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Abstract: The simplicity of object shape and composition modification make additive manufacturing
a great option for customized dosage form production. To achieve this goal, the correlation between
structural and functional attributes of the printed objects needs to be analyzed. So far, it has not
been deeply investigated in 3D printing-related papers. The aim of our study was to modify the
functionalities of printed tablets containing liquid crystal-forming drug itraconazole by introducing
polyvinylpyrrolidone-based polymers into the filament-forming matrices composed predominantly
of poly(vinyl alcohol). The effect of the molecular reorganization of the drug and improved tablets’
disintegration was analyzed in terms of itraconazole dissolution. Micro-computed tomography was
applied to analyze how the design of a printed object (in this case, a degree of an infill) affects its
reproducibility during printing. It was also used to analyze the structure of the printed dosage forms.
The results indicated that the improved disintegration obtained due to the use of Kollidon®CL-M
was more beneficial for the dissolution of itraconazole than the molecular rearrangement and liquid
crystal phase transitions. The lower infill density favored faster dissolution of the drug from printed
tablets. However, it negatively affected the reproducibility of the 3D printed object.

Keywords: 3D printing; fused deposition modeling; hot-melt extrusion; solid dosage forms; itraconazole

1. Introduction

Additive manufacturing has huge potential to revolutionize the methods of drug delivery system
formation. It was proven for mass-scale drug production by Aprecia Pharmaceuticals, which registered
the first 3D printed drug, Spritam®, in 2015. However, the use of additive manufacturing also enables
the preparation of small batches of customized, on-demand-prepared formulations—for example,
in the treatment of patients with rare diseases or for clinical trials. The great applicability of 3D printing
(3DP) in the pharmaceutical field results from the simplicity of object shape modification, which allows
the production of dosage forms of complex shape and internal structure, containing one or more active
pharmaceutical ingredients (APIs) [1,2]. Moreover, the differences in shape and infill density of tablets,
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which cannot be achieved in compressed tablets, lead to alternation in the surface-to-volume ratio
and allow us to produce printlets with desired drug dosages and dissolution profiles [3–5]. Although
the issue of the correlation between the internal structure of printed tablets and their properties,
particularly the dissolution characteristics, has been explored by several research teams, there is still
deficiency in studies on the actual microstructure and quality of printed objects and the mechanisms
driving the release of the drug from printed dosage forms [6–9].

In the case of nearly all 3DP methods, the object is built layer by layer based on the computer aided
design (CAD) model. However, various printing technologies vary between each other regarding
used materials and process conditions such as temperature. The 3D printing methods can operate
with a powder, which is bound with a liquid binder or sintered with a laser, a photosensitive
resin, a thermoplastic material, or a semi-solid formulation extruded through the printer nozzle.
Several techniques, such as stereolithography [10–14], selective laser sintering [8,15] digital light
processing [16,17], binder jetting, [18,19], and extrusion-based methods including direct powder
extrusion [20,21], semi-solid extrusion [22–26], and fused deposition modeling (FDM) [27,28], have been
investigated for application in the pharmaceutical industry. The 3DP methods which can be introduced
in the high-scale manufacturing process should be characterized by the high-speed production of
uniform objects [29,30]. In the case of most of the abovementioned printing methods, process conditions
may cause amorphization of the active ingredient, which increases its solubility [31,32].

Various dosage forms, such as orodispersible films [33], mucoadhesive films [34], immediate
and modified-release tablets [35,36], capsules [37,38], implants [39], or even formulations imitating
sweets [40], have been recently developed using fused deposition modeling. In the printed dosage
forms, drug release modification is obtained mostly by selecting either the filament-forming polymers
characterized by suitable pH-dependent solubility [41] or the printlet shape and geometry, i.e.,
the presence of channels [42], empty cavities (floating tablets) [43,44], variations in the infill degree
or shape as well as the use of shape-memory polymers to prepare retentive drug delivery systems
(4D printing) [45,46]. Despite the fabrication of dosage forms by means of 3DP, this technique can
be used for capsular shell fabrication [47] to control the API’s dissolution process as well as mold
preparation to create custom-made, patient-oriented drugs [48]. The 3D printed molds can be also
used in a range of science and technology sectors including electrochemical electrical applications—for
example, flexible sensor prototypes [49,50].

The application of FDM printing technology in the manufacturing of dosage forms requires the
use of previously prepared drug-loaded filament. Filaments are produced mostly in the hot-melt
extrusion process (HME), which is also the method applied to increase drug solubility. During this
process, a mixture of drug and thermoplastic polymer is heated and blended, and the molten mass is
pushed through a nozzle to form a filament [51]. Instead of drugs, other substances can be used in
the HME process, e.g., insoluble hydroxyapatite for filament fabrication, which can be used in bone
tissue engineering [52]. One of the most important advantages is that this process does not require
the use of organic solvents, such as the preparation of amorphous solid dispersion (ASD) by spray
drying. However, HME operates at high temperatures, which are required to melt the formulation
components [53]. In some cases, it is necessary to add plasticizers to the formulation to lower the
process temperature in order to protect the thermolabile active ingredient and improve filament
printability [36,54,55]. The combination of HME and FDM can induce phase transitions, including
amorphization, which results in increased drug solubility. Further drug dissolution modification can
be also achieved by changing the shape and surface of the printed dosage form [26].

Itraconazole (ITR) is an oral antifungal agent used in the treatment of systemic and superficial
fungal infections, commercially available in the form of 65 mg and 100 mg capsules, 200 mg tablets,
and 10 mg/mL solutions. It is a highly lipophilic, weakly alkaline drug with very low water solubility
of 1 ng/mL at pH 7 and 4 µg/mL at pH 1. ITR is classified as a Biopharmaceutics Classification System
(BCS) class II substance [56], which means it has solubility-limited bioavailability. The drug exhibits
three polymorphs varying in stability and solubility [57]. Moreover, ITR can form liquid crystals,
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which are particularly interesting from the perspective of pharmaceutical sciences. Liquid crystals can
adopt various molecular arrangements (nematic and smectic in the case of ITR), which affect the free
energy of the system and thus the dissolution performance. Due to the relatively high glass transition
temperature (Tg = 59 ◦C), ITR can be also transformed into a stable amorphous state, usually in the form
of amorphous solid dispersions with polymers or co-amorphous systems with small molecules [58].

Soluplus® [59–61], Eudragit® L [62], polyvinylpyrrolidone (PVP) [63], Kollidon® VA64 [64,65],
polyvinyl alcohol (PVA) [65,66], as well as semi-synthetic cellulose derivatives such as hydroxypropyl
cellulose [67] and hydroxypropyl methylcellulose acetate succinate [53,54,68–70], are examples of
pharmaceutical polymers tested for preparing itraconazole amorphous solid dispersions (ASD) and
also suitable as filament-forming polymers for FDM. Although many papers described the formation
of amorphous solid dispersions with ITR, including the use of the hot-melt extrusion process [61],
only two considered the formation of dosage forms using 3D printing. Kimura et al. reported that it
is possible to use fused deposition modeling to prepare zero-order sustained-release floating tablets
containing itraconazole [43]. They were able to control floating time by printing tablets with empty
cavities inside and to modify the drug dissolution rate by changing the tablet surface and wall thickness.
Goyanes et al. prepared tablets containing amorphous solid dispersions of itraconazole in different
grades of hydroxypropylcellulose using direct powder extrusion 3D printing—a novel, single-step 3D
printing process. In contrast to FDM, this 3D printer tool head is equipped with single screw extruder,
which allows it to print directly using mixed powders or pellets, without preparing filaments [20].

