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Abstract: Glass fiber-reinforced polymer (GFRP) reinforcing bars have relatively low shear strength,
which limits their possible use in civil infrastructure applications with high shear demand, such as
concrete reinforcing dowels. We suggest that the horizontal shear strength of GFRP bars can be
significantly improved by nanomodification of the vinyl ester resin prior to pultrusion. The optimal
content of functionalized multiwalled carbon nanotubes (MWCNTs) well dispersed into the vinyl ester
resin was determined using viscosity measurements and scanning electron micrographs. Longitudinal
tension and short beam shear tests were conducted to determine the horizontal shear strength of the
nanomodified GFRP reinforcing bars. While the tensile strength of the GFRP reinforcing bars was
improved by 20%, the horizontal shear strength of the bars was improved by 111% compared with the
shear strength of neat GFRP bars pultruded using the same settings. Of special interest is the absence
of the typical broom failure observed in GFRP when MWCNTs were used. Differential scanning
calorimetry measurements and fiber volume fraction confirmed the quality of the new pultruded
GFRP bars. Fourier-transform infrared (FTIR) measurements demonstrated the formation of carboxyl
stretching in nanomodified GFRP bars, indicating the formation of a new chemical bond. The new
pultrusion process using nanomodified vinyl ester enables expanding the use of GFRP reinforcing
bars in civil infrastructure applications.
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1. Introduction

Corrosion is responsible for numerous structurally deficient concrete bridge decks as a result of
deicing salts [1]. Glass fiber-reinforced polymer (GFRP) concrete reinforcing bars have become an
acceptable alternative for steel bars due to their corrosion resistance [2]. Additionally, GFRP reinforcing
bars have remarkable strength and stiffness-to-weight ratio compared with steel and can incorporate
fiber optics for sensing [1]. In the last four decades, GFRP reinforcing bars have been widely used for
new construction, as well as for strengthening of existing structures. The GFRP pultruded bars have one
fiber-dominant (uniaxial) direction, and the two other perpendicular directions are matrix-dominant.
The mechanical properties in the matrix-dominant directions are much weaker compared with the
fiber-dominant direction [3]. Despite the advantages offered by the corrosion-resistant material, GFRP
reinforcing bars have a relatively low interfacial bond between the glass fibers and the polymer
matrix [2]. This weak interfacial bond results in several potential limitations of GFRP reinforcing bars,
including limited horizontal shear strength, relatively low creep rupture strength, and low fatigue
strength [4]. These limitations in mechanical properties result in structural design code provisions
limiting the maximum stress allowed in GFRP reinforcing bars [5]. The limited horizontal shear
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strength of GFRP reinforcing bars restricts their use as dowels for concrete bridge decks and slab on
grade and as reinforcement in shear critical regions in reinforced concrete structures [6]. Alternatively,
a large number of GFRP reinforcing bars are used, and the design becomes uneconomic. The limited
horizontal shear strength of GFRP reinforcing bars, thus, represents a major drawback for widening
GFRP field application in civil infrastructure.

The pultrusion process is used for the manufacturing of GFRP reinforcing bars for improved
productivity and reducing cost [7,8]. The pultrusion method involves the use of a heated die to
integrate fiber reinforcement and resin systems. The resin system essentially behaves like a matrix
to bond the fibers together and is important to achieve the durability characteristics and desired
mechanical properties offered by the GFRP reinforcing bars [9]. Vinyl ester resin is widely used in the
pultrusion of GFRP sections and concrete reinforcing bars in the industry [10–12] due to its excellent
processability and good mechanical properties [13,14]. Moreover, glass–vinyl ester reinforcing bars
have shown high chemical stability when subjected alkaline and acidic environments, attributed to the
compact microstructure of the vinyl ester [3,9,15].

Nanomodification of vinyl ester resin systems was reported in the literature to improve its
interaction with reinforced fiber, resulting in enhanced fiber reinforced polymer (FRP) composites.
Carbon nanotubes (CNTs), one of the strongest materials available today [16], seemed to have significant
effects on vinyl ester resins. With appreciable strength and industrial availability, small quantities
of multiwalled carbon nanotubes (MWCNTs) were used to improve the strength and stiffness of
the polymer composite materials [17]. Surface functionalization of MWCNTs using active chemical
groups can be performed to form covalent bonds with the polymer matrix [18]. A detailed discussion
about using different dispersion methods and the effect of functionalization of MWCNTs in the epoxy
matrix is presented elsewhere [19]. Functionalized MWCNTs were shown to have a chemical reaction
with the vinyl ester resin [20]. The nanoscale diameter of MWCNTs allows them to interfere in the
polymerization process, altering the final polymer matrix [18].

Laminated FRP composites manufactured using vinyl ester dispersed with carbon nanotubes
demonstrated an improved interfacial bond between the resin matrix and the fiber reinforcement [21].
Vinyl ester modified with synthesized CNTs was used in the hand layup fabrication of GFRP composites
and showed a 15% improvement in impact strength [22]. Successful nanomodification of vinyl ester
resins using MWCNTs was attributed to the existence of styrene as active diluents in vinyl ester [23].
MWCNTs when dispersed in vinyl ester at a ratio beyond percolation limits were shown to form a
carbon network that can improve the electrical conductivity of the matrix and, thus, enable in situ
damage monitoring [24]. Good dispersion of the nanomaterials in the polymer matrix was reported
to control the efficiency of the nanomodification process [23]. Prior work is indicative of the benefits
associated with using carbon nanotubes in ester- and epoxy-based FRP laminates manufactured using
the vacuum-assisted wet layup technique [25,26]. Furthermore, it was shown that the strength of fiber
composites can be improved by using surface-grown CNTs [27] or via surface modification of the fibers
along with dispersing CNTs in the sizing polymer [28].

