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Abstract: A sample of rhyolitic obsidian (OS) was used as raw material for zeolite synthesis by long
(4 days) and fast (2 h)-aging hydrothermal processes. Zeolite synthesis was also performed by a fast
(2 h) sonication method. The products were analysed by X-ray diffraction (XRD) and scanning electron
microscopy (SEM) both immediately after and 3 years after their formation in order to determine
the stability of synthetic materials according to the method used. The results confirm zeolitization
of obsidian both by long-aging conventional hydrothermal heating and fast hydrothermal process.
However, the data highlight the efficiency of direct ultrasound energy in achieving more stable zeolite
crystals over time. These results carried out using a natural source, follow those already obtained
using wastes and pure sources as raw materials thus providing a definitive validation of the different
mechanisms controlling zeolite formation according to the process used. Moreover, the results
confirm the effectiveness of ultrasonic energy in the formation of zeolites that are more stable over
time. Due to the chemical composition of the obsidian precursor, all synthetic zeolites show good
magnetic properties (i.e., saturation magnetization), in view to potential magnetic separation.

Keywords: obsidian; ultrasonic and hydrothermal water bath; zeolite; magnetic properties

1. Introduction

Zeolites are hydrated aluminosilicate minerals consisting of TO4 tetrahedra (T = Si or Al) which
are connected by sharing corner oxygen atoms. They are characterized by peculiar and well-known
proprieties (i.e., high surface area, porosity, and cation exchange capacity) making these minerals very
useful in many applications [1–9]. However, with the aim to improve the zeolite use in some specific
contexts (e.g., water pollution remediation), recent studies have been focused on the development
of magnetic zeolites. Literature data have documented different methods to form magnetic zeolites,
mainly based on addition of preformed iron oxide nanoparticles during the synthesis [10–13]. As an
alternative we recently demonstrated that many kinds of magnetic zeolites can be obtained exploiting
chemical composition of the precursors without the addition of external magnetic nanoparticles [14,15].

Due to the general growing demand for these materials, significant research activities have been
devoted to zeolite synthesis also considering the economical stand, the environmental and safety
implications for sustainable production [16]. As result, literature data have shown zeolite formation by
different methods [17–28], mainly using processes at low aging temperatures [29–34]. In our previous
manuscripts [35,36], the zeolite formation by conventional hydrothermal process or ultrasonic was
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analysed. The experiments were performed using two different raw materials based on silica and
aluminum. In both cases, the results indicated that the hydrothermal process is responsible for slower
geopolymer transformation into well-defined zeolite crystals, whereas the fast precipitation mechanism
determines the formation of metastable zeolites by sonication. The data showed that the two different
approaches also control the stability of the synthetic products over the years [35,36].

Beside the processes, the use of different precursors has also been extensively explored. Zeolites have
been formed from wastes [37–46], natural sources such as clay minerals [47–54] or by adding zeolite
seeds in starting gel with or without organic templates [55–58]. Recently, natural cost-effective and
green silica precursors such as diatomite and obsidian were also used [59–66]. Both materials are
interesting natural precursors due to their relatively low cost and highly reactivity although the
formation of zeolite type strongly depends on the elemental composition of these natural sources as
well as on the used process. Kawano and Tomita [65] demonstrated that phillipsite and merlinoite
formed from alteration of obsidian in NaOH and KOH solution, respectively whereas Mamedova [64]
formed natrolite with high degree of crystallization by a hydrothermal method at 200 ◦C using a mixture
of natural halloysite and obsidian. In our previous paper [62], small crystals of EMT-type zeolite were
synthesized from an obsidian precursor. The data displayed that zeolite formed at a lower incubation
temperature using seawater comparing to distilled water. However, with seawater, EMT showed
higher metastable behavior as indicated by its competitive growth with P-type zeolite [62].

In the present study, the efficiency of ultrasonic versus hydrothermal water bath method to convert
obsidian into zeolite was investigated. Moreover, the stability over the time of the synthetic products
formed from this natural precursor will be studied. Finally, due to the potential complex magnetic and
microstructural properties of the obsidian [67], magnetic characterization of the precursor and final
products were performed.