In this paper, we describe for the first time the liquid crystal phase transitions of itraconazole
in 3D printed tablets. The drug was combined with polymers, formed into filaments via hot-melt
extrusion and then printed using fused deposition modeling technology. The filaments were based
on poly(vinyl alcohol), a water-soluble semi-crystalline polymer known for its superior printability.
The two PVP-based polymers were also added to the filament-forming mixture to introduce the
additional functionalities into the printed matrices. Kollidon® VA64 was supposed to modify the
physicochemical properties—the molecular arrangement in particular (analyzed using thermal analysis
and X-ray diffractometry)—and Kollidon® CL-M was added to modify drug dissolution due to the
improved tablet disintegration. We performed deep micro-computed tomography (µ-CT) analysis
as the first attempt to analyze how the design of a printed object (degree of an infill) affects its
reproducibility during printing. It was also used to analyze the structure of the printed dosage forms to
support the dissolution data. To clearly understand the advantages of extrusion and printing processes,
drug dissolution from printed formulations was compared with tablets having similar composition,
obtained by the compression of either raw powders or milled filament.

2. Materials and Methods

2.1. Materials

Itraconazole (ITR, 1-(butan-2-yl)-4-{4-[4-(4-{[(2R,4S)-2-(2,4-dichlorophenyl)-2-[(1H-1,2,4-triazol-1
-yl)methyl]-1,3-dioxolan-4-yl]methoxy}phenyl)piperazin-1-yl]phenyl}-4,5-dihydro-1H-1,2,4-triazol-5-one,
99.8%, Henan Tianfu Chemical Co., Ltd., Zhengzhou, China) served as a model drug. Poly(vinyl alcohol)
(PVA, Parteck® MXP, Merck®- KGaA, Darmstadt, Germany), copovidone (K/VA, Kollidon® VA64,
BASF®, Ludwigshafen, Germany), crospovidone (K/CL, Kollidon® CL-M, BASF®, Ludwigshafen,
Germany) were utilized as the matrix-forming polymers to prepare both filaments and 3D printed
tablets. Talc (Fagron®, Kraków, Poland) and magnesium stearate (Avantor® Performance Materials,
Gliwice, Poland) were added to tablets prepared by compression in tablet press. Hydrochloric acid
(Merck® KGaA, Darmstadt, Germany) and potassium chloride (Avantor® Performance Materials,
Gliwice, Poland) were used as dissolution media ingredients. Water used in all experiments was
produced by Elix 15UV Essential reversed osmosis system (Merck® KGaA, Darmstadt, Germany).
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2.2. Preparation of Drug-Loaded Filaments

Filaments were extruded using a 40D, 12-mm co-rotating twin-screw extruder (RES-2P/12A
Explorer, Zamak Mercator®, Skawina, Poland) equipped with a gravimetric feeder MCPOWDER®

(Movacolor®, Sneek, The Netherlands) and an air-cooled conveying belt (Zamak Mercator®, Skawina,
Poland). The mixtures of itraconazole and matrix-forming polymers, of the composition presented in
Table 1, and the total mass equal to 200 g were extruded through a 1.75 mm die at 160 ◦C. The feeding
rate was set to approximately 70 g/h, which resulted in the linear filament extrusion speed of 25 m/h.
The barrel temperature varied from 40 to 190 ◦C. The optimized temperature profile and screw
configuration are presented in Figure 1.

Table 1. Composition of the filaments.

Formulation Itraconazole Poly(vinyl alcohol) Copovidone Crospovidone

PVA

20%

80% - -

PVA_K/VA 56% 24% -

PVA_K/CL 76% - 4%
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Figure 1. Screw configuration and temperature profile.

2.3. Evaluation of Filament Properties

The diameter uniformity of the obtained filament was evaluated using a Mitutoyo® micrometer
screw (Kawasaki, Japan). Six randomly selected points were measured. Mechanical properties
were assessed in stretching test performed with an EZ-SX tensile tester (Shimadzu®, Kioto, Japan).
The measurements were performed six times for each type of filament. Randomly selected pieces
of filament, 100 mm in length, were placed in the tensile tester’s jaws and stretched up to breakage.
Hardness and elasticity of the filaments were determined based on the measurements of tensile strength
and Young’s modulus.

2.4. Determination of Itraconazole Content in the Obtained Filament

Six randomly selected and accurately weighed pieces of filament were placed in conical flasks
filled with 25 mL of a mixture of methanol and 0.1 M HCl of pH 1.2 (1:1 v/v) and shaken for 24 h
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using a Memmert® water bath (WNB 22, Schwabach, Germany). The drug concentration was assayed
at λ = 255 nm using a Shimadzu® UV-1800 spectrophotometer (Kioto, Japan). The specificity of the
analytical method was verified. There was no sign of interference between the drug and excipients at
the analytical wavelength.

2.5. Preparation of 3D Printed Tablets

The Blender® 2.79b software was used to design the models of the oblong tablets (Blender
Foundation, Amsterdam, The Netherlands). The basic model was 20 mm long and 10 mm wide.
The model height varied from 2.4 to 3.65 mm, which was related to the number of 3D printed layers.
Voxelizer® slicing software (version 1.4.18, ZMorph®, Wroclaw, Poland) was applied to define the
height and the width of the single layer path. The 3D model was imported in stl format and divided
into layers before printing. The thickness of the first layer was equal to 0.2 mm to improve the adhesion
of the print to the printer bed, whereas the height of the subsequent layers was 0.15 mm. The path
width was equal to the diameter of the printing nozzle, i.e., 0.4 mm. One outline and rectilinear infill
(density of 20%, 35%, and 60%) were designed for the printing process. Each tablet was composed
of 50 mg of ITR and 200 mg of polymer carriers (Table 1). The tablets were printed by an FDM
ZMorph® 2.0 S personal fabricator (Wroclaw, Poland) equipped with a 1.75 mm commercially available
printhead. Printing temperature was 205 ◦C. The tablets were printed with a 10–15 mm/s printing
speed. The temperature of building platform was 40 ◦C.

2.6. Preparation of Tablets by Filament Compression (HME Tablets)

For comparison purposes, filament milled in a Tube Mill 100 control (IKA®, Staufen, Germany)
and raw compounds were compressed in a Korsch® EK0 single-punch tablet press (Berlin, Germany).
The composition of the tablets was similar to 3D printed tablets; each tablet was composed of 50 mg
of ITR and 200 mg of polymer mixture. Additionally, the blends contained 12.5 mg of a talc and
magnesium stearate mixture (9:1 w/w), which played the role of glidant and lubricant, respectively.

2.7. Preparation of Directly Compressed Tablets (DC Tablets)

Powder blends composed of 3DP tablet ingredients with the addition of the talc and magnesium
stearate mixture (9:1 w/w) were compressed using Korsch® EK0 single-punch tablet press (Berlin,
Germany) for comparison purposes, to investigate the impact of technological processes on the ITR
dissolution profile.