In the current study, pultruded GFRP reinforcing bars using a vinyl ester resin system modified with
carboxyl (COOH)-functionalized MWCNTs were produced and tested. No prior work demonstrated
the potential use of nanomodified ester-based resins in producing pultruded GFRP concrete reinforcing
bars. It is hypothesized that incorporating a small amount of COOH-MWCNTs in the vinyl ester resin
system prior to its use in the pultrusion process will enhance the bond between the vinyl ester matrix
and the glass fibers, leading to the improved pultruded GFRP reinforcing bars. The suitable amount of
MWCNTs for the pultrusion process was first determined based on viscosity measurements and quality
of dispersion. The degree of curing was determined using differential scanning calorimetry (DSC),
and the fiber volume fraction test was used to evaluate the quality of pultruded GFRP reinforcing
bars. Chemical analysis using Fourier-transform infrared spectroscopy (FTIR) was then performed to
explain the effect of MWCNTs.
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2. Materials

For pultrusion, glass fiber spools used were Hybon® 2732 supplied by PPG Industries Ohio, Inc.
(Circleville, OH, USA). The glass fiber is categorized as type E with silane as the sizing agent. The glass
fiber is compatible with a range of resins such as polyester, vinyl ester, polyurethane, and epoxy
resins. The filament diameter is 24 µm and the density of the fiber is 2.58 gm/cc. The vinyl ester
resin, with the name 700 Vinyl Ester, including 53.5% vinyl ester and 45% styrene, supplied by US
Composites (West Palm Beach, FL, USA) was used in this study. The catalyzation process in the resin
was conducted using methyl ethyl ketone peroxide (MEKP, US Composites, West Palm Beach, FL,
USA), which essentially serves as a hardening agent. A ratio of 1000 cc of resin to 8 cc of the catalyst
(MEKP) was used for the curing process. MWCNTs functionalized with 1.2% carboxylic (COOH)
group were used in this study. COOH-MWCNTs with >95 wt.% purity supplied by Cheap Tubes, Inc.,
Grafton, VT, USA have an inner diameter of 5–10 nm, an outer diameter of 20–30 nm, and length of
10–30 µm with a bulk density of 0.28 gm/cc and specific surface area of 110 m2/gm.

3. Pre-Pultrusion Preparation and Analysis Methods

To evaluate the suitability of the vinyl ester resin for the pultrusion process when modified with
COOH functionalized MWCNTs, viscosity tests of neat vinyl ester resin and MWCNTs-dispersed vinyl
ester nanocomposite were conducted. This is because the viscosity of the resin is one of the most
critical parameters in the pultrusion process [29]. Four contents of MWCNTs were examined: 0.0%
(neat), 0.5 wt.%, 1.0 wt.%, and 2.0 wt.%. All MWCNTs mixing ratios were considered as a weight
percentage of the vinyl ester resin. To gain insight into the dispersion of the MWCNTs–vinyl ester
nanocomposite, scanning electron microscope (SEM) investigations were also conducted.

The dispersion of COOH-MWCNTs in the vinyl ester resin was performed as a two-stage process
involving mechanical stirring and ultrasonication, which are considered common techniques in
polymer processing [30]. In the first stage, each content of MWCNTs was added to the vinyl ester resin.
Mechanical stirring at 80 ◦C for 120 min at 800 rpm was performed. Stage 1 was followed by Stage 2
in which ultrasonication at 40 ◦C for 60 min was performed after 5 min of degassing to disperse the
MWCNTs in the vinyl ester resin [31,32]. Following the dispersion process, the MWCNTs–vinyl ester
nanocomposite was cooled down to room temperature prior to any testing.

In the pultrusion process, achieving fiber wet-out gets challenging as the resin viscosity increases
because a non-viscous resin offers less resistance to flow compared with a viscous resin [33].
When MWCNTs are introduced in a polymer resin, the flow characteristics of the resin are significantly
altered due to their high aspect ratio [34]. Rheological evaluation of the MWCNT–vinyl ester
nanocomposite to evaluate the resin flow behavior was performed using an RST-Coaxial Cylinder
Rheometer (Ametek Brookfield, Middleboro, MA, USA). An RST CCT-40 spindle (Ametek Brookfield,
Middleboro, MA, USA) was used with a viscosity range of 0.0003–27.6 K·Pa·s and a shear rate of
0.0215–2.79 K·s−1. A controlled rate operation at 1–500 s−1 was performed on a sample volume of
68.5 mL of the MWCNTs–vinyl ester nanocomposite. Resin shear stress values were obtained and
plotted against shear rate to achieve a linear behavior, the slope of which indicates the viscosity of the
MWCNT–vinyl ester polymer nanocomposite.

During the dispersion of MWCNTs in the vinyl ester resin, the evaporation of styrene results
in producing variable concentrations of the nanomaterials across the resin [24]. As a result, poor
dispersion due to MWCNTs entanglement is possible. Such poor dispersion can lead to poor mechanical
behavior. To evaluate the dispersion of different MWCNTs contents in the vinyl ester resin, SEM
investigations of hardened MWCNTs–vinyl ester nanocomposite incorporating different weight ratios
of MWCNTs were performed. The uniformly mixed polymer was poured into 5 mm thick, 5 mm wide,
and 25 mm long silicone molds and cured at 80 ◦C for 12 h. The specimens were demolded from the
silicone molds, and SEM investigations were conducted using a VEGA3 thermionic emission SEM
system by TESCAN (Brno, Czech Republic). To enhance conductivity, the specimens were polished
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and sputter-coated with gold/palladium (Au/Pd). MWCNTs spotted in the micrographs provided
insight into the dispersion levels of the vinyl ester nanocomposite.

4. Pultrusion Process

The pultrusion process used in this study incorporates four principal steps, which are (1) provision
of fiberglass roving and preforming, (2) open bath impregnation, (3) curing process in die, and (4) take-off

unit [29]. The pultrusion process was performed using a speed-controlled gear motor running at a
constant pull speed of 3.0 mm/s. This particular pull speed was chosen to ensure adequate heat supply
for proper curing, following recommendations by previous studies [35,36]. However, it is essential to
note that, if a commercial product is to adopt the method proposed herein, a relatively high pull speed
of at least 8.0 mm/s might be necessary. The pultrusion process incorporating the nanomodification of
the vinyl ester resin is shown schematically in Figure 1.

