of the volume fractions of the phases are:

ċ(1) = −c(1) ε̇
p
v, (A7)

ċ(2) = −c(2) ε̇
p
v, (A8)

ḟ = ċ(m) = ċ(4) =
ε̇

p
v

∆v
= c(a) A f ˙̄ε(a) = c(a) A f α(a) ˙̄εp, (A9)

ċ(3) = ċ(a) = −
(

ċ(1) + ċ(2) + ċ(m)
)

. (A10)

Equations (A4) that determines the inelastic deformation rate Ėin, (A5) that define the ε̄(i), and (A9)
that defines the evolution of the volume fraction of martensite f , all require numerical integration.
The remaining equations are integrated exactly:

Ė = Ėe + Ėin ⇒ ∆Ee = ∆E− ∆Ein, (A11)

σ̂n+1 = σn +Le : ∆Ee = σn +Le :
(

∆E− ∆Ein
)
= σ̂e −Le : ∆Ein, (A12)

c(1)n+1 = c(1)n exp(−∆ε
p
v), (A13)

c(2)n+1 = c(2)n exp(−∆ε
p
v), (A14)

fn+1 = fn +
∆εv

∆v
, (A15)

c(a)
n+1 = 1−

(
fn+1 + c(1)n+1 + c(2)n+1

)
, (A16)

where σ̂e = σn +Le : ∆E is the (known) “elastic predictor”. The rest of the equations are

σe|n+1 − σ̃0

(
c(i)n+1, ε̄

(i)
n+1

)
= 0, (A17)

Ėin =

(
˙̄εp +

A
∆v

ε̇
p
v

)
N̂ +

1
3

ε̇
p
v δ, N̂ =

3
2 σe

ŝ A = A0 + A1
σe

s∗a
, (A18)

˙̄ε(i) = α(i) ˙̄εp, (A19)

ε̇
p
v = ∆v c(a) A f α(a) ˙̄εp. (A20)

The backward Euler method is used for the numerical integration of the inelastic deformation
rate (A18), and the forward Euler scheme is used for the numerical integration of (A19) and (A20).
Use of a backward Euler scheme for the numerical integration of Ėin is imperative in order to be
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able to use increments of reasonable size (Aravas and Ponte Castañeda [88]). Numerical integration
of (A18)–(A20) yields

∆Ein =

(
∆ε̄p +

An+1

∆v
∆ε

p
v

)
N̂n+1 +

1
3

∆ε
p
v δ, An+1 = A0 + A1

σe|n+1

s∗a
, (A21)

∆ε̄(i) = α
(i)
n ∆ε̄p, (A22)

∆ε
p
v = ∆v c(a)

n A f

∣∣∣
n

α
(a)
n ∆ε̄p. (A23)

Substitution ofLe = 2 µK+ 3 κJ and of Equation (A21) for ∆Ein in the elasticity Equation (A12)
leads to

σ̂n+1 = σ̂e − 2 G
(

∆ε̄p +
An+1

∆v
∆ε

p
v

)
N̂n+1 − κ ∆ε

p
v δ. (A24)

Calculation of the deviatoric part of last equation and use the definition of N̂n+1 leads to the
conclusion that the stress deviator ŝn+1 is proportional to the deviatoric part of the elastic predictor ŝe:

ŝn+1 = ŝe − 2 G
(

∆ε̄p +
An+1

∆v
∆ε

p
v

)
3

2 σe|n+1
ŝn+1 or ŝn+1 =

ŝe

1 + 3 G
σe |n+1

(
∆ε̄p + An+1

∆v
∆ε

p
v

) . (A25)

The definition of the “direction tensor” N̂ and Equation (A25b) show that N̂n+1 can be determined
from the elastic predictor:

N̂n+1 =
3

2 σe|n+1
ŝn+1 =

3
2

1√
3
2 ŝn+1 : ŝn+1

ŝn+1 =
3
2

1√
3
2 ŝe : ŝe

ŝe ≡ N̂e = known. (A26)

