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Abstract: The accurate analysis of the behaviour of a polymeric composite structure, including
the determination of its deformation over time and also the evaluation of its dynamic behaviour
under service conditions, demands the characterisation of the viscoelastic properties of the constituent
materials. Linear viscoelastic materials should be experimentally characterised under (i) constant static
load and/or (ii) harmonic load. In the first load case, the viscoelastic behaviour is characterised through
the creep compliance or the relaxation modulus. In the second load case, the viscoelastic behaviour is
characterised by the complex modulus, E∗, and the loss factor, η. In the present paper, a powerful
and simple implementing technique is proposed for the processing and analysis of dynamic mechanical
data. The idea is to obtain the dynamic moduli expressions from the Exponential-Power Law Method
(EPL) of the creep compliance and the relaxation modulus functions, by applying the Carson
and Laplace transform functions and their relationship to the Fourier transform, and the Theorem of
Moivre. Reciprocally, once the complex moduli have been obtained from a dynamic test, it becomes
advantageous to use mathematical interconversion techniques to obtain the time-domain function of
the relaxation modulus, E(t), and the creep compliance, D(t). This paper demonstrates the advantages
of the EPL method, namely its simplicity and straightforwardness in performing the desirable
interconversion between quasi-static and dynamic behaviour of polymeric and polymer-composite
materials. The EPL approximate interconversion scheme to convert the measured creep compliance to
relaxation modulus is derived to obtain the complex moduli. Finally, the EPL Method is successfully
assessed using experimental data from the literature.

Keywords: viscoelasticity; creep and relaxation; interconversion; dynamic behaviour; dynamic
mechanical analysis; storage modulus; loss factor

1. Introduction

Polymeric and polymer-based composite materials present viscoelastic behaviour, which is
associated with the ability to simultaneously store and dissipate energy when subjected to a mechanical
load. This coupled system (elasticity and viscosity) provides an increased rate of damping.

Understanding the response of a polymer or polymer-composite material to dynamic excitation,
which is very relevant for many structural applications, involves characterising the physical factors
affecting deformation and recovery cycles.

One of the relevant mechanical properties of a polymer is that the modulus, i.e., the ratio of stress
to strain, has a complex nature: the real or in-phase part represents the part of the response in phase
with the excitation; the imaginary part is associated with the lagging part of the response and expresses
the damping capacity of the material.
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Furthermore, the interrelationships between linear viscoelastic material functions enable
the conversion of certain material functions into other functions that can be more easily obtained over a
wide-enough range of time or frequency [1]. An interconversion procedure between time and frequency
domain functions can therefore be used in analyses that require the relaxation or compliance time
spectrum, E(t) or D(t), instead of the readily available dynamic moduli, E∗(ω) or D∗(ω) [2].

A variety of methods exist which are applicable to the interconversion of static (creep) and dynamic
(relaxation) functions on the basis of appropriate experimental data of various polymers. Reference [3]
presents a method based on the convolution formula of creep compliance to obtain the dynamic
modulus using a numerical integration method to solve these integrals. Unfortunately, this method
needs to use numerical integration methods to solve complicated integrals and requires complex
computing programs. References [4] and [5] present a numerical method of interconversion between
linear viscoelastic material functions based on a Prony series representation. Here, the effects of
different choices of relaxation and retardation times on the accuracy of the method are discussed.
Prony series representation requires the adaptation of many variables; another inherent disadvantage
of this approach is the possibility of generating negative coefficients of the Prony series or oscillations,
namely when the source data exhibit significant variability. The problem of negative Prony series
coefficients is addressed in [6], where the difficulty of the direct fitting of a Prony series function to
experimental data without appropriate pre-smoothing is discussed. In Ref. [7], a power-law function is
used to express the creep compliance, which is converted into complex compliance.

Despite certain advantages of each of the described methods, all are inefficient to express the complete
viscoelastic curve of a polymer or a polymer-based composite, i.e., of covering all stages of their viscoelastic
behaviour, whether in creep or relaxation. The EPL function, in turn, is efficient in adjusting experimental
creep and relaxation data, and is able to predict viscoelastic behaviour for long periods [1].