2. Materials and Methods

A sample of ryholitic obsidian (OS) collected at Punta delle Rocche Rosse (Lipari, Aeolian Islands,
Italy), was used as raw material. It was pre-fused at 600 ◦C for 1 h with NaOH (1:1.2 weight ratio) and
stirred for a night in a seawater solution. In detail, 8 g of pre-fused OS powder was mixed with 42 mL of
seawater. Finally, the sample was submitted to three different aging processes in separate experiments:
(i) a conventional hydrothermal process at 60 ◦C for 4 days (HY4d) [29,30]; (ii) a hydrothermal water
bath method for 2 h at 60 ◦C (HY2h) [35,36]; (iii) an ultrasonic water bath process (240 W, 35 kHz)
for 2 h at 60 ◦C (US2h) [35,36]. After all the aging processes, the solids and solutions were separated
by centrifugation. The solids of all the samples were washed with the same amount of distilled
water and dried in an oven at 80 ◦C. The mineralogical characterization of both OS and synthetic
products (HY4d, HY2h US2h) were carried out by X-ray powder diffraction (XRD) using a Rint Miniflex
powder diffractometer (Rigaku) with Cu-Kα radiation. Morphological observations were performed by
scanning electron microscopy (SEM, Supra 40, Zeiss,) equipped with an energy dispersive spectrometer
(EDS). Chemical composition of obsidian was determined for its major elements by X-ray fluorescence
(XRF, PW 1480, Philips).

DC magnetization measurements were investigated using MPMS XL-5 (Hmax ± 5T, Quantum Design)
and VSM (Hmax ± 2T, Microsense) magnetometers. Each sample, in the form of powder dispersed
within epoxy resin, is placed inside the capsules of polycarbonate. The epoxy resin is used to avoid
any powder movement during the measurements.

3. Results

3.1. Raw Materials

Figure 1 shows the XRD pattern and SEM images of the obsidian raw material. The X-ray profile
shows the typical broad band of a glass material (Figure 1a) confirmed by the irregular particle
morphology displayed by the scanning electron micrographs in Figure 1b. The chemical data (Table 1)
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indicate that obsidian is characterized by a high amount of SiO2 (75.48%) and relative low percentage of
Al2O3 (11.75%) with a following SiO2/Al2O3 ratio of 6.42. The percentage of K2O is 5.41%, whereas the
amounts of Na2O and Fe2O3 are 3.47% and 2.87%, respectively.
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Figure 1. (a) X-ray pattern and (b) SEM picture of rhyolitic obsidian.

Table 1. Chemical composition of obsidian raw material.

Major Constituents (wt.%)
Sample Na2O MgO Al2O3 SiO2 P2O5 K2O CaO TiO2 MnO Fe2O3 SiO2/Al2O3
OS 3.47 0.00 11.75 75.48 0.02 5.41 0.81 0.11 0.10 2.87 6.42
Trace elements (ppm)
Sample Ni Co Sr Zr Cu Zn As Rb Sn Cs Pb
OS 9.75 2.25 17.00 191.00 4.67 60.01 33.00 312.00 30.00 23.00 27.00

Finally, Table 2 shows the chemical composition and salinity of the natural seawater sample used.
The data indicate a composition comparable with the typical average values of seawater.

Table 2. Seawater composition (values in g/L; salinity g/kg).

Sample Salinity Si Al Cl Na Mg Ca K

Natural seawater 35.00 0.0015 0.0011 19.962 7.727 1.375 0.538 0.014

3.2. Starting Process of Obsidian Zeolitization

Figure 2 shows X-ray diffraction data after both HY and US processes. The XRD pattern of HY4d
(Figure 2a) indicates the dominant presence of EMT-type zeolite whose typical hexagonal plate shape
is shown by the SEM pictures in Figure 3. However, it cannot be excluded the presence of low amount
of a faujasite type zeolite (FAU) phase and geopolymers as indicated by the broad band from 20 to 37◦