Figure 1. Schematic describing the pultrusion process: (a) fiberglass roving provision; (b) preforming;
(c) open bath impregnation with nanomodified resin; (d) nanomodified resin synthesis; (e) curing die
with heating plates; (f) take-off unit.

Twelve fiberglass rovings were used in the pultrusion process. The fiberglass was collected onto
a horizontal steel roller fixed to a steel stand with welded supports. From the roller, the fiberglass
was pulled into the impregnation bath under fixed horizontal rollers to ensure the tension of the
strands and complete saturation and wet-out of the fibers. The saturated fiberglass was pulled into
two steel guides placed at a 150 mm distance with holes of 9.5 mm diameter. For the curing process,
the fiberglass was pulled into a 600 mm long steel die with a 9.5 mm diameter hole. The die was
provided with heating plates and coils connected to a temperature regulator to maintain a temperature
of approximately 120 ◦C inside the die to facilitate the curing process. The cured bar was pulled out
with gripping devices and cut with a saw. The five specimens tested were randomly selected from
numerous independent rounds of pultrusion to ensure reproducibility of the pultruded GFRP bars.
The specimens were stored in the laboratory with a controlled temperature maintained at 23 ◦C ± 1 ◦C
and a relative humidity of 50% ± 2%. Figure 2 illustrates the pultrusion process as performed in our
laboratory facility.
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Figure 2. (a) Provision of fiberglass roving; (b) preforming; (c) open bath impregnation; (d) guiding
and curing process in die; (e) take-off unit; (f) motor.

5. Post-Pultrusion Experimental Testing and Analysis Methods

5.1. Degree of Cure

The degree of cure of MWCNTs–vinyl ester nanocomposite for sufficient curing of the pultruded
GFRP bars was evaluated as per the ASTM E2160–04 Standard test method for heat of reaction of
thermally reactive materials by differential scanning calorimetry (DSC) [37]. For a thermoset resin,
the degree of cure is determined using Equation (1).

Degree of Cure =
HUncured −Hcured

Huncured
× 100% (1)

where HUncured represents the weight-normalized heat of reaction of uncured resin, and Hcured represents
the weight-normalized heat of reaction of the cured specimen for which the degree of cure is being
calculated. Specimens for DSC measurements were fabricated using the neat and dispersed mix of
MWCNT–vinyl ester nanocomposite mixed with the MEKP hardening agent. The uniformly mixed
resin was poured into 5 mm thick, 5 mm wide, and 25 mm long silicone molds and cured at 80 ◦C for
12 h. These cured specimens were demolded from the silicone molds, and 2 mg of sample was weighed
to within ±1 µg in a Tzero aluminum pan (TA Instruments, New Castle, DE, USA). An uncured vinyl
ester specimen was obtained by mixing a neat vinyl ester resin with MEKP. The specimens were heated
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at 10 ◦C/min from ambient temperature to 400 ◦C under a nitrogen environment using a DSC 250 by
T.A. Instruments (New Castle, DE, USA). The integration of the exothermic heat flow curve recorded
as a function of temperature was obtained, indicating the heat of reaction.

5.2. Fiber Volume Fraction and Microcopy

The fiber volume fraction of the pultruded GFRP bars with and without MWCNTs was determined
using the ASTM D3171-15 Standard test methods for constituent content of composite materials [38] by
the hot furnace combustion method. The fiber content, as the volume fraction percentage, was calculated
using Equation (2). A Celestron Handheld Digital Microscope (Celestron, Torrance, CA, USA) with
5.0 MP camera at 20× power was used to inspect the cross-section of the pultruded bars to observe
any voids.

Volume fraction V f =

(M f

Mi

)
× 100%×

ρc

ρr
(2)

where Mi is the initial mass (gm) of the specimen, M f is the final mass (gm) of the specimen after
combustion, ρr is the density (gm/cc) of the reinforcement, and ρc is the density (gm/cc) of the specimen.

5.3. Fourier-Transform Infrared Spectroscopy (FTIR)

To investigate the potential of a chemical reaction between COOH-MWCNTs and the vinyl
ester resin, FTIR measurements were performed. Specimens for FTIR measurements were fabricated
using the neat and dispersed mix of MWCNT–vinyl ester nanocomposite hardened with the MEKP
hardening agent. The uniformly mixed resin was poured into 5 mm thick, 5 mm wide, and 25 mm
long silicone molds and cured at 80 ◦C for 12 h and then demolded. A NICOLET 6700 (Thermo Fisher
Scientific Inc., Waltham, MA, USA) with an attenuated total reflectance (ATR) cell attachment was
used to perform the FTIR measurements. Specimens were powdered to suit the ATR cell attachment.
The OmnicTM software package (Thermo Scientific OMNICTM series software, 8. 3. 103, Thermo Fisher
Scientific Inc., Waltham, MA, USA) was used for data collection, peak fitting, and analysis. Spectra
were background-corrected, and a total of 64 scans were performed on each sample to obtain the
transmittance from 4000–400 cm−1 wave number range at a resolution of 1.928 cm−1 wave number.
The transmittance (T) was determined from the ATR spectroscopy using the Beer–Lambert Law as
presented in Equation (3), where I and I0 are the intensities of the transmitted and incident radiation,
respectively [39]. FTIR analysis was conducted on the spectra to identify the peaks formed by the
characteristic chemical reaction between COOH-MWCNTs and the vinyl ester resin.