2.8. Micro-Computed Tomography

Micro-computed tomography (µ-CT) analysis was performed using a SkyScan® 1172
microtomograph (Bruker®, Billerica, MA, USA). It was applied to examine the structure of the
3DP tablets with 20%, 35%, and 60% of infill and to verify the repeatability of printing process (the data
collected for three tablets with 35% of infill were compared). The image pixel size was 6.9 µm for
measurements of all samples. A cone beam reconstruction software program (Nrecon SkyScan®,
Bruker®, Billerica, MA, USA) based on the Feldkamp algorithm was used for the reconstruction of
the projections. A CT-Analyser® (SkyScan®, Bruker®, Billerica, MA, USA) was used for binarization
purposes. The procedure was based on density distribution histograms collected for the whole sample
volume. A CT-Analyser® was also used for the characterization of the morphological features of the
tablets, their volume, and surface. CTVox® software (Bruker®, Billerica, MA, USA) was applied to
present the 3D results.

2.9. Differential Scanning Calorimetry (DSC)

Thermodynamic properties of neat ITR, PVA, K/VA, K/CL, and their mixtures in the form of
filaments and 3DP tablets were examined using a DSC 1 STARe System (Mettler-Toledo®, Greifensee,
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Switzerland) equipped with an HSS8 ceramic sensor with 120 thermocouples and liquid nitrogen
cooling station. Zinc and indium standards were used for the temperature and enthalpy calibration.
The samples were measured in an aluminum, pinned crucible (40 mL). The samples were heated
with a rate of 10 K/min. The experiments were performed in nitrogen atmosphere with a gas flow of
60 mL/min.

2.10. X-Ray Powder Diffraction (XRD)

A Rigaku Denki® D/MAX Rapid II-R (Tokyo, Japan) equipped with a rotating Ag anode and an
image plate detector in the Debye–Scherrer geometry was used for the X-ray diffraction measurements.
Graphite (002) crystal was used to monochromatize the incident radiation (λKα = 0.5608 Å). The width
of the X-ray beam at the sample was 0.3 mm. The samples were pulverized before the experiment
and measured at room temperature, in glass capillaries with a diameter of 1.5 mm and wall
thickness of 0.01 mm. The background intensity from empty capillary was subtracted. The obtained
two-dimensional diffraction patterns were converted into one-dimensional functions of intensity versus
the scattering vector.

2.11. Dissolution Studies

The dissolution of ITR from tablets was determined in 1000 mL of 0.1 M HCl with the addition of
KCl, in the pharmacopeial paddle apparatus (Vision® G2 Elite 8, Hanson Research®, Chatsworth, CA,
USA) equipped with a VisionG2 AutoPlus autosampler. Stainless steel, spring-like sinkers were used
to prevent tablet floating. The samples were filtered and analyzed on-line at 255 nm at predetermined
periods using a UV-1800 spectrophotometer (Shimadzu®, Kioto, Japan) equipped with flow-through
cuvettes. Three repetitions for each sample were carried out. The results represent the averaged results
and the standard deviations (mean ± SD).

2.12. Solubility Study

An excess of physical mixture (PM), extrudate (HME), and printed systems (3DP) were dispersed
in 20 mL of 0.1 MHCl and shaken at ambient temperature using a KS 130 basic orbital shaker (IKA®,
Staufen im Breisgau, Germany). After 48h, the samples were filtered through a 0.45µm Chromafil® Xtra
CA-45/25 membrane filter and analyzed spectrophotometrically at λ = 255 nm (UV-1800 Shimadzu®,
Kioto, Japan). The reported data represent the averages from three series of measurements with
standard deviations (SD).

3. Results

3.1. Evaluation of the Filaments

All prepared filaments were made using a PVA as a filament-forming polymer, a semi-crystalline
polymer of molecular weight equal to 32 kDa with 87–89% hydrolysis grade, having a glass
transition temperature, melting point, and degradation temperature of 40–45 ◦C, 170 ◦C, and ≥250 ◦C,
respectively [66]. The obtained itraconazole-loaded filaments were opaque and creamy in color.
The diameter of the filaments was kept at a constant level; however, in the case of the PVA_K/CL
filament, the diameter variations were higher than 0.05 mm, which is considered as a maximum
acceptable deviation from the declared diameter [71]. The itraconazole content and its uniformity
were satisfactory. All the API-loaded filaments were tested for their tensile strength and elasticity,
which were found to be critical quality attributes in term of printability. The results are presented in
Table 2. It was found that the addition of copovidone and crosslinked PVP resulted in a decrease in
the tensile strength and Young’s modulus of the filaments. All the prepared filaments were able to
be printed with a ZMorph® 2.0 S 3D printer immediately after extrusion and after storage in zipper
storage bags.



Materials 2020, 13, 4961 7 of 20

Table 2. Hot-melt extruded filament characteristics.

Filament
Composition

Diameter ± SD
(mm)

Itraconazole Content ± SD
(%)

Tensile Strength
± SD (MPa)

Young’s Modulus
± SD (MPa)

PVA 1.70 ± 0.02 19.67 ± 0.43 49.0 ± 10.3 2641.1 ± 144.4

PVA_K/CL 1.68 ± 0.07 19.60 ± 0.34 52.6 ± 19.8 2771.1 ± 347.2

PVA_K/VA 1.69 ± 0.05 19.20 ± 0.33 28.2 ± 7.1 2042.1 ± 256.3

In Figure 2, the differences in the mechanical characteristics are presented. The Young’s modulus
corresponds to the slope of the curve in the elastic behavior region.
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3.2. Thermal and Structural Properties of the Filaments and 3DP Tablets

To investigate how the employed polymers modify the thermal properties of neat ITR, the systems,
prepared in the form of both filaments and 3DP tablets, were measured (after pulverization) by
means of DSC. The samples were examined in the temperature range from 273 to 453 K at a heating
rate of 10 K/min. In Figure 3, the obtained DSC traces are compared to the thermogram of the neat,
quench-cooled ITR. Because the used PVA polymer has a lower glass transition temperature than ITR
(Table 3) (Tg of neat PVA and ITR are equal to 313 and 332 K, respectively), the plasticization effect
was observed. Interestingly, the DSC thermograms of the same compositions with different forms,
filament or 3DP, differ from each other. As can be seen in Figure 3, the thermograms of the 3DP tablets
are characterized by: (i) a shift in glass transition temperature towards lower values when compared
with filament and (ii) the appearance of an additional, very broad endothermal event in the vicinity of
320 to 420 K. The observed differences suggest that the 3DP tablets also contain water in addition to
API and polymers. Water exerts a plasticization effect on the samples and evaporates at temperatures
from in the range of 320 to 420 K.

When the neat ITR is heated above its glass transition temperature, on the DSC thermogram,
one can distinguish two endothermal processes associated with the liquid crystal (LC) phase transitions.
The thermal event located at 348 K reflects transition from smectic (Sm) to nematic (N) LC alignment,
while at 364 K, ITR loses the nematic order and becomes an isotropic (I) liquid. The performed
experiments reveal that the employed polymers shift to lower temperatures for both Sm-N and N-I
phase transition. The determined, based on calorimetric studies, values of Tg, TSm-N, and TN-I for
all investigated systems are compared in Table 3. It is worth noting that in one of the examined
systems (PVA_K/VA), regardless of the applied technological process, the lack of the nematic phase
was observed (i.e., the N-I endothermal event was not registered by means of DSC).
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Table 3. Comparison of values of Tg, TSm-N, and TN-I of neat ITR and its mixtures with PVA, PVA_K/VA,
and PVA_K/CL which were prepared in two forms: filament and 3DP tablet.