2θ on the X-ray profile. XRD pattern of the obsidian sample incubated by the hydrothermal water
bath method for 2 h (Figure 2b) indicates the presence of low amount of EMT-type zeolite confirming
the presence of geopolymeric materials. Low percentages of sodalite and halide are also detectable.
The presence of EMT-type zeolite is more evident in US2h XRD profile after ultrasonic water bath
process for 2 h (Figure 2c). In this sample the amount of halite is quite high.
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The field dependence of the magnetization of the OS raw material and all the synthetic zeolite
samples has been investigated at 300 K (Figure 4a). The OS sample shows a ferromagnetic-like behavior
with a very low saturation magnetization (Ms � 0.96 A m2 kg−1), in agreement with the values found
by other authors for obsidian samples [67].
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Figure 4. (a) Field dependence of magnetization recorded at 300 K; (b) Magnification M vs. H in the
range 0–2 T. For all samples, extrapolation to zero of the high field linear portion of the magnetisation
was used to determine the effective magnetic moment (Meff).

This indicates that the magnetic behavior is dominated by some ferrimagnetic oxides like maghemite
(γ-Fe2O3) or magnetite (Fe3O4) present in quite low percentages, in agreement with the chemical
analysis. Both HY2d and US2h show also ferromagnetic-like behavior with Ms values of ~1.32 and
~0.43 A m2 kg−1 respectively. HY2d shows an increase of 27% of Ms with respect to the OS raw
material, indicating that the hydrothermal treatment promotes the formation and stabilization of
ferro(ferrimagnetic) oxides. On the other hand, ultrasound treatment (US2h sample) brings about
a strong reduction (~56%) of Ms with respect to OS sample, inducing us to believe that a higher
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fraction of antiferromagnetic oxides (e.g., hematite, α Fe2O3) and hydroxides (e.g., goethite, FeOOH) is
present [68].

This landscape drastically changes in the samples HY4d, showing an antiferromagnetic behavior
superimposed to a small ferromagnetic contribution in the lower field region [15]. To quantify the
effective magnetic moment (Meff) due to the ferro(ferri)magnetic component, the extrapolation to zero
of the high-field linear portion can be used (Figure 4b) [15]. Meff value is around 1.85 A m2 kg−1,
that is much higher what is expected for nanostructured hematite (<0.5 A m2 kg−1) indicating that the
ferromagnetic contribution could be ascribed to the presence of ferro (ferri)magnetic oxides and not to
uncompensated spin of nanostructured hematite.

3.3. Synthetic Products over the Time

In order to determine the stability of the synthetic products over the time, all the synthetic products
were analysed again by XRD and SEM three years after their formation. Figure 5 shows XRD pattern
of HY4d_3y, HY2d_3y and US2h_3y. The data indicate that the zeolites formed after 4 days of a
conventional hydrothermal process and by the ultrasonic water bath process for 2 h are characterized
by relatively stable behavior. In detail, XRD pattern of HY4d_3y (Figure 5a) indicates the presence
of EMT-type zeolite combined with a lower amount of FAU. However, the peaks of sodalite seem
to be higher comparing to the starting products (HY4d) (Figure 2a). The sample formed by a fast
ultrasonic treatment (US2h_3y, Figure 5c) also shows a quite stable behavior three years after the zeolite
formation (see Figure 2c), whereas a clear phase transformation takes place over the three years in the
zeolite formed by the fast hydrothermal water bath method (HY2h). The X-ray profile in Figure 5b,
in fact, displays the presence of sodalite as the main crystalline phase whereas the prepared sample is
characterized by the presence of large amount of geopolymers and by low percentages of both EMT
and FAU, together with low sodalite (Figure 2b).

4. Discussion

The results of this study can be considered as conclusive data confirming the role of different
processes in controlling both the mechanism of zeolite formation and the stability of synthetic products
over the time, regardless of the raw material used.

Our previous data already demonstrated that obsidian can be successfully used as a precursor
material for the organic-template-free EMT-type zeolite synthesis by a conventional hydrothermal
process at 60 ◦C using a seawater solution [62]. Similarly, in other previous works we showed that
different crystallization mechanisms control the zeolite synthesis according to the processes used
for their formation [35,36]. In those papers, a waste material (fly ash) and Na2O-Al2O3-SiO2-H2O
precursor system were used to perform the experiments.