T =

(
I
I0

)
(3)

5.4. Mechanical Testing of the Pultruded GFRP Bars

Longitudinal tension tests were performed on the pultruded GFRP bars using an Instron® loading
frame (Instron Corporation, Norwood, MA, USA) with 530 kN capacity. Three bars of pultruded
neat GFRP and three bars of pultruded GFRP bars incorporating 0.5 wt.% COOH-MWCNTs were
tested under longitudinal tension test at a crosshead displacement rate of 2.8 mm/min following the
ASTM D7205/D7205M Standard test method for tensile properties of fiber reinforced polymer matrix
composite bars [40]. The displacement-controlled protocol was chosen to produce an approximate
loading rate between 100 and 500 MPa/min. All the specimens failed within 10 min of loading.
To prevent stress concentrations at the bar ends, stainless-steel wedge anchors were used as per ASTM
D7205/D7205M. The anchoring system used in this study is based on patented stainless-steel anchors
shown to be successful under static and fatigue loading [41]. The diameter of the bars was 9.5 mm
(denoted as imperial bar size #3), and the length of the bars between the anchors was 381 mm. An MTS
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contact extensometer with a 25.4 mm gauge length was attached to the bar to serve as a strain indicating
device. The tensile strength and modulus of elasticity were calculated using Equations (4) and (5).

σt =
Pmax

A
(4)

E =
∆σ
∆ε

(5)

where σt is the tensile strength, Pmax is the maximum force prior to failure, A is the cross-sectional area
of the bar, E is the tensile modulus of elasticity, ∆σ is the difference in applied tensile stress between
the starting and ending strain points, and ∆ε is the difference in the average tensile strain between the
starting and ending strain points. The start and end strain values are the 25% and 50% strains of the
ultimate failure strain, respectively, and their corresponding stress values based on ASTM D7205 [40].
The longitudinal tension test setup is shown in Figure 3.

Figure 3. Longitudinal tension test setup of pultruded GFRP bars using mechanical wedge anchors.

Several tests have been reported in the literature to determine the interlaminar shear strength of
FRP laminates [42,43]. However, the short beam shear test based on the ASTM D4475 is a relatively easy
and inexpensive test [11,42,44]. In the short beam shear test, the span-to-depth ratio is kept between 3
and 8 to ensure interlaminar shear failure [44,45]. In this paper, short beam shear tests were performed
on the pultruded GFRP bars using an MTS® Bionex servo-hydraulic system (MTS Systems Corporation,
Eden Prairie, MN, USA) with 25 kN capacity. Five bars of pultruded neat GFRP and five bars of
pultruded GFRP bars incorporating 0.5 wt.% COOH-MWCNTs were tested under horizontal shear
at a crosshead displacement rate of 1.3 mm/min following ASTM D4475-16 Standards for apparent
horizontal shear strength of pultruded reinforced plastic rods using the short beam method [44].
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The specimens for the short beam test were 50 mm long obtained by cutting the pultruded bars.
The shear specimen span-to-diameter ratio was maintained as 3:1 to achieve a length of 28.6 mm
between the supports such that the loading was applied at the middle of the specimen. The short beam
shear strength was calculated using Equation (6).

S =
0.849× P

d2
b

(6)

where S is the apparent horizontal shear strength, P is the breaking load, and db is the bar diameter.

6. Results and Discussion

6.1. Results from Rheological Evaluations

The resin shear stress plotted against shear rate for each vinyl ester type with 0.0 wt.%, 0.5 wt.%,
1.0 wt.%, and 2.0 wt.% COOH-MWCNTs is shown in Figure 4. The slope of the line represents the
viscosity, as indicated in Figure 4.

Figure 4. Vinyl ester resin shear stress versus shear rate with varying MWCNTs contents.

Compared with the neat vinyl ester with 0.0 wt.% COOH-MWCNTs, the viscosity of vinyl ester
incorporating 0.5 wt.%, 1.0 wt.%, and 2.0 wt.% COOH-MWCNTs increased by 11%, 15%, and 30%,
respectively. The increase in viscosity due to the addition of COOH-MWCNTs is attributed to
particle–particle interactions of the MWCNTs, leading to increased particle friction with the resin [20].
The increase in viscosity of vinyl ester incorporating 0.5 wt.% and 1.0 wt.% COOH-MWCNTs was
relatively small, while the increase in viscosity of vinyl ester incorporating 2.0 wt.% COOH-MWCNTs
was relatively high. The limited increase in viscosity did not affect the resin suitability for the pultrusion
process. However, the 30% increase in vinyl ester resin incorporating 2.0 wt.% MWCNTs had a negative
effect on the pultrusion process and would not allow efficient fiber wet-out. All viscosity measurements
of the vinyl ester with 0.0 wt.%, 0.5 wt.%, 1.0 wt.%, and 2.0 wt.% COOH-MWCNTs are presented
in Table 1.
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Table 1. Viscosity measurements of the vinyl ester (VE) with varying MWCNTs contents.