Sample Tg (K) TSm-N (K) TN-I (K)

Neat ITR 332 348 364

PVA filament 315 326 347

PVA 3DP tablet 306 330 344

PVA_K/CL filament 312 329 346

PVA_K/CL 3DP tablet 308 330 344

PVA_K/VA filament 317 328 (TSm-I)

PVA_K/VA 3DP tablet 315 330 (TSm-I)

In order to investigate whether the employed polymers indeed modify the ITR’s LC alignment,
both the neat ITR as well as the pulverized 3DP tablets were measured by wide-angle X-ray diffraction
(XRD) technique. The comparison of the scattering patterns collected at room temperature for neat
ITR and pulverized tablets containing either PVA, PVA_K/VA, or PVA_K/CL is presented in Figure 4.
The presented XRD patterns demonstrate that the polymers affect the LC order in ITR. As can be seen,
samples containing PVA or PVA_K/CL reveal less intense peaks at around 0.22, 0.45, and 0.68 Å−1,
which are indicators of smectic layering [72]. In the case of the system containing K/VA, the reduction in
the intensity of the peaks at 0.22 and 0.68 Å−1 is combined with the disappearance of the peak at 0.45 Å−1.
These results indicate that the layered structure in ITR is medicated by the employed additives.

3.3. Micro-Computed Tomography Studies of Tablets

The dimensions and masses of 3DP tablets corresponded to predefined values. The average tablet
mass ranged from 239.73 to 253.05 mg. Tablet length varied from 19.85 to 20.15 mm, whereas height
ranged from 1.78 to 3.65 mm. The real layer height was from 0.142 to 0.158 mm and was calculated
by dividing the tablet height by the number of layers, given the fact that the first layer was 0.2 mm
(Table 4). Digital photos of 3D printed tablets can be found in the Supplementary Materials associated
with this article (Figures S1–S3, Supplementary Materials).
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Figure 4. XRD diffraction patterns of neat ITR and its mixtures with PVA, PVA_K/VA, and PVA_K/CL
in an initial form of 3DP tablet.

Table 4. Parameters of 3D printed tablets.

Polymers Infill (%) Mass (mg) Width (mm) Length (mm) Height (mm) Number
of Layers

Real Layer
Height (mm)

PVA 35 252.82 ± 4.16 10.18 ± 0.03 20.15 ± 0.03 2.34 ± 0.03 16 0.142

PVA_K/VA 35 253.05 ± 3.67 10.08 ± 0.01 20.09 ± 0.01 2.89 ± 0.05 20 0.142

PVA_K/CL 35 250.12 ± 4.52 9.98 ± 0.02 19.85 ± 0.12 2.67 ± 0.03 17 0.154

PVA_K/CL 20 244.12 ± 5.77 9.96 ± 0.03 19.86 ± 0.09 3.65 ± 0.03 24 0.150

PVA_K/CL 60 239.73 ± 3.01 9.99 ± 0.05 20.05 ± 0.03 1.78 ± 0.02 11 0.158

Based on the 3D tablet images obtained from Voxelizer slicing software (Figure 5) and predefined
settings of the path size, the theoretical volume of 3DP PVA_K/CL tablets was calculated. The values
varied from 184.4 mm3 for T_20 tablets to 195.6 mm3 for T_60 and 195.9 mm3 for T_35 tablets.Materials 2020, 13, x FOR PEER REVIEW 10 of 21 
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Figure 5. Images of PVA_K/CL tablet layers obtained from Voxelizer software.

The morphology of the PVA_K/CL printed tablets was verified by the µCT scans. Tablets with
20% of infill had the highest object volume (236 mm3) and the highest open pore volume (485 mm3).
Medium pore size (structure separation) was 1.11 mm, whereas the average structure thickness was
0.25 mm. Tablets with 60% of infill were characterized by the lowest values of object volume (202 mm3)
and pore volume (134 mm3) as well as structure separation (0.19 mm) and pore size (0.25 mm).
Aforementioned parameters for tablets with 35% of infill can be placed between T_20 and T_60 values
(Table 5, Figure 6).
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Table 5. Comparison of µCT scan data of 3DP PVA_K/CL tablets with 20% (T_20), 35% (T_35), and 60%
(T_60) infill ratio.

Description Unit T_20 T_35 T_60

Object volume mm3 236 220 202
Percent object volume % 33 41 60

Structure thickness mm 0.25 0.20 0.19
Structure separation mm 1.11 0.62 0.25

Volume of open pore space mm3 485 312 134
Open porosity % 67.2 58.5 39.9
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Parameters of tablets with 35% of infill are similar and no important differences between the three
analyzed tablets can be distinguished (Table 6, Figure 7).

Table 6. Comparison of µCT scan data of 3DP PVA_K/CL tablets with 35% of infill ratio.

Description Unit T_35_1 T_35_2 T_35_3

Object volume mm3 220 224 213
Percent object volume % 41 42 39

Structure thickness mm 0.20 0.19 0.17
Structure separation mm 0.62 0.62 0.62

Volume of open pore space mm3 312 307 327
Open porosity % 58.5 57.7 60.4
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3.4. Dissolution Studies

Itraconazole dissolution from 3D printed tablets with 35% infill was compared with the dissolution
profiles obtained for the tablets made from milled extrudate (HME tablets) and directly compressed
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tablets (DC tablets) to evaluate the impact of the excipients and hot-melt extrusion on the dissolution of
the API. Determined itraconazole solubility limits were equal to 5.8, 22.2, and 29.3 µg/mL for physical
mixture, extrudate, and 3D printed matrix, respectively. The solubility limits were calculated as the
percentage of ITR dose in tablets (11.6%, 44.4%, and 58.6% for physical mixture, extrudate, and 3D
printed tablet, respectively) and are marked in Figure 8 to make the interpretation of the dissolution
easier. It was found that the performed technological processes, namely hot-melt extrusion and 3D
printing, affected the dissolution profile of itraconazole. The highest amount of the drug was dissolved
from 3D printed tablets. The amount of ITR released from milled extrudate was significantly lower,
while the smallest amount was released from directly compressed tablets (Figure 8). After 2 h of
the dissolution test, 75.8%, 51.3%, and 11.0% of the itraconazole was released from the PVA-based
3D printed, hot-melt extruded, and directly compressed tablets, respectively. This relationship was
confirmed for all the prepared formulations. It must be highlighted that in the case of all 3D printed
formulations, i.e., PVA, PVA_K/VA, and PVA_K/CL, the amount of dissolved itraconazole was far
above the solubility limit and the supersaturation lasted as long as the dissolution test was performed.
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PVA-based tablets (infill density equal to 35%).