Projection of (A25a) on N̂n+1 and the relationship σ̂ : N̂ = σe lead to

σe|n+1 = σe
e − 3 G

(
∆ε̄p +

An+1

∆v
∆ε

p
v

)
,

where σe
e = ŝe : N̂n+1 = known. The expression An+1 = A0 + (A1/s∗a)σe|n+1 is substituted in the last

equation, which is then solved for σe|n+1 to yield

σe|n+1

(
∆ε̄p, ∆ε

p
v

)
=

σe
e − 3 G

(
∆ε̄p + A0

∆v
∆ε

p
v

)
1 + 3 G

s∗a
A1
∆v

∆ε
p
v

. (A27)

Substitution of Equation (A27) in the yield condition (A17) leads to

F(∆ε̄p) ≡
σe

e − 3 G
(

∆ε̄p + A0
∆v

∆ε
p
v

)
1 + 3 G

s∗a
A1
∆v

∆ε
p
v

− σ̃0

(
c(i)n+1, ε̄

(i)
n+1

)
= 0, (A28)

where ∆ε
p
v, c(i)n+1, and ε̄

(i)
n+1 are all viewed as functions of ∆ε̄p. ∆ε̄p is selected to be the primary unknown

and Equation (A28) is the basic equation, in which
(

∆ε
p
v, ε̄

(i)
n+1, c(i)n+1

)
are defined in terms of the basic

unknown ∆ε̄p by the equations:
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∆ε
p
v(∆ε̄p) = ∆v c(a)

n A f

∣∣∣
n

α
(a)
n ∆ε̄p, (A29)

ε̄
(i)
n+1(∆ε̄p) = ε̄

(i)
n + α

(i)
n ∆ε̄p, (A30)

c(1)n+1(∆ε
p
v) = c(1)n exp(−∆ε

p
v), (A31)

c(2)n+1(∆ε
p
v) = c(2)n exp(−∆ε

p
v), (A32)

c(3)n+1(∆ε
p
v) = fn+1(∆ε

p
v) = fn +

∆ε
p
v

∆v
, (A33)

c(4)n+1(∆ε
p
v) = c(a)

n+1(∆ε
p
v) = 1−

(
fn+1 + c(1)n+1 + c(2)n+1

)
. (A34)

The non-linear Equation (A28) for ∆ε̄p is solved using Newton’s method. After ∆ε̄p

was found,
(

∆ε
p
v, ε̄

(i)
n+1, c(i)n+1

)
are calculated by using (A29)–(A34), σe|n+1 is found from (A27),

An+1 = A0 + (A1/s∗a) σe|n+1 is calculated, σ̂n+1 is determined from (A24), and the integration is
completed with the calculation of

σn+1 = Rn+1 · σ̂n+1 · RT
n+1.

Appendix B. Plane Stress Algorithm

In this appendix, a plane stress algorithm for the numerical integration of the constitutive
equations is developed. In plane stress problems, the out-of-plane component of the deformation
gradient is not defined kinematically and the algorithm described in Appendix A needs to be altered.
The geometry analyzed is a thin plane disc of uniform thickness loaded in its plane. The mean plane
of the disc coincides with the plane X3 = 0, and the in-plane displacements are of the form

u1 = u1(X1, X2), u2 = u2(X1, X2), u3 = u3(X3). (A35)

The deformation gradient and the stress tensor, in isotropic materials, take the following form

[F] =

 F11 F12 0
F21 F22 0
0 0 F33

 and [σ] =

 σ11 σ12 0
σ21 σ22 0
0 0 0

 , (A36)

or in compact form
F = Fαβ eα eβ + F33 e3 e3 and σ = σαβ eα eβ, (A37)

where (e1, e2, e3) are unit vectors along the coordinate axes and the summation convention on repeated
Greek indices (α, β) is used. (α, β) take values in the range (1, 2).