When studying the mechanical behaviour of viscoelastic materials, it is usually assumed that
the strains and the stresses are deterministic functions. However, Wang et al. [8] highlight the importance
of considering the uncertainty propagation of the frequency response for the robust design of viscoelastic
damping structures. According to De Lima et al. [9], among the various methods devised for uncertainty
modelling, the stochastic finite element method has received major attention, as it is well adapted
for applications to complex engineering systems.

In this paper, an interconversion procedure is proposed to convert the measured complex
moduli to a relaxation viscoelastic function, and the measured relaxation modulus to complex moduli.
Despite the potential importance, the experimental quantification of uncertainties and the corresponding
stochastic modelling are not addressed.

The procedure proposed combines (i) Carson and Laplace transform functions, (ii) the Theorem
of Moivre, and (iii) Gamma-function approximation. The proposed interconversion function is easy
to implement and leads to optimal curve fitting results in both the time- and frequency-domain,
without the requirement of rheological models to represent the polymeric system.

2. Theoretical Background

2.1. The Hysteresis Basics

The hysteresis cycle can be analytically characterised by assuming that the response to a harmonic
excitation will be harmonically similar. In turn, when polymer and polymer-based composite materials
are subjected to harmonic stress cycles, they have harmonic deformation cycles with the same frequency
but with a difference of phase with respect to the corresponding stress cycles. Reference [10] quotes
that, within limits, the plots of measured stress versus measured strain are elliptical in shape and retain
that shape as amplitude increases. Furthermore, the slope of the major axis of the ellipse is a measure
of the stiffness of the sample, and the ratio between minor and major axis lengths is a measure of
the damping. It should be noted that all types of internal damping, and particularly those inherent to
the movement of polymer chains, are related to hysteresis cycles.
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From the relationship between strain and stress during a hysteresis cycle of a viscoelastic material,
the following relation is obtained

σ(t) =
σ0

εo
cos(δ)ε(t) +

σ0

εo
sin(δ)

dε(t)
dt

(1)

where σ(t) is the applied stress; σ0 is the amplitude of stress during the hysteresis cycle; ε0 is
the amplitude of the strain during the hysteresis cycle δ is the angle between excitation and response
ε(t) is the strain at time t-th.

The first term of Expression (1) represents the storage modulus, E′, and the second term represents
the damping capacity of the viscoelastic material.

Expression (1) can be written as

σ(t) = E′ε(t) +
E′

ω
.
ε tan(δ) (2)

where
.
ε is the strain rate; E′ is the storage modulus; ω is the angular frequency; tan(δ) is the so-called

“tan-delta”, representing the loss factor η (η = tan(δ)).

2.2. A Brief Review of the Complex Moduli

The effect of polymeric material on the damping of a given structure is influenced by the stiffness
of the material as well as its damping. In fact, the viscous part of the viscoelastic behaviour of polymers
becomes evident under dynamic loading.

By imposing a harmonic excitation of type ε(t) = ε0·ei(ωt) on a viscoelastic material, the stress
response in the frequency domain, derived from Expression (2), assumes the following form

σ(ω) = E′(ω)ε(ω) + iE′(ω)η(ω)ε(ω) (3)

where i is the imaginary part of a complex function given by
√
−1.

In Expression (3), the product given by E′(ω)η(ω) is named the loss modulus, E′′ (ω), and represents
the imaginary part of the complex modulus, E∗(ω), which is given by

E∗(ω) = E′(ω) + iE′′ (ω) (4)

From the complex modulus, the dynamic modulus amplitude, |E∗|, is determined as

|E∗| =
√
(E′)2 + (E′′ )2 (5)

The storage and the loss moduli represent the storage and the dissipation of energy, respectively.
In this respect, as the stress and the internal damping of a viscoelastic material depend on the frequency
of the imposed load, the relationship between the dissipated energy, H, and the loss modulus, E′′ , may be
described as

H =

2π/ω∫
0

ε(ω)[E′(ω) + iE′′ (ω)]
∂ε
∂t

dt = ε2
0ωπE′′ (6)

2.3. Relationship Between Time and Frequency Domain Moduli

Considering the relationships defined in the previous section, it can be concluded that
the knowledge of the relaxation modulus or the creep compliance is sufficient to describe the behaviour of
materials with linear viscoelastic behaviour [7]. Consequently, the complex modulus, E∗, and therefore
its components (E′, E′′ , |E∗| and η), can be defined from the frequency characterisation of the strain
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and stress. Moreover, the relaxation modulus (or creep compliance) can be obtained from the complex
relaxation modulus (or complex compliance).