The impact of copovidone and crospovidone addition to the PVA formulation on the release
profile was also evaluated (Figure 9). The best dissolution profile was noticed for PVA_K/CL 3D
printed tablets. After 45 min, 91.5% of the API was dissolved from PVA_K/CL 3D printed tablets,
while only 64.3% and 46.7% of the drug was released from 3D printed tablets with Kollidon® VA64
and PVA-based tablets, respectively.

The impact of the infill density on the dissolution characteristics was evaluated for the PVA_K/CL
formulation (Figure 10) as it was selected as the most promising formulation from all the prepared
3D printed tablets. Three rectilinear infills with different densities, namely 20%, 35%, and 60%,
were evaluated. The results confirmed that the lower infill density favored faster dissolution of the
API. After 45 min of the dissolution test, 96.9%, 89.7%, and 80.9% of the itraconazole was released from
3D printed tablets with 20%, 35%, and 60% infill, respectively.
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4. Discussion

The filament extrusion went smoothly, and it can be carried out as a continuous manufacturing
process. As a result of the optimization of the barrel temperature profile, generated torque, which may
be considered as one of the major limitations during the extrusion, was as low as 2.82 ± 0.09 Nm during
the filament extrusion process. All the prepared filaments were of satisfying quality and were printable
using a ZMorph® 2.0 S 3D printer. PVA-based filaments were characterized by the most uniform
diameter which may result from the simplest composition of the filament. Copovidone (K/VA) was
added to the filament formulation to improve the solubility of the drug in the polymer matrix as it was
shown by Włodarski et al. [65], while crosslinked PVP (K/CL) was added to improve disintegration
and API dissolution from the extrudates and 3D printed tablets. The elasticity of the filaments was
evaluated based on the Young’s modulus values. The values obtained for itraconazole-loaded filaments
were in the range 2042.1–2641.1 MPa and they were comparable to the results obtained by Feuerbach et
al. for Resomer filaments [73]. The filament elasticity was not significantly affected by the addition of
either copovidone or crospovidone to the formulation, while the values of the Young’s modulus varied
in the narrow range. However, it was found that the filament with the addition of copovidone was
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characterized by slightly higher elasticity than the one composed of only PVA or PVA-K/VA filaments.
The obtained Young’s modulus values for all prepared filaments suggest that they are suitable for
fused deposition modeling 3D printing. The tensile strength was in the range from 28.2 to 52.6 MPa;
the lowest value was obtained for the filament with the addition of Kollidon®VA64. Its introduction to
the polymer matrix caused a more than 1.7-fold decrease in tensile strength in comparison with the
itraconazole-loaded PVA filament. This may result from the Kollidon®VA64 extrudate’s brittleness,
which was confirmed by Fuenmayor et al. [74]; however, it was still durable enough to be printed.

A set of 10 × 20 mm2 oblong tablets with different infill densities was printed with good
repeatability. The tablets were uniform in shape and mass. The dimensions of the 3DP tablets were
similar to predefined 3D objects. The adjustment of tablet height and, in consequence, the number
of layers was related to the filament properties to obtain tablets with comparable mass (Table 4).
The differences in tablet mass did not exceed 12.5 mg (±5%) from the theoretical value of 250 mg.

The theoretical tablets’ volume was compared to the real object volume of 3DP PVA_K/CL tablets
with infill of 20%, 35%, and 60% (Table 5), determined during the µCT scan. In the case of 20%
of infill tablets (T_20), the real tablet volume was almost 1.3 times higher than calculated. This is
related to the morphology of tablets with low infill density. The substantial distance between infill
cross-points, in which two adjacent layers adhere, resulted in overhangs without support. It led to
path disorder and an increase in vertical layer dimension. Therefore, subsequent cohesion in some
spaces between cross-points was observed (Figure 6). In the case of T_35, the difference in tablet
volume was smaller (1.12 times higher) whereas the volumes of T_60 tablets were similar (1.03 times
higher). This improvement was related to the higher density of tablets’ infill with increasing number
of cross-points.

The phenomenon of path expansion between the cross-points can also be explained by the
deviations of the structure thickness parameter in comparison with the theoretical value of 0.15 mm.
This effect was observed for all degrees of infill; however, it was less pronounced in the systems
with the higher infill density (Figure 6). The biggest difference was noticed in the case of T_20
tablets, for which the mean structure thickness was 100 µm higher than the theoretical layer height.
For T_35 and T_60 tablets, the structure thickness was 40–50 µm higher. The differences in the structure
thickness distribution are presented in Figure 6. The widest span of structure thickness was noticed
for T_20 tablets and the structures with 0.25–0.35 mm thickness had the greatest volume within 3DP
objects. On the contrary, the T_60 tablets exhibited the narrowest span, with structures of thickness
varying between 0.15 and 0.25 mm highly represented within the object (Figure 6). Structure thickness
distribution among a set of T_35 tested tablets was similar and showed good repeatability of printed
dosage forms with 35% of infill (Table 6, Figure 7). Moreover, identical mean structure separation was
observed within all T_35 tablets (Table 6) The porosity within T_35 tablets was similar, and histograms
of structure separation distribution revealed that pores with size 0.8–1.0 mm are highly represented
(Figure 7). Decreasing the tablet infill from 35% to 20% resulted in porosity changes. Pores with
larger sizes, between 1.2 and 1.75 mm, are visible on the histograms and the total porosity increased
from 58.5% to 67.2%. In the case of T_60 tablets, pore size did not exceed 0.5 mm and total porosity
was almost 1.7 times smaller (39.9%) than T_20 (Figure 6). It should be emphasized that the volume
of the open pore space within the 3DP T_20 tablet (485 mm3) is twice as high as the volume of the
solid part of the tablet (236 mm3), whereas the volume of the open pore space of T_60 (134 mm3) is
1.5 times smaller than the solid part of the tablet (202 mm3). The tablet open space will promote the
penetration of dissolution media through the tablet’s internal structure and will have an impact on its
disintegration and dissolution behavior. The influence of the internal structure of 3D printed objects
on their properties was highlighted and widely discussed by Nazir et al. in the comprehensive review
of the various 3D printed lattice and cellular structures, their advantages and limitations [75].

The results of the dissolution studies indicate that the 3D printing process improved itraconazole
release when compared with tablets made by compression with either milled extrudate or a simple
powder blend. This should be attributed to the developed internal structure and resulting extended
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surface area as well as the molecular rearrangement in the structure of API within the polymer matrix.
Itraconazole release was faster from tablets containing added copovidone than PVA alone because
the hot-melt extrusion and following 3D printing led to the formation of more disordered systems,
which was confirmed by the lower intensity of the characteristic peaks in the XRD diffractograms
and the lack of the nematic phase confirmed by DSC in the PVA_K/VA 3DP tablets. The release of
itraconazole from filaments and 3D printed tablets containing only PVA was lower than from the
corresponding systems containing the additive of PVP-based polymers since its structure was more
ordered, as indicated by the presence of smectic and nematic domains. It is worth mentioning that the
improved drug dissolution results from the applied technological processes, not just the addition of the
polymers. The results of the dissolution from directly compressed tablets revealed that the presence of
the polymers themselves did not enhance the dissolution of itraconazole as the amount of dissolved
API did not exceed 12% of the initial dose.