In the present study, we used one of the last types of natural raw material which remains to
be investigated as a precursor to compare the efficiency of fast hydrothermal and ultrasonic water
bath methods (2 h of treatment) in both type and zeolite stability over the time. Moreover, we also
investigated the differences in both mechanism and zeolite stability between conventional long (4 days)
and fast-aging hydrothermal processes (2 h).

The results indicate that all the synthetic products are characterized by the presence of EMT-type
zeolite as dominant crystalline phase. However, HY4d and HY2h also show the presence of larger
amount of geopolymers comparing to the US2h. The sonicated sample, instead, is characterized by
higher amount of halite.
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The differences between the investigated samples can be explained considering the crystallization
mechanism related to the methods used. In our hypothesis EMT and FAU formation by hydrothermal
process is controlled by a double-step mechanism characterized by geopolymer precipitation from
saturated solution followed by a slow zeolite growth involving the amorphous mass. This hypothesis
is in accordance with the results obtained using both waste sources [35] and pure reagents [36]. It also
explains the presence of a larger amount of geopolymers in HY4d and HY2h as well as the behavior
of these samples over time. The results, in fact, indicate that three years after their formation,
HY2h_3y shows the presence of sodalite as its main phase (Figure 5b), thus confirming that the sample
formed by fast hydrothermal water-bath method changed its mineralogical composition transforming
the metastable EMT and FAU into a more stable form [69] through a progressive action involving the
geopolymer phase.

However, the obsidian sample treated by a long-aging hydrothermal process does not show the
same behavior. Three years after its formation, HY4d_3y, as opposed to HY2h_3y, is not characterized by
the sole presence of sodalite. Its XRD pattern, in fact, shows a mineralogical composition qualitatively
comparable with the starting one. This data suggests that the 4 days-aging hydrothermal process
allows a more complete development of the double-step process for the zeolite formation, thus ensuring
that the crystallization mechanism takes place slowly and therefore affording greater stability over
time to the newly formed minerals. On the other hand, stopping this mechanism just two hours
after activation (i.e., HY2h sample), determines the formation of EMT and FAU seeds with a stronger
metastable behavior particularly displayed in a relative faster transformation at solid-state over time.

The presence of a high amount of halite and the stability over time of the samples formed by the
fast ultrasonic water bath method indicate that the crystallization mechanism by sonication is controlled
by a precipitation process, as already demonstrated in our previous papers [35,36]. The action of
sonication improves both Na, Al, Si and Cl saturation and causes the disruption of nuclei already laid
down in the medium, thus increasing the number of nuclei that quickly precipitate to form EMT and
FAU-type zeolite together with halite.

Moreover, the magnetic results indicate that OS, HY2h and US2h show a ferromagnetic-like
behavior while the fast hydrothermal and ultrasonic water bath treatment affect the saturation
magnetization of the OS raw material. On the other hand, the long aging hydrothermal process
dramatically changed the magnetic behavior, showing an antiferromagnetic-like behavior with a
weak ferromagnetic contribution. The effective magnetic moment indicates that the ferromagnetic
contribution could be due to the presence of ferro(ferri)magnetic oxides.

5. Concluding Remarks

The data indicate that obsidian can be converted into zeolitic material, mainly EMT-type zeolites
exhibiting magnetic properties, by applying three different methods at low temperature (60 ◦C)
and using a seawater solution. The synthesis was performed using fast hydrothermal or ultrasonic
water bath methods (2 h of treatment) or a long-aging conventional hydrothermal process (4 days of
treatment). The results confirm our previous data [35,36] indicating two different mechanisms for the
zeolite synthesis represented by the direct fast zeolite precipitation using ultrasonic method and by
geopolymer formation with a subsequent slower zeolite growth within the amorphous mass applying
the hydrothermal process. Moreover, the data confirmed that the precipitation mechanism control
of zeolite formation by sonication is also responsible for the stability of the synthetic products over
time. However, a stronger antiferromagnetic contribution is observed after the longer hydrothermal
prosses. The transformation of geopolymers into well-organized crystals characterizing the mechanism
of zeolite formation by hydrothermal process is responsible for a slow but progressive transformation
of metastable EMT and FAU-type zeolite into sodalite also using obsidian as raw material. However,
the data indicate that this transformation into more stable forms is as fast as the time of hydrothermal
water bath time is shorter.
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