The relationship between the time and the frequency domain moduli is related to the operational
functions given as

E∗(ω) = Ẽ(s)
∣∣∣
s=iω (7)

where Ẽ is the Carson Transform of a function, given by Ẽ(s) = sE(s); and E is the rational functions
of s in Laplace domain.

Moreover, the storage and the loss modulus can be readily deduced from the relaxation modulus
via Fourier transform [11]:

E′(ω) = ω

∫
∞

0
E(t) sin(ωt)dt (8)

E′′ (ω) = ω

∫
∞

0
E(t) cos(ωt)dt (9)

Consequently, the relaxation modulus (or creep compliance) can be deduced from the complex
modulus by the Fourier transform:

E(t) =
2
π

∫
∞

0

E′(ω)
ω

sin(ωt)dω (10)

E(t) =
2
π

∫
∞

0

E′′ (ω)
ω

cos(ωt)dω (11)

However, the Fourier transform of the creep compliance, D(t), is not convergent because it is an
increasing function of time.

Given the above-defined relation (Expression (7)), the following procedure can be followed to
derive the complex modulus:

(i) From a given creep test data, to determine the creep compliance;
(ii) To apply the interconversion method to obtain the relaxation modulus from creep compliance;
(iii) To apply the interconversion method to obtain the complex modulus from the relaxation

modulus function;
(iv) According to the required frequency, to calculate the viscoelastic parameters of the frequency

(E′, E′′ , η).

The steps (i) and (ii) involve the concept of the Exponential-Power Law (EPL) method, which
is derived from Ref. [12] and presented in Ref. [1]. A brief description of the method is presented in
the next section.

3. Exponential-Power Law

In Ref. [13], the similarity between creep behaviour and mechanical system ageing is shown,
where the failure rate of mechanical repairable systems that deteriorate over time due to ageing can
usually be visualised by a bathtub curve, as shown by the creep rate curve.

In Ref. [12] a differential equation is proposed to synthesise the behaviour of the creep rate
expressed by the bathtub curve. Once integrated, this equation yields

ε(t) = k·tβ·e
t
ti (12)

where ε(t) is the strain; β is a constant related to strain hardening ( β < 1 and 1/ti � β ); k is a constant
related to the main stress influence; and ti is the instability time.

The instability time is the period of time (after the material is loaded) after which there is a risk
that the system starts to fail and occurs in tertiary creep stage.
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The conversion between the creep compliance, fitted with *Expression (12)), and the relaxation
modulus may be required to estimate the fatigue resistance of composite structures. Thus, a numerical
interconversion between the creep compliance and the relaxation modulus was conducted using
a convenient Laplace transform and an approximated Gamma-function, and a simple but efficient
expression to represent the relaxation modulus may be given as

E(t) =
σ0

k tβ
·
sin(πβ)
π

·

(
ti
β
+

1
t

)
(13)

As mentioned in Ref. [14], relaxation behaviour emphasises short-term processes, while the creep
behaviour weights long-lasting processes. Therefore, interconversion between these two groups of
responses is frequently desired. Furthermore, to evaluate the viscoelastic damping of polymeric
and polymer-based composite materials, it is useful to interconvert the real and imaginary parts of a
complex response function within the frequency domain.

The hierarchical structure of the interconversion between viscoelastic properties is displayed in
Figure 1.
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4. Complex Moduli Obtained from EPL Method

A numerical interconversion between the relaxation modulus and the complex modulus is
presented below. Laplace and Carson’s transformation and Moivre’s theorem are used to achieve
the frequency domain from the time domain.