The results indicated that the addition of the disintegrant, i.e., crospovidone, to the 3D printed
tablets is beneficial in terms of ITR dissolution. The addition of the disintegrant to the formulation led
to a higher increase in API dissolution than adding a copovidone to achieve molecularly disordered
material. With the presented results, we have demonstrated that the PVA_K/CL formulation is the
most promising in terms of immediate-release tablet preparation, as it is characterized by the best
dissolution profile. Subsequent optimization was performed to evaluate the possibility of further
improvement of itraconazole release. The optimization included changes in the infill density, as it
was confirmed by many research groups that infill density significantly affects the dissolution rate of
the API [76]. The tablets with infill density of 20%, 35%, and 60% were successfully 3D printed and
tested. As predicted, lower infill density resulted in faster dissolution. However, the micro-computed
tomography imaging revealed that during the printing of the tablets with 20% infill, there was an issue
with maintaining the internal structure geometry, which also manifested in higher deviations in the
amount of dissolved itraconazole in the first 20 min of the dissolution test (Figure 10). The tablets with
60% infill were characterized by the slowest itraconazole release. This is directly connected with the
difficulty of water penetration into the tablet due to the smaller pores and channels in the internal
structure. Therefore, we chose 35% infill as the best formulation to evaluate the tablet shape, dose,
and internal structure reproducibility in the 3D printing process. In all cases of 3D printed tablets,
long-lasting supersaturation of the itraconazole was achieved. It is well-known that the persisting
state of supersaturation may lead to bioavailability improvements, which is especially beneficial in
terms of poorly soluble drugs such as itraconazole [77].

5. Conclusions

Our study has shown the detailed methodology for the development of immediate-release 3D
printed tablets with liquid crystal-forming itraconazole. The development stage included both the
optimization of the formulation composition and the correlation between the geometry of the printed
object, namely the degree of infill, with shape reproducibility and drug dissolution.

The use of well-printable PVA polymer alongside the functionalized excipients, i.e., polyvinylpyrrolidone
derivatives, during the hot-melt extrusion process covered not only the optimization of the mechanical
properties of the filament and its printability but also the function of the polymer matrix in terms
of intended drug release profiles. The results of the dissolution study and physicochemical analysis
indicated that improved disintegration obtained due to the use of Kollidon®CL-M was more beneficial
than the molecular rearrangement and liquid crystal phase transitions. The lower infill density favored
faster dissolution of the drug from printed tablets.

Micro-computed tomography was utilized to confirm that the design of printed objects was
properly reconstructed. The comprehensive analysis revealed that the infill density, which is often
considered as a way to control or improve drug dissolution, should be utilized with a deep
understanding of its effect on the 3D printed objects’ reproducibility. In the case of low infill densities,
reproducibility issues, i.e., path disorder, increased layer dimension, and the path cohesion between
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cross-points, may occur. On the contrary, dense infill limits the surface area available for dissolution
media and slows down the dissolution of the API.

In the case of the presented results, the most appropriate properties, i.e., good reproducibility
during the object printing combined with superior drug dissolution, were achieved for the filament
composed of 20% of itraconazole, 76% of PVA, and 4% of crospovidone acting as a disintegrant.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/13/21/4961/s1,
Figure S1: 3D printed itraconazole-loaded tablet with 20% infill density; Figure S2: 3D printed itraconazole-loaded
tablet with 35% infill density; Figure S3: 3D printed itraconazole-loaded tablet with 60% infill density.
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13. Karakurt, I.; Aydoğdu, A.; Çıkrıkcı, S.; Orozco, J.; Lin, L. Stereolithography (SLA) 3D printing of ascorbic
acid loaded hydrogels: A controlled release study. Int. J. Pharm. 2020, 584, 119428. [CrossRef]

http://www.mdpi.com/1996-1944/13/21/4961/s1
http://dx.doi.org/10.1007/s13346-020-00737-0
http://www.ncbi.nlm.nih.gov/pubmed/32207070
http://dx.doi.org/10.1016/j.ejpb.2018.12.009
http://dx.doi.org/10.1016/j.xphs.2017.10.021
http://dx.doi.org/10.1007/s11095-018-2454-x
http://dx.doi.org/10.1016/j.ijpharm.2018.03.057
http://dx.doi.org/10.1208/s12249-018-1017-0
http://www.ncbi.nlm.nih.gov/pubmed/29855799
http://dx.doi.org/10.1016/j.ejps.2019.105169
http://www.ncbi.nlm.nih.gov/pubmed/31785383
http://dx.doi.org/10.3390/pharmaceutics12020110
http://www.ncbi.nlm.nih.gov/pubmed/32019101
http://dx.doi.org/10.1016/j.ijpharm.2020.119169
http://www.ncbi.nlm.nih.gov/pubmed/32087263
http://dx.doi.org/10.1208/s12249-018-1075-3
http://www.ncbi.nlm.nih.gov/pubmed/29948979
http://dx.doi.org/10.1016/j.ijpharm.2018.03.031
http://dx.doi.org/10.3390/pharmaceutics11120645
http://dx.doi.org/10.1016/j.ijpharm.2020.119428


Materials 2020, 13, 4961 17 of 20

14. Uddin, J.; Scoutaris, N.; Economidou, S.N.; Giraud, C.; Chowdhry, B.Z.; Donnelly, R.F.; Douroumis, D.
3D printed microneedles for anticancer therapy of skin tumours. Mater. Sci. Eng. C 2020, 107, 110248.
[CrossRef]

15. Fina, F.; Goyanes, A.; Madla, C.M.; Awad, A.; Trenfield, S.J.; Kuek, J.M.; Patel, P.; Gaisford, S.; Basit, A.W.
3D printing of drug-loaded gyroid lattices using selective laser sintering. Int. J. Pharm. 2018, 547, 44–52.
[CrossRef]

16. Kadry, H.; Wadnap, S.; Xu, C.; Ahsan, F. Digital light processing (DLP) 3D-printing technology and
photoreactive polymers in fabrication of modified-release tablets. Eur. J. Pharm. Sci. 2019, 135, 60–67.
[CrossRef] [PubMed]

17. Yang, Y.; Zhou, Y.; Lin, X.; Yang, Q.; Yang, G. Printability of External and Internal Structures Based on Digital
Light Processing 3D Printing Technique. Pharmaceutics 2020, 12, 207. [CrossRef] [PubMed]

18. Infanger, S.; Haemmerli, A.; Iliev, S.; Baier, A.; Stoyanov, E.; Quodbach, J. Powder bed 3D-printing of highly
loaded drug delivery devices with hydroxypropyl cellulose as solid binder. Int. J. Pharm. 2019, 555, 198–206.
[CrossRef]

19. Sen, K.; Manchanda, A.; Mehta, T.; Ma, A.W.; Chaudhuri, B. Formulation design for inkjet-based 3D printed
tablets. Int. J. Pharm. 2020, 584, 119430. [CrossRef]

20. Goyanes, A.; Allahham, N.; Trenfield, S.J.; Stoyanov, E.; Gaisford, S.; Basit, A.W. Direct powder extrusion 3D
printing: Fabrication of drug products using a novel single-step process. Int. J. Pharm. 2019, 567, 118471.
[CrossRef]

21. Fanous, M.; Gold, S.; Muller, S.; Hirsch, S.; Ogorka, J.; Imanidis, G. Simplification of fused deposition
modeling 3D-printing paradigm: Feasibility of 1-step direct powder printing for immediate release dosage
form production. Int. J. Pharm. 2020, 578, 119124. [CrossRef]