In finite strain problems, when the in-plane displacement field is inhomogeneous, the out-of-plane
displacement and the corresponding thickness variation are functions of (X1, X2). It is assumed that,
during material deformation, the resulting thickness variation is negligible, therefore the plane stress
assumption is reasonable and (A36) are valid to a good approximation.

In plane stress problems, the method described in Appendix A needs to be modified since the
out-of-plane component of the deformation gradient F33 is not defined kinematically. The deformation
gradient ∆Fn+1 = Rn+1 ·Un+1 associated with the current increment is written in the form

[∆Fn+1] =

 ∆F̄11 ∆F̄12 0
∆F̄21 ∆F̄22 0

0 0 ∆F33

 , (A38)
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with ∆F̄αβ (α, β = 1, 2) being the known in-plane components, and ∆F33 the unknown out-of-plane
component. Likewise, the associated right stretch tensor Un+1 and the orthogonal tensor Rn+1 from
the polar decomposition of ∆Fn+1 are expressed as

[Un+1] =

 Ū11 Ū12 0
Ū21 Ū22 0

0 0 U33

 and [Rn+1] =

 cos θ̄ − sin θ̄ 0
sin θ̄ cos θ̄ 0

0 0 1

 , (A39)

and the logarithmic strain tensor En+1 = ln Un+1 associated with the increment is expressed as

[En+1] =

 ∆Ē11 ∆Ē12 0
∆Ē21 ∆Ē22 0

0 0 ∆E3

 , (A40)

where bared quantities ∆Ēαβ are known, and ∆E3 is the unknown out-of-plane component of En+1.
It is worthy of note that the only difference with the method described in Appendix A is that the values
of ∆F33 and ∆E3 are unknown when the process of the numerical integration starts. The plane stress
condition is used to calculate the value of ∆E3:

σ33|n+1 = σ̂33|n+1 = e3 · σ̂n+1 · e3 = 0. (A41)

The logarithmic strain tensor associated with the increment is expressed as

E = ∆Ē + ∆E3 a, with a = e3 e3 = a′ +
1
3

δ, (A42)

where ∆Ē = ∆Ēαβ ea eβ is the known in-plane part of E, and a′ is the deviatoric part of a:

a′ = a− 1
3

akk δ = −1
3
(e1 e1 + e2 e2 − 2 e3 e3) . (A43)

Equations (A11)–(A20) are now expressed as follows:

∆E = ∆Ee + ∆Ein ⇒ ∆Ee = ∆E− ∆Ein, (A44)

σ̂n+1 = σn +Le :
(

∆E− ∆Ein
)
= σn +Le :

(
∆Ē + ∆E3 a− ∆Ein

)
=

= σ̄e −Le :
(

∆Ein − ∆E3 a
)

, (A45)

c(1)n+1 = c(1)n exp(−∆ε
p
v), (A46)

c(2)n+1 = c(2)n exp(−∆ε
p
v), (A47)

fn+1 = fn +
∆εv

∆v
, (A48)

c(a)
n+1 = 1−

(
fn+1 + c(1)n+1 + c(2)n+1

)
, (A49)

σe|n+1 − σ̃0

(
c(i)n+1, ε̄

(i)
n+1

)
= 0, (A50)

∆Ein =

(
∆ε̄p +

An+1

∆v
∆ε

p
v

)
N̂n+1 +

1
3

∆ε
p
v δ, An+1 = A0 +

A1

s∗a
σe|n+1, (A51)

∆ε̄(i) = α
(i)
n ∆ε̄p, (A52)

∆ε
p
v = ∆v c(a)

n A f

∣∣∣
n

α
(a)
n ∆ε̄p, (A53)

where bared quantities are known, and σ̄e = σn +Le : ∆Ē is the “elastic predictor” corresponding to
the known part of ∆E.
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First, the deviatoric and spherical parts of σ̂n+1 is calculated:

ŝn+1 = s̄e − 2 G
[(

∆Ein
)′
− ∆E3 a′

]
, (A54)

pn+1 =
1
3

σ̂n+1 : δ = p̄e − κ
(

∆Ein
kk − ∆E3

)
, (A55)

where p̄e = σ̄kk/3, s̄e = σ̄e − p̄e δ, and
(
∆Ein)′ is the deviatoric part of ∆Ein. Combination of