Using the Laplace transform properties summarised in Table 1, each term of the EPL function
(Expression (13)) can be transformed as

f
{
e

t
ti

}
=

1
s + ti

(14)

f
{
tβ
}
=

β!

sβ+1
(15)

Table 1. Laplace transform properties.

f(t) ^
f(t)

eαt 1
s−α

tn, n > −1 n!
sn+1
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After mathematical manipulations, the EPL function of relaxation modulus (Expression (13)),
in L-domain, is transformed into

E(s) =
σ0

k
·
sin(πβ)
π

·sβ
[

tiΓ(1− β) + sΓ(1− β)
βs

]
(16)

where E is the rational function of s and Γ is the Gamma function operator.
Applying Gamma function properties, γ = −β! = Γ(β− 1), and rearranging Expression (16) as

Eω = (σ0 sin(πβ)/kπ)·γ, yields

E(s) =
Eω
β
·

(
sβti + sβ+1

)
(17)

Introducing Expression (7) into Expression (17) and after a mathematical manipulation, the complex
modulus can be written as

E∗(ω) = Ẽ(s)
∣∣∣
s=iω =

Eω
β
·

[
(iω)βti + (iω)β+1

]
(18)

The following known relationship between the two operational functions is obtained

E∗(ω)D∗(ω) = 1 (19)

From the Theorem of Moivre, Expression (19) can be replaced as

E∗(ω) = Eω·

[
eizωβti + ieizωβ+1

]
β

(20)

where z =
πβ
2 .

Applying the Euler identity and separating even and odd terms, Expression (20) yields

E∗(ω) = Eω
ωβ

β
[(ti cos z−ω sin z) + i(ti sin z +ω cos z)] (21)

From Expression (21), the real and imaginary parts of the complex modulus are, respectively,

<e =
ωβ

β
[ti cos z−ω sin z] (22)

=m =
ωβ

β
[ti sin z +ω cos z] (23)

The storage, E′(ω), and loss modulus, E′′ (ω), parts of the dynamic modulus, are, respectively,

E′(ω) = Eω·<e = Eω·
ωβ

β
[ti cos z−ω sin z] (24)

E′′ (ω) = Eω·=m = Eω·
ωβ

β
[ti sin z +ω cos z] (25)

Furthermore, within linear viscoelasticity and from the relationship between the creep compliance
and the relaxation modulus, it is possible to rewrite the dynamic modulus as a function of the creep
compliance, D(t), and strain, ε(t), rewriting the factor Eω, in Expressions (24) and (25), as follows

Eω =
ε(t)· sin(πβ)

D(t)·k·π
(26)
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Once the creep strain is fitted, it is possible to directly estimate the dynamic behaviour of
the polymeric or polymer-based composite material.

5. Application of EPL Method

This section presents the application and assessment of the method described above to the spectrum
data collected from the literature, namely the studies by Kehrer et al. [15], Berthelot et al. [16],
and Ledi et al. [17].

5.1. Dynamic Modulus Fitted from Kehrer et al. (2018)

Kehrer et al. [15] investigated the dynamic behaviour of a pure polymer (polypropylene—PP).
The authors performed dynamic mechanical analysis (DMA) on the pure polymer and also on
composite samples (PP reinforced with 30 wt.% of short glass fibres) to experimentally characterise
their temperature- and frequency-dependent material behaviour.

The resulting experimental data not only give general information on the material behaviour of
the composite subjected to a temperature and frequency load, but also provide input and validation
data for the developed material modelling methods.

The DMA tests were conducted in tension mode with different frequencies (0.5 to 50 Hz)
and temperature (−50 to 120 ◦C) loads. In the present study, the test data obtained for the pure
PP at 30 ◦C are used. In preliminary works by Ref. [18], it is shown that for loads corresponding to a
strain in the material of ε≥ 0.60%, a nonlinear material behaviour is initiated. To remain below this value
and keep the material within the linear range, the applied static preload and the superimposed dynamic
load corresponded to maximum strains of 0.1% and 0.05%, respectively. The contact force was fixed
at 5 N.

From the data spectra, the EPL equation fitting was conducted, leading to a maximum difference
of ±0.50% between the test data and the fitted curve. The EPL coefficients are shown in Table 2.

Table 2. Parameters of the Exponential-Power Law (EPL) equation for Dynamic Moduli.

σo(MPa) k β ti(s)

3.00 58.08 0.0289 26,178

Figure 2 shows the evaluation of the storage modulus, E′(ω), fitted by the EPL equation to the data
obtained in the DMA test for the pure PP polymer. The narrow margin of relative error shown in
Figure 2b shows that the data adjustment performed by the EPL method presents a very good match
to the data points.
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From the obtained results, one may note that:

(i) As expected, the calculated instability time, ti (26,178 s), is relatively low, reflecting the typical
short lifetime for a pure thermoplastic PP;

(ii) The fitting provided by EPL is accurate and may represent the dynamic behaviour of the pure PP
thermoplastic polymer;

(iii) The fitted curve of the storage modulus exhibits an r-Pearson factor greater than 99%.