22. Öblom, H.; Sjöholm, E.; Rautamo, M.; Sandler, N. Towards Printed Pediatric Medicines in Hospital Pharmacies:
Comparison of 2D and 3D-Printed Orodispersible Warfarin Films with Conventional Oral Powders in Unit
Dose Sachets. Pharmaceutics 2019, 11, 334. [CrossRef]

23. Cui, M.; Pan, H.; Fang, D.; Qiao, S.; Wang, S.; Pan, W. Fabrication of high drug loading levetiracetam tablets
using semi-solid extrusion 3D printing. J. Drug Deliv. Sci. Technol. 2020, 57, 101683. [CrossRef]

24. Karavasili, C.; Gkaragkounis, A.; Moschakis, T.; Ritzoulis, C.; Fatouros, D.G. Pediatric-friendly
chocolate-based dosage forms for the oral administration of both hydrophilic and lipophilic drugs fabricated
with extrusion-based 3D printing. Eur. J. Pharm. Sci. 2020, 147, 105291. [CrossRef]

25. El Aita, I.; Breitkreutz, J.; Quodbach, J. Investigation of semi-solid formulations for 3D printing of drugs after
prolonged storage to mimic real-life applications. Eur. J. Pharm. Sci. 2020, 146, 105266. [CrossRef]

26. Elbl, J.; Gajdziok, J.; Kolarczyk, J. 3D printing of multilayered orodispersible films with in-process drying.
Int. J. Pharm. 2020, 575, 118883. [CrossRef]

27. Jamróz, W.; Kurek, M.; Czech, A.; Szafraniec, J.; Gawlak, K.; Jachowicz, R. 3D printing of tablets containing
amorphous aripiprazole by filaments co-extrusion. Eur. J. Pharm. Biopharm. 2018, 131, 44–47. [CrossRef]

28. Gioumouxouzis, C.I.; Tzimtzimis, E.; Katsamenis, O.L.; Dourou, A.; Markopoulou, C.; Bouropoulos, N.;
Tzetzis, D.; Fatouros, D.G. Fabrication of an osmotic 3D printed solid dosage form for controlled release of
active pharmaceutical ingredients. Eur. J. Pharm. Sci. 2020, 143, 105176. [CrossRef]

29. Nazir, A.; Jeng, J.-Y. A high-speed additive manufacturing approach for achieving high printing speed and
accuracy. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2019, 234, 2741–2749. [CrossRef]

30. Shaw, L.L.; Islam, M.; Li, J.; Li, L.; Ayub, S.M.I. High-Speed Additive Manufacturing Through
High-Aspect-Ratio Nozzles. JOM 2018, 70, 284–291. [CrossRef]

31. Wang, J.; Goyanes, A.; Gaisford, S.; Basit, A.W. Stereolithographic (SLA) 3D printing of oral modified-release
dosage forms. Int. J. Pharm. 2016, 503, 207–212. [CrossRef]

32. Fina, F.; Goyanes, A.; Gaisford, S.; Basit, A.W. Selective laser sintering (SLS) 3D printing of medicines.
Int. J. Pharm. 2017, 529, 285–293. [CrossRef]

33. Jamróz, W.; Kurek, M.; Łyszczarz, E.; Szafraniec, J.; Knapik-Kowalczuk, J.; Syrek, K.; Paluch, M.; Jachowicz, R.
3D printed orodispersible films with Aripiprazole. Int. J. Pharm. 2017, 533, 413–420. [CrossRef]

34. Speer, I.; Preis, M.; Breitkreutz, J. Novel Dissolution Method for Oral Film Preparations with Modified
Release Properties. AAPS PharmSciTech 2018, 20, 7. [CrossRef]

http://dx.doi.org/10.1016/j.msec.2019.110248
http://dx.doi.org/10.1016/j.ijpharm.2018.05.044
http://dx.doi.org/10.1016/j.ejps.2019.05.008
http://www.ncbi.nlm.nih.gov/pubmed/31108205
http://dx.doi.org/10.3390/pharmaceutics12030207
http://www.ncbi.nlm.nih.gov/pubmed/32121141
http://dx.doi.org/10.1016/j.ijpharm.2018.11.048
http://dx.doi.org/10.1016/j.ijpharm.2020.119430
http://dx.doi.org/10.1016/j.ijpharm.2019.118471
http://dx.doi.org/10.1016/j.ijpharm.2020.119124
http://dx.doi.org/10.3390/pharmaceutics11070334
http://dx.doi.org/10.1016/j.jddst.2020.101683
http://dx.doi.org/10.1016/j.ejps.2020.105291
http://dx.doi.org/10.1016/j.ejps.2020.105266
http://dx.doi.org/10.1016/j.ijpharm.2019.118883
http://dx.doi.org/10.1016/j.ejpb.2018.07.017
http://dx.doi.org/10.1016/j.ejps.2019.105176
http://dx.doi.org/10.1177/0954406219861664
http://dx.doi.org/10.1007/s11837-017-2729-4
http://dx.doi.org/10.1016/j.ijpharm.2016.03.016
http://dx.doi.org/10.1016/j.ijpharm.2017.06.082
http://dx.doi.org/10.1016/j.ijpharm.2017.05.052
http://dx.doi.org/10.1208/s12249-018-1255-1


Materials 2020, 13, 4961 18 of 20

35. Gioumouxouzis, C.I.; Baklavaridis, A.; Katsamenis, O.L.; Markopoulou, C.K.; Bouropoulos, N.; Tzetzis, D.;
Fatouros, D.G. A 3D printed bilayer oral solid dosage form combining metformin for prolonged and
glimepiride for immediate drug delivery. Eur. J. Pharm. Sci. 2018, 120, 40–52. [CrossRef]

36. Öblom, H.; Zhang, J.; Pimparade, M.; Speer, I.; Preis, M.; Repka, M.; Sandler, N. 3D-Printed Isoniazid Tablets for
the Treatment and Prevention of Tuberculosis—Personalized Dosing and Drug Release. AAPS PharmSciTech
2019, 20, 1–13. [CrossRef]

37. Smith, D.; Kapoor, Y.; Hermans, A.; Nofsinger, R.; Kesisoglou, F.; Gustafson, T.P.; Procopio, A. 3D printed
capsules for quantitative regional absorption studies in the GI tract. Int. J. Pharm. 2018, 550, 418–428.
[CrossRef]

38. Melocchi, A.; Uboldi, M.; Parietti, F.; Cerea, M.; Foppoli, A.; Palugan, L.; Gazzaniga, A.; Maroni, A.; Zema, L.
Lego-Inspired Capsular Devices for the Development of Personalized Dietary Supplements: Proof of Concept
With Multimodal Release of Caffeine. J. Pharm. Sci. 2020, 109, 1990–1999. [CrossRef]

39. Fu, J.; Yu, X.; Jin, Y. 3D printing of vaginal rings with personalized shapes for controlled release of progesterone.
Int. J. Pharm. 2018, 539, 75–82. [CrossRef]