Specimen
Viscosity (mPa·s) Mean

(mPa·s)
Standard

Deviation (mPa·s)
Coefficient of
Variation (%)1 2 3 4 5

VE Neat
(0.0 wt.%) 399.3 400.8 402.7 404.6 406.0 402.7 2.72 1.0

VE 0.5 wt.% 455.1 451.5 446.2 443.1 444.3 448.0 5.08 1.0

VE 1.0 wt.% 465.6 462.7 463.4 464.5 464.7 464.2 1.13 0.0

VE 2.0 wt.% 514.4 524.9 521.5 518.4 523.9 520.6 4.28 1.0

6.2. Results from SEM Investigations

To gain insight into the dispersion of the vinyl ester blend with different contents of MWCNTs
suspensions, SEM micrographs of COOH-MWCNTs–vinyl ester nanocomposites with 0.5 wt.%,
1.0 wt.%, and 2.0 wt.% MWCNTs are shown in Figure 5. SEM micrographs were acquired with
an accelerating voltage of 5.0 kV. This voltage is suitable for the visualization of CNTs as bright
features in a polymer matrix [46]. A uniform distribution of MWCNTs was only observed in vinyl
ester incorporating 0.5 wt.% COOH-MWCNTs. The MWCNTs in the vinyl ester polymer matrix are
represented by arrows, as shown in Figure 5a. This supports the earlier observation of a limited
increase in initial viscosity of vinyl ester incorporating 0.5 wt.% COOH-MWCNTs compared with all
other COOH-MWCNTs contents. Figure 5b shows bright features representing clusters of MWCNTs in
the vinyl ester matrix, which can be explained by the relatively poor dispersion of this high content of
MWCNTs due to increased viscosity. Furthermore, Figure 5c also shows the clusters and the potential
of MWCNTs entanglement forming agglomerates due to the relatively higher content of 2.0 wt.%
MWCNTs in the vinyl ester matrix. Carbon nanotubes entanglement can occur at high concentrations
of MWCNTs due to the evaporation of a styrene monomer in vinyl ester during the dispersion
process. It is evident from the microstructural analysis that high concentrations of MWCNTs, including
1.0 wt.% and 2.0 wt.%, are not suitable for use in the pultrusion process due to an increase in viscosity
and absence of good dispersion. Therefore, vinyl ester resins incorporating 1.0 wt.% and 2.0 wt.%
MWCNTs were excluded from the further investigation as these mixtures were deemed unsuitable
to produce pultruded GFRP bars. Neat vinyl ester and vinyl ester nanocomposite incorporating
0.5 wt.% COOH-MWCNTs were used to pultrude GFRP bars. Finally, while not used herein, we note
that plasma etching might be an effective technique in producing high-quality micrographs of SEM
specimens incorporating MWCNTs [47].

6.3. Results of Fiber Volume Fraction, Microscopy, and Cure Characteristics

The fiber volume fractions of the pultruded neat GFRP and pultruded GFRP bars incorporating
0.5 wt.% COOH-MWCNTs were 61.2% and 59.3%, respectively. The two bars include acceptable and
similar fiber volume fractions. Microscopic images of the cross-sections of a neat pultruded bar and a
pultruded bar with 0.5 wt.% COOH-MWCNTs are shown in Figure 6. The figure shows the absence of
large voids and the similarity of the cross-section of both bars.

The DSC heat flow curves of the uncured neat vinyl ester resin and cured vinyl ester with 0.0 wt.%
and 0.5 wt.% COOH–MWCNTs are shown in Figure 7, and the heat of reaction values are listed in
Table 2. The uncured neat vinyl ester showed two major peaks in the range of 50–150 ◦C with an
associated enthalpy of normalized heat of reaction about 578 J/g, as reported in the literature [48].
The two peaks observed in the DSC heat flow curves can be explained by the change in the degree
of curing of the uncured vinyl ester during the DSC measurements. As the temperature increased,
the degree of curing first increased, reaching the first peak at ~90 ◦C, and then decreased. The increasing
temperature reduced the uncured resin viscosity, providing the space for the free radicals to move and
to start polymerization of the resin. Consequently, the polymerization progressed further and led to
another increase in curing, resulting in the second peak at ~110 ◦C. Similar observations were reported
by Zhang et al. [49].



Materials 2020, 13, 5710 10 of 21

Figure 5. Scanning electron micrograph showing hardened vinyl ester incorporating (a) 0.50 wt.%,
(b) 1.0 wt.%, and (c) 2.0 wt.% COOH-MWCNTs with (left) high magnification (right) low magnification.
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Figure 6. Microscopic images at 20×magnification showing cross-section of (a) neat pultruded GFRP
bar and (b) pultruded GFRP bar incorporating 0.5 wt.% COOH-MWCNTs.

Figure 7. Differential scanning calorimetry graphs for uncured neat vinyl ester with MEKP, neat cured
vinyl ester, and cured vinyl ester incorporating 0.5 wt.% COOH-MWCNTs. The inset figure shows a
close look at the behavior of the three materials at the peak heat flow.

Table 2. Normalized heat of reaction and consequent degree of cure for uncured vinyl ester, neat cured
vinyl ester, and cured vinyl ester incorporating 0.5 wt.% COOH-MWCNTs.

Specimen Normalized Heat of Reaction (J/g) Degree of Cure (%)

Uncured Vinyl Ester 577.56 -

Cured Vinyl Ester (Neat 0.0 wt.%) 13.10 97.73

Cured Vinyl Ester (0.5 wt.%
COOH-MWCNTs) 10.98 98.10

A significant decrease in enthalpy values was observed for both neat and vinyl ester incorporating
0.5 wt.% COOH-MWCNTs, which was attributed to the elimination of residual reactions, resulting in
a complete reaction because of the curing process. The enthalpy of 13.1 J/g for neat vinyl ester and
enthalpy of 10.9 J/g for vinyl ester with 0.5 wt.% COOH-MWCNTs are comparatively similar and much
lower than the uncured specimens indicating complete reaction and a high degree of cure, as presented
in Table 2. While an accurate determination of the glass-transition temperature (Tg) using DSC has
proven challenging compared to other methods (e.g., dynamic mechanical analysis) [50], incorporating
MWCNTs in vinyl ester has been reported to result in increasing Tg by a few degrees [21,51]. Such an
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increase in Tg, while limited, is beneficial for improving the fire resistance of GFRP reinforcing bars
when used in civil infrastructure.

6.4. Results of FTIR Spectral Analyses

In the FTIR spectroscopy shown in Figure 8, a chemical reaction in FTIR spectral analyses can
be identified by observing the shift in vibration peaks. Typical bands of vinyl ester were found
at 3415 cm−1 for the OH hydroxyl group, 3059 cm−1 for the CH aromatic benzene ring, 2963 cm−1

for the CH aliphatic, 1507 cm−1 for the CH aromatic benzene ring, 1232 cm−1 for the C–O ester,
1180 cm−1 for the C=O ether, and 696 cm−1 for the CH monosubstituted aromatic benzene ring [52].
In COOH-MWCNTs, there are normally three distinctive bands, which are C=O, O–H, and C–O [53].
For carboxylic acid (COOH), the typical band is observed at 1700 cm−1. In COOH-MWCNTs, this
band is observed at around 1710–1735 cm−1 [54]. Bands at 1722 cm−1 and 1621 cm−1 were attributed
to the bond stretching of carbonyl group C=O and carboxylic C–O groups [55]. The C=O peak was
also identified at 1719 cm−1 [56]. C=O stretching has also been reported at 1725 cm−1 [55]. The C–O
peak was also observed strongly around 1644 cm−1 [53]. This peak may also appear in some cases at
1565 cm−1 indicating the carboxylate anion stretch mode [57]. When COOH-MWCNTs are added to
resins, the C=O stretch has been reported around 1735 cm−1 with a peak at 1734.4 cm−1 [58,59].