The evaluation of the loss factor and the phase angle range is shown in Figure 3. An increase in
the phase angle values is shown, which is logical, because the test temperature of 30 ◦C is higher than
the glass transition temperature, Tg, of PP, which is in the range of −20 ◦C to 0 ◦C; however, the test
temperature is significantly lower than the softening point of PP, which does not melt below 160 ◦C.
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Comparing the loss factor estimated by the EPL method to the measured loss factor at a temperature
of 30 ◦C and a frequency of 5.0 Hz, the EPL gives η = 0.047, while the measurements show η = 0.050.

5.2. Dynamic Modulus Fitted from Berthelot et al. (2008)

Berthelot et al. [16] performed a series of analyses of damping of (i) composite laminates,
(ii) composite laminates with interleaved viscoelastic layers, and (iii) sandwich specimens.
The composite laminates are constituted of unidirectional E-glass fibre unidirectional mats and silk
weave layers (both with 300 g/m2) in an epoxy matrix, for a given fibre orientation of 0◦, 15◦, 30◦, 45◦,
60◦, 75◦ and 90◦ with respect to the longitudinal axes of the specimen. The laminate materials with
viscoelastic layers are the unidirectional glass fibre composites considered previously in which a single
or two viscoelastic layers constituted of Neoprene-based layers (nominal thickness of 0.2 mm) were
interleaved. The sandwich specimens were constructed with the [0/90]s cross-ply laminates as skins,
enclosing 15 mm thick PVC closed-cell foams with three different densities (60, 80 and 200 kg/m3).

The composite laminates were fabricated by hand lay-up in plates of different dimensions; these
were cured at room temperature with pressure, using a vacuum moulding process, and then post-cured
in an oven. The plates were fabricated with eight layers in such a way to obtain the same plate thickness
(nominal value of 2.4 mm) with the same fibre volume fraction (nominal value of 0.40).

The experimental investigation of the damping of the different materials involved using beam test
specimens and an impulse technique. Each test specimen was supported horizontally as a cantilever
beam in a clamping block. An impulse hammer was used to induce the excitation of the flexural
vibrations of the beam, and the beam response was detected using a laser vibrometer.

The evaluation of damping was performed on beams of different lengths (160 mm, 180 mm
and 200 mm) to result in a variation of the values of the peak frequencies. Beams had a nominal
width of 20 mm and a nominal thickness of 2.5 mm. The results were reported for the first three
bending modes.
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The following two assumptions were made about this investigation:

1. The test temperature, not reported in the paper, is assumed to be around 25 ◦C;
2. The loss factor is β and ti dependenton the EPL method, therefore the coefficient k is assumed to

be the unit for all samples and fibre orientation.

From the loss factor measured for 0◦, 45◦, and 90◦ of fibre orientation, the EPL equation fitting was
conducted applying the least-squares method to determine the best fit curve to test data. The average
relative error to the three adjustments was 4.43%. The EPL coefficients are shown in Table 3.

Table 3. Parameters of EPL equation for Loss Factor.

θ◦ k β ti(s)

0◦ 1 0.235 45,707
45◦ 1 0.589 34,443
90◦ 1 0.579 36,275

From Table 3, for given fibre orientation from the longitudinal axis of the specimen, it is observed
that the value of β and ti coefficients are fibre orientation dependent. Figure 4 shows the evaluation
of the loss factor, η, fitted by the EPL equation, regarding the data of the impulse technique test
for unidirectional glass fibre composites. It is observed that the damping for specimens where the fibre
orientation is transverse to their longitudinal axis (45◦ and 90◦) is greater than for specimens where
the fibre orientation is parallel to its the longitudinal axis.
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5.3. Dynamic Modulus Fitted from Ledi et al. (2018)

Ledi et al. [17] present an identification method of the viscoelastic material properties
(shear modulus and loss factor) of a symmetric three-layered viscoelastic sandwich beam. The authors
performed experimental vibration tests to determine resonant frequencies and loss factors for different
bending modes.