Equations (A51), (A54) and (A55) leads to

ŝn+1 = s̄e − 2 G
[
(∆ε̄p + An+1 ∆ f ) N̂n+1 − ∆E3 a′

]
, (A56)

pn+1 = p̄e − κ
(

∆ε
p
v − ∆E3

)
. (A57)

Use of the definition N̂n+1 = 3
2 σe |n+1

ŝn+1 into (A56) leads to an expression for ŝn+1, which shows
that ŝn+1 and s̄e are not proportional:

ŝn+1 =
s̄e + 2 G ∆E3 a′

1 + 3 G
σe |n+1

[
∆ε̄p +

(
A0 + A1

σe |n+1
s∗a

)
∆ε

p
v

∆v

] . (A58)

Last equation yields the following expression for σe|n+1:

(σe|n+1)
2 =

3
2

ŝn+1 : ŝn+1 =
3
2
(s̄e + 2 G ∆E3 a′) : (s̄e + 2 G ∆E3 a′)[

1 + 3 G
σe | n+1

(∆ε̄p + An+1 ∆ f )
]2 . (A59)

Since s̄e : s̄e = 2
3 (σ̄e

e )
2, s̄e : a′ = s̄e : a = s̄e

33, and a′ : a′ = 2
3 , (A59) is expressed as

(σe|n+1)
2 =

(σ̄e
e )

2 + 6 G ∆E3 s̄e
33 + 4 G2 ∆E2

3[
1 + 3 G

σe |n+1
(∆ε̄p + An+1 ∆ f )

]2 . (A60)

Next, the expression An+1 = A0 + (A1/s∗a)σe|n+1 is used and last equation is solved for σe|n+1:

σe|n+1 =
G

1 + 3 G
s∗a

A1
∆v

∆ε
p
v

[
F(∆E3)− 3

(
∆ε̄p +

A0

∆v
∆ε

p
v

)]
, (A61)

where

F(∆E3) =

√(
σ̄e

e
G

)2
+ 6

s̄e
33
G

∆E3 + 4 ∆E2
3 .

The quantities ∆ε̄p and ∆E3 are selected to be the basic unknowns of the problem.
The primary equations for their determination are the yield condition and the plane stress condition
σ̂33|n+1 = ŝ33|n+1 + pn+1 = 0. Equations (A61) and (A57) for σe|n+1 and pn+1, are used together with
(A58) to calculate ŝ33|n+1. Then, the basic equations of the problem take the form

σe|n+1 − σ̃0

(
c(i)n+1, ε̄

(i)
n+1

)
= 0, (A62)

s̄e
33 +

4
3 G ∆E3

1 + 3 G
[

∆ε̄p

σe |n+1
+
(

A0
σe |n+1

+ A1
s∗a

)
∆ε

p
v

∆v

] + p̄e − κ
(

∆ε
p
v − ∆E3

)
= 0, (A63)

where
(

∆ε
p
v, c(i)n+1, ε̄

(i)
n+1

)
are all viewed as functions of ∆ε̄p via (A29)–(A34) and σe|n+1 is defined in

terms of ∆ε̄p and ∆E3 in (A61).



Materials 2020, 13, 458 37 of 40

The system (A62)–(A63) for ∆ε̄p and ∆E3 is solved using Newton’s method. After ∆ε̄p and
∆E3 were found,

(
∆ε

p
v, ε̄

(i)
n+1, c(i)n+1

)
are calculated by using (A29)–(A34), σe|n+1 is found from (A61),

An+1 = A0 + (A1/s∗a) σe|n+1 is calculated, σ̂n+1 = ŝn+1 + pn+1 δ is determined from (A58) and (A57),
and the integration is completed with the calculation of

σn+1 = Rn+1 · σ̂n+1 · RT
n+1.
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