Figure 8. Fourier-transform infrared (FTIR) spectrogram showing bands observed for neat vinyl ester
and vinyl ester incorporating 0.5 wt.% COOH-MWCNTs.
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In Figure 8, the FTIR spectra of neat vinyl ester and vinyl ester incorporating 0.5 wt.%
COOH-MWCNTs are presented, and the important bands are highlighted. The FTIR analysis of both
neat and vinyl ester incorporating 0.5 wt.% COOH-MWCNTs showed typical peaks at 3415 cm−1,
3059 cm−1, 2963 cm−1, 1507 cm−1, 1232 cm−1, 1180 cm−1, and 696 cm−1 as expected. The O–H stretching
region was observed in both neat and 0.5 wt.% COOH-MWCNTs–vinyl ester nanocomposite in the
range of 3300 to 3550 cm−1. Similar O–H absorption peaks appeared at 3415 cm−1 for both materials.
This observation indicates that most of the hydroxyl groups of the COOH-MWCNTs were consumed
via esterification reaction with the secondary hydroxyl groups of the vinyl ester [60]. Furthermore,
the stretch position of carbonyl C=O of the neat vinyl ester at 1722 cm−1 was shifted to 1716 cm−1

in the presence of COOH-MWCNTs and its feature appears greatly enhanced. This can be noted by
comparing the absorption ratios of the C–O stretch at 1594 cm−1 to the carbonyl C=O stretches at
1716 cm−1 and 1722 cm−1. The increased carbonyl peak intensity in the presence COOH-MWCNTs
versus the neat resin refers to a chemical interaction between the hydroxyl group of the vinyl ester
and COOH-MWCNTs [61]. These differences observed in the FTIR spectrogram peak locations were
attributed to the occurrence of chemical reactions due to the interaction between COOH-MWCNTs
and the vinyl ester matrix.

6.5. Results from Mechanical Testing

The stress–strain behavior of pultruded GFRP bars produced using vinyl ester incorporating
0.0 wt.% and 0.5 wt.% of COOH MWCNTs is shown in Figure 9. The stress–strain behavior of GFRP
incorporating MWCNTs showed a linear elastic behavior to failure. All the GFRP specimens showed
similar slopes with and without MWCNTs was observed. Compared with the neat pultruded GFRP
bars, a nonsignificant increase in the elastic modulus was observed in pultruded GFRP bars with
0.5 wt.% COOH MWCNTs vinyl ester nanocomposite. The strain at failure was higher for the specimens
made with 0.5 wt.% COOH-MWCNTs, as shown in Figure 9. The manufacturer’s reported elastic
modulus of the E-glass fibers is 72.4 GPa. For the fiber volume fraction of 61.2% as measured herein for
the neat GFRP pultruded bars, and with the observed failure strain of the neat GFRP pultruded bars of
0.0155 mm/mm, the tensile strength can be predicted using basic principles of composite mechanics to
be 686.7 MPa [62]. The experimentally observed mean tensile strength of the neat GFRP pultruded
bars is 694 MPa, which is very close to the predicted tensile strength.

Figure 9. Longitudinal tension test: (a) representative stress–strain behavior; (b) comparison of the
tensile strength of pultruded GFRP bars made with neat vinyl ester and 0.5 wt.% COOH-MWCNTs–vinyl
ester nanocomposite. The percentage above the error bar shows the per percentage improvement
compared with neat GFRP.

Tension test results indicated that an improvement of 20% in tensile strength in pultruded GFRP
bars with 0.5 wt.% COOH MWCNTs when compared with neat pultruded GFRP. This improvement
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was proven to be statically significant, with a 95% confidence level using the Student t-test. More
interestingly, the different modes of tension failure observed of pultruded neat GFRP bars and pultruded
GFRP bars incorporating 0.5 wt.% COOH-MWCNTs are shown in Figure 10. It is apparent that neat
GFRP showed typical broom failure, as reported in the literature [2]. However, pultruded GFRP
incorporating 0.5 wt.% COOH-MWCNTs showed almost no broom failure. We suggest that this change
in tensile strength and the tension failure mode is related to the ability of MWCNTs to have mechanical
and chemical effects. First, MWCNTs work as microfibers resisting crack propagation and improve
the interlaminar fracture toughness of the GFRP composite [25]. Second, the functionalization of
the MWCNTs with the carboxylic COOH group allows them to react with the silane sizing on the
surface and, thus, improve the chemical bond. The combined mechanical and chemical effects result
in increasing the tensile strength and limiting the broom effect that follows fibers debonding from
the matrix.

Figure 10. Longitudinal tension failure modes of pultruded GFRP bars with (a) complete setup of
neat pultruded GFRP bars, (b) failed specimen of neat pultruded GFRP bars, (c) complete setup
of pultruded bars with 0.5 wt.% COOH-MWCNTs and (d) failed specimen of pultruded bars with
0.5 wt.% COOH-MWCNTs