The viscoelastic sandwich beam tested by the authors was composed of three layers, bonded
together: two aluminium elastic face sheets and one viscoelastic core layer, made of polyurethane
dielectric resin (made of polyol and isocyanate). Two types of sandwich beams (beam 1 and beam
2) distinguished by their respective core and faces thicknesses were considered. The geometrical
and material properties of the sandwich beams are reported in Table 4.
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Table 4. Material properties and dimensions for beam 1 and beam 2.

Elastic Layers

Material Aluminium
Young’s Modulus Ef =6.9 × 1010 Pa

Poisson’s ratio vf =0.3
Density ρf = 2766 kg/m3

Thickness hf,1 = 1 mm and hf,2 = 0.5 mm

Viscoelastic Layer

Material Polyurethane dielectric resin
Poisson’s ratio vf =0.3

Density ρf = 1550 kg/m3

Thickness hc,1 = 1 mm and hc,2 = 2 mm

Whole Beam

Length L = 500 mm
Width b = 30 mm

Thickness h = 3 mm

The experimental setup to measure sandwich beam frequency response curves comprised of
an eloetrodynamic shaker, a laser vibrometer and a sandwich beam sample. The shaker generated
vibrations that were controlled and measured by a controller device. The frequency excitation produced
by the shaker ranged from 4 Hz and 1500 Hz. The vibration amplitude of the shaker was controlled
by an accelerometer. The amplitude of the shaker was chosen to minimise nonlinear vibrations
(typically 0.02 mm of displacement between 5 Hz and 157.5 Hz, and a 1 g acceleration between
157.5 Hz and 1500 Hz). A laser vibrometer was used to measure the amplitude of the beam’s vibration;
this equipment was pointed at the free extremity (tip) of the beam (cantilever), whose boundary
condition was clamped-free. The test apparatus used in the experiments allowed adjustments of
the clamping length—four lengths (from 318 to 475 mm) were tested.

For a linear, homogeneous and isotropic material, the EPL function of storage modulus Expression
(24) may provide the definition of the storage shear modulus, G′(ω), whose relationship may be
established by the complex Poisson’s ratio, υ∗(ω), as

E′(ω) = 2G′(ω)·[1 + υ∗(ω)] (27)

Given the reduced dependence on the frequency of Poisson’s ratio, its value can be considered a
real and constant quantity [19].

From the shear modulus measured, the EPL function of the shear storage modulus was fitted
and the obtained coefficients are presented in Table 5.

Table 5. Parameters of the EPL equation for the in-Plane Shear Storage Modulus.

k β ti(s)

0.68 0.98 2469.136

The evaluation of the in-plane shear storage modulus for both beams is shown in Figure 5,
where it can be noted that the fitting is very close to the data points, providing a good description of
the behaviour of the identified shear modulus quantities over a wide range of frequencies. It should be
noted that because the adjusted curve refers to the spectrum of two distinct data tests, the evaluation
of the relative error through the dispersion plot was not used in this adjustment; as an alternative,
the r-Pearson coefficient was used to evaluate the quality of the fitting: values of 0.962 and 0.981 were
obtained for beams 1 and 2, respectively.
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6. Conclusions

This paper presents a new approximate interconversion scheme to convert the measured dynamic
moduli into creep compliance modulus and relaxation modulus. The proposed method uses a
convenient Laplace and Carson transform and its relationship to the Fourier Domain, coupled with
the application of the Moivre and Euler Theorem.

The EPL creep fitting method described in Ref. [1] has been converted to the EPL dynamic
modulus equation and the data provided in the literature have been successfully fitted. In particular,
the test data concerning three different polymeric or polymer-based composites were used to validate
the numerical approach: a pure polymer thermoplastic resin specimen, an E-glass-epoxy composite
laminate, and an elastic-viscoelastic sandwich beam.

The results obtained show the accuracy of the EPL Method in fitting the data from creep, relaxation,
and dynamic tests. Moreover, the method can show the three stages of creep (long-time behaviour).
In addition, it is shown that fitting based on the EPL method is easy to implement since only three
terms need to be found in any data spectrum, and no pre-smoothing procedure is required to ensure a
good fit. Furthermore, the stability of this method is demonstrated by the achieved Pearson correlation
coefficients, which was higher than 0.96 for the different examples.
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