40. Scoutaris, N.; Ross, S.A.; Douroumis, D. 3D Printed “Starmix” Drug Loaded Dosage Forms for Paediatric
Applications. Pharm. Res. 2018, 35, 34. [CrossRef] [PubMed]

41. Kempin, W.; Domsta, V.; Brecht, I.; Semmling, B.; Tillmann, S.; Weitschies, W.; Seidlitz, A. Development of a
dual extrusion printing technique for an acid- and thermo-labile drug. Eur. J. Pharm. Sci. 2018, 123, 191–198.
[CrossRef]

42. Sadia, M.; Arafat, B.; Ahmed, W.; Forbes, R.T.; Alhnan, M.A. Channelled tablets: An innovative approach to
accelerating drug release from 3D printed tablets. J. Control. Release 2018, 269, 355–363. [CrossRef]

43. Kimura, S.-I.; Ishikawa, T.; Iwao, Y.; Itai, S.; Kondo, H. Fabrication of Zero-Order Sustained-Release Floating
Tablets via Fused Depositing Modeling 3D Printer. Chem. Pharm. Bull. 2019, 67, 992–999. [CrossRef]

44. Giri, B.R.; Song, E.S.; Kwon, J.; Lee, J.-H.; Park, J.-B.; Kim, D.S. Fabrication of Intragastric Floating, Controlled
Release 3D Printed Theophylline Tablets Using Hot-Melt Extrusion and Fused Deposition Modeling.
Pharmaceutics 2020, 12, 77. [CrossRef]

45. Melocchi, A.; Uboldi, M.; Inverardi, N.; Briatico-Vangosa, F.; Baldi, F.; Pandini, S.; Scalet, G.; Auricchio, F.;
Cerea, M.; Foppoli, A.; et al. Expandable drug delivery system for gastric retention based on shape memory
polymers: Development via 4D printing and extrusion. Int. J. Pharm. 2019, 571, 118700. [CrossRef]

46. Melocchi, A.; Inverardi, N.; Uboldi, M.; Baldi, F.; Maroni, A.; Pandini, S.; Briatico-Vangosa, F.; Zema, L.;
Gazzaniga, A. Retentive device for intravesical drug delivery based on water-induced shape memory
response of poly(vinyl alcohol): Design concept and 4D printing feasibility. Int. J. Pharm. 2019, 559, 299–311.
[CrossRef]

47. Melocchi, A.; Parietti, F.; Maccagnan, S.; Ortenzi, M.A.; Antenucci, S.; Briatico-Vangosa, F.; Maroni, A.;
Gazzaniga, A.; Zema, L. Industrial Development of a 3D-Printed Nutraceutical Delivery Platform in the
Form of a Multicompartment HPC Capsule. AAPS PharmSciTech 2018, 19, 3343–3354. [CrossRef]

48. Jiang, H.; Yu, X.; Fang, R.; Xiao, Z.; Jin, Y. 3D printed mold-based capsaicin candy for the treatment of oral
ulcer. Int. J. Pharm. 2019, 568, 118517. [CrossRef]

49. He, S.; Feng, S.; Nag, A.; Afsarimanesh, N.; Han, T.; Mukhopadhyay, S.C. Recent Progress in 3D Printed
Mold-Based Sensors. Sensors 2020, 20, 703. [CrossRef]

50. Nag, A.; Feng, S.; Mukhopadhyay, S.; Kosel, J.; Inglis, D. 3D printed mould-based graphite/PDMS sensor for
low-force applications. Sens. Actuators A Phys. 2018, 280, 525–534. [CrossRef]

51. Sarode, A.L.; Sandhu, H.; Shah, N.; Malick, W.; Zia, H. Hot melt extrusion (HME) for amorphous solid
dispersions: Predictive tools for processing and impact of drug-polymer interactions on supersaturation.
Eur. J. Pharm. Sci. 2013, 48, 371–384. [CrossRef] [PubMed]

52. Corcione, C.E.; Gervaso, F.; Scalera, F.; Montagna, F.; Maiullaro, T.; Sannino, A.; Maffezzoli, A. 3D printing of
hydroxyapatite polymer-based composites for bone tissue engineering. J. Polym. Eng. 2017, 37, 741–746.
[CrossRef]

53. Solanki, N.G.; Lam, K.; Tahsin, M.; Gumaste, S.G.; Shah, A.V.; Serajuddin, A.T. Effects of Surfactants on
Itraconazole-HPMCAS Solid Dispersion Prepared by Hot-Melt Extrusion I: Miscibility and Drug Release.
J. Pharm. Sci. 2019, 108, 1453–1465. [CrossRef]

http://dx.doi.org/10.1016/j.ejps.2018.04.020
http://dx.doi.org/10.1208/s12249-018-1233-7
http://dx.doi.org/10.1016/j.ijpharm.2018.08.055
http://dx.doi.org/10.1016/j.xphs.2020.02.013
http://dx.doi.org/10.1016/j.ijpharm.2018.01.036
http://dx.doi.org/10.1007/s11095-017-2284-2
http://www.ncbi.nlm.nih.gov/pubmed/29368113
http://dx.doi.org/10.1016/j.ejps.2018.07.041
http://dx.doi.org/10.1016/j.jconrel.2017.11.022
http://dx.doi.org/10.1248/cpb.c19-00290
http://dx.doi.org/10.3390/pharmaceutics12010077
http://dx.doi.org/10.1016/j.ijpharm.2019.118700
http://dx.doi.org/10.1016/j.ijpharm.2019.01.045
http://dx.doi.org/10.1208/s12249-018-1029-9
http://dx.doi.org/10.1016/j.ijpharm.2019.118517
http://dx.doi.org/10.3390/s20030703
http://dx.doi.org/10.1016/j.sna.2018.08.028
http://dx.doi.org/10.1016/j.ejps.2012.12.012
http://www.ncbi.nlm.nih.gov/pubmed/23267847
http://dx.doi.org/10.1515/polyeng-2016-0194
http://dx.doi.org/10.1016/j.xphs.2018.10.058


Materials 2020, 13, 4961 19 of 20

54. Solanki, N.G.; Gumaste, S.G.; Shah, A.V.; Serajuddin, A.T. Effects of Surfactants on Itraconazole
-Hydroxypropyl Methylcellulose Acetate Succinate Solid Dispersion Prepared by Hot Melt Extrusion.
II: Rheological Analysis and Extrudability Testing. J. Pharm. Sci. 2019, 108, 3063–3073. [CrossRef]

55. Jennotte, O.; Koch, N.; Lechanteur, A.; Evrard, B. Three-dimensional printing technology as a promising tool
in bioavailability enhancement of poorly water-soluble molecules: A review. Int. J. Pharm. 2020, 580, 119200.
[CrossRef]

56. Albadarin, A.B.; Potter, C.B.; Davis, M.T.; Iqbal, J.; Korde, S.; Pagire, S.; Paradkar, A.; Walker, G.M.
Development of stability-enhanced ternary solid dispersions via combinations of HPMCP and Soluplus®

processed by hot melt extrusion. Int. J. Pharm. 2017, 532, 603–611. [CrossRef] [PubMed]
57. Zhang, S.; Lee, W.Y.T.; Chow, A.H.L. Crystallization of Itraconazole Polymorphs from Melt. Cryst. Growth Des.

2016, 16, 3791–3801. [CrossRef]
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