The shear load–displacement behavior of the neat pultruded GFRP bars and pultruded GFRP bars
incorporating 0.5 wt.% COOH-MWCNTs is shown in Figure 11. It can be observed that, by incorporating
0.5 wt.% MWCNTs, the slope of the linear part of the horizontal shear load–displacement curves
increased. A significant improvement in the horizontal shear strength by 111% was observed for
pultruded GFRP incorporating 0.5 wt.% COOH-MWCNTs compared with neat GFRP bars pultruded
using the same settings. This behavior can be attributed to the improvement in the load transfers
between the fiber and matrix [63]. The five specimens tested for each pultruded GFRP type had less
than a 2% coefficient of variation. The improvement in the horizontal shear strength of pultruded
GFRP bars incorporating 0.5 wt.% COOH-MWCNTs compared with neat pultruded GFRP bars was
proven to be statistically significant, with a 95% confidence level using the Student t-test. It is important
to note that the reported shear strength of the pultruded GFRP bar seems lower than that reported by
the manufacturers. The significant increase in shear strength of pultruded GFRP bars incorporating
MWCNTs is based on the sole comparison with neat GFRP bars pultruded using the same settings.
However, testing of a market-available GFRP bar using the same short beam test reported herein
showed the market-available GFRP bar with a 9.5 mm diameter to have the same short beam shear
behavior and similar shear strength to the GFRP pultruded bar, as shown in Figure 11.
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Figure 11. Short beam shear test for horizontal shear strength of pultruded GFRP: (a) representative
load–displacement behavior of the neat GFRP, GFRP including 0.5 wt.%, and a market-available
GFRP bar with 9.5 mm diameter; (b) comparison of horizontal shear strength. The percentage shown
above the error bar represents the improvement in horizontal shear strength of pultruded GFRP bars
incorporating COOH-MWCNTs.

Failure modes of the short beam shear tests shown in Figure 12 indicate a brittle failure with
interlaminar separations for the pultruded neat GFRP bar. Figure 12 shows shear cracks propagating
in both specimens. Figure 12 also shows that GFRP bars incorporating 0.5 wt.% MWCNTs are laterally
stiffer compared with neat GFRP bars. The increase in lateral stiffness of pultruded GFRP bars
incorporating MWCNTs can be explained by the fact that the lateral stiffness of GFRP bars is governed
by the matrix stiffness, which is affected by the inclusion of MWCNTs. The fiber snap and breakage
at the midpoint of the specimen under the loading nose can be observed in Figure 12a. A nonbrittle
interlaminar shear failure was observed for the pultruded GFRP bar incorporating 0.5 wt.% MWCNTs,
as shown in Figure 12b. This behavior can be explained by the improvement in the bond strength and
interlaminar fracture toughness of GFRP incorporating COOH-MWCNTs, as suggested above.

Figure 12. Short beam shear failure modes of pultruded GFRP specimens with (a) neat pultruded
GFRP specimens and (b) pultruded GFRP specimens with 0.5 wt.% COOH-MWCNTs, showing shear
cracks propagating in both specimens.

As the horizontal shear strength of the GFRP is a dominant matrix behavior, it is obvious that
incorporating COOH-MWCNTs can significantly improve the horizontal shear strength of pultruded
GFRP bars. The above results indicate that using as low as 0.5 wt.% COOH-MWCNTs well dispersed
in the vinyl ester matrix prior to pultrusion of the GFRP bar could significantly improve the tensile
strength by 20% and horizontal shear strength by 111% and change the GFRP modes of failure.
A summary of the mechanical test results on pultruded neat GFRP bars and pultruded GFRP bars
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incorporating 0.5 wt.% COOH-MWCNTs is presented in Table 3. The significant improvement in
horizontal shear strength of pultruded GFRP bars incorporating COOH-MWCNTs is specifically useful
for producing GFRP reinforcing dowels in concrete slab on grade and in other applications where
GFRP is typically not used for its limited shear strength.

Table 3. Elastic modulus, tensile strength, and horizontal shear strength of pultruded neat GFRP bars
and pultruded GFRP bars incorporating 0.5 wt.% COOH-MWCNTs.

Specimen Tensile Strength (MPa) Tensile Modulus (GPa) Horizontal Shear Strength
(MPa)

Neat GFRP 694 ± 71 45.4 ± 0.29 24.6 ± 1.0

GFRP 0.5 wt.% 832 ± 42 45.5 ± 1.66 49.6 ± 2.4

The FTIR spectrographs confirmed the hypothesis that COOH-MWCNTs had chemical effects
on the vinyl ester and, thus, resulted in an improved interaction with the glass fibers used in the
pultrusion of GFRP reinforcing bars. The chemical structure of vinyl ester resin after initiation and
cross-linking with a styrene monomer and its reaction with the silane sizing agent on the surface of
glass fiber is shown schematically in Figure 13a [52,64,65]. The COOH functionalization group of
the MWCNTs had a chemical reaction with the vinyl ester on one side and with the silane sizing of
the glass fibers on the other side (Figure 13b). This interaction seemed to increase the bond strength
between the vinyl ester matrix and the glass fibers, thus improving the horizontal shear strength of the
pultruded GFRP reinforcing bars. A schematic representation of the chemical interaction of vinyl ester
incorporating COOH-MWCNTs with the silane sizing agent on the glass fibers [26] used in pultruded
GFRP reinforcing bars compared with neat vinyl ester interactions with the silane sizing agent in the
pultruded GFRP reinforcing bars is shown in Figure 13.

Cost analysis of materials and equipment in the 2020 market shows that the cost to produce
pultruded GFRP with vinyl ester incorporating 0.5 wt.% COOH-MWCNTs would be 10–15% higher
than that of neat vinyl ester. The fact that the selected amount of MWCNTs does not affect viscosity or
fiber wet-out means that no change is needed for the pultrusion process, with only a need to disperse
the nanomaterials in the vinyl ester prior to pultrusion. An additional one-time investment will be
required to incorporate the dispersion of MWCNTs in vinyl ester in the production line. Industrial-scale
equipment for the dispersion of nanomaterials in polymer resins such as calendaring techniques is
available and has been reported to work efficiently [66].

Further research is warranted to identify the absolute amount of MWCNTs to be used in a
commercial application. MWCNTs contents below 0.5 wt.% (e.g., 0.4 or 0.2 wt.%) might still produce
pultruded GFRP bars with the desired improvement in mechanical properties. Further research is
also warranted to examine the fatigue, creep rupture, and durability behavior of pultruded GFRP
incorporating MWCNTs. The fact that most of these properties are governed by the matrix and
limitations of the bond of glass fibers with polymer resins suggests that the new pultruded GFRP bars
incorporating COOH-MWCNTs might provide a good solution to these critical limitations in GFRP.
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Figure 13. Chemical interactions in (a) neat pultruded GFRP bars [52,64,65], and (b) pultruded GFRP
bars incorporating 0.5 wt.% COOH-MWCNTs. Relationship with the surface morphology of (c) broom
failure in neat pultruded GFRP bars and (d) absence of broom failure in pultruded GFRP incorporating
0.5 wt.% COOH-MWCNTs.

7. Conclusions

A pultrusion facility was developed to produce GFRP reinforcing bars with a novel nanomodified
vinyl ester resin incorporating MWCNTs. Viscosity measurements and SEM investigations were first
conducted to define the suitable content for MWCNTs dispersed in the vinyl ester resin that can be
used in the pultrusion process. Investigations showed that contents above 0.5 wt.% suffer from poor
dispersion or increased viscosity that would not allow fiber wet-out necessary for pultrusion. GFRP
reinforcing bars were pultruded using neat vinyl ester resin and vinyl ester incorporating 0.5 wt.%
COOH-MWCNTs. The COOH functionalization improved the dispersion of MWCNTs in the vinyl
ester resin. Incorporating 0.5 wt.% functionalized COOH-MWCNTs in the vinyl ester prior to GFRP
pultrusion improved the tensile strength of pultruded GFRP reinforcing bars by 20% and improved the
horizontal shear strength of the bars by 111% compared with neat GFRP bars pultruded using the same
settings. A significant change in the mode of failure of the GFRP bars was also observed, indicating an
improved interlaminar bond of GFRP incorporating MWCNTs. The improved bond was attributed to
the chemical reaction of COOH-MWCNTs with the vinyl ester and the resulting bond with the silane
sizing on glass fibers. FTIR measurements confirmed the chemical reaction between COOH-MWCNTs
and the vinyl ester. The quality of the pultruded GFRP reinforcing bars was confirmed by the high fiber
volume fraction and high degree of cure. Cost analysis of the new pultruded GFRP reinforcing bars
using nanomodified vinyl ester incorporating MWCNTs showed a limited cost increase considering
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the observed improvement in mechanical properties, specifically, the horizontal shear strength above
100% of neat GFRP bars. The improvements in the mechanical properties of GFRP allow widening the
use of GFRP in applications requiring improved shear strength (e.g., reinforcing dowels for concrete
slab on grade). Further research is warranted to examine the fatigue and creep rupture strength of the
new pultruded GFRP reinforcing bars incorporating MWCNTs.

8. Patents

Mahmoud Reda Taha, Rahulreddy Chennareddy, Amr Riad Pultruded GFRP Reinforcing Bars,
Dowels and Profiles with Carbon Nanotubes. PCT/US2018/059015. WO/2019/090120.
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50. Schindler, A.; Doedt, M.; Gezgin, Ş.; Menzel, J.; Schmölzer, S. Identification of polymers by means of DSC,
TG, STA and computer-assisted database search. J. Therm. Anal. Calorim. 2017, 129, 833–842. [CrossRef]

51. Cotet, A.; Bastiurea, M.; Andrei, G.; Cantaragiu, A.; Hadar, A. Mechanical And Thermal Behavior of Carbon
Nanotubes/Vinyl Ester Nanocomposites. Mater. Plast. 2019, 56, 735–743. [CrossRef]

52. Ardhyananta, H.; Puspadewa, F.D.; Wicaksono, S.T.; Widyastuti; Wibisono, A.T.; Kurniawan, B.A.; Ismail, H.;
Salsac, A.V. Mechanical and Thermal Properties of Unsaturated Polyester/Vinyl Ester Blends Cured at Room
Temperature. IOP Conf. Ser. Mater. Sci. Eng. 2017, 202, 12088. [CrossRef]

53. Theodore, M.; Hosur, M.V.; Thomas, J.; Jeelani, S. Influence of functionalization on properties of
MWCNT–epoxy nanocomposites. Mater. Sci. Eng. A 2011, 528, 1192–1200. [CrossRef]

54. Zou, W.; Du, Z.; Liu, Y.; Yang, X.; Li, H.; Zhang, C. Functionalization of MWCNTs using polyacrloyl chloride
and the properties of CNT-epoxy matrix nanocomposites. Compos. Sci. Technol. 2008, 68, 3259–3264.
[CrossRef]

55. Massoumi, B.; Jafarpour, P.; Jaymand, M.; Entezami, A.A. Functionalized multiwalled carbon nanotubes
as reinforcing agents for poly(vinyl alcohol) and poly(vinyl alcohol)/starch nanocomposites: Synthesis,
characterization and properties. Polym. Int. 2015, 64, 689–695. [CrossRef]

56. Xue, S.-M.; Xu, Z.-L.; Tang, Y.-J.; Ji, C.-H. Polypiperazine-amide Nanofiltration Membrane Modified by
Different Functionalized Multiwalled Carbon Nanotubes (MWCNTs). ACS Appl. Mater. Interfaces 2016, 8,
19135–19144. [CrossRef]

57. Abuilaiwi, F.A.; Laoui, T.; Al-Harthi, M.; Atieh, M.A. Modification and functionalization of multiwalled
carbon nanotube (MWCNT) via fischer esterification. Arab. J. Sci. Eng. 2010, 35, 37–48.

58. Hao, Z.; Li, L.; Liao, X.; Sheng, X.; Zhang, Y. Preparation and toughening performance investigation of
epoxy resins containing carbon nanotubes modified with hyperbranched polyester. Polym. Bull. 2018, 75,
1013–1026. [CrossRef]

http://dx.doi.org/10.1016/j.compscitech.2007.05.032
http://dx.doi.org/10.1139/l97-054
http://dx.doi.org/10.1016/j.matdes.2014.10.003
http://dx.doi.org/10.1177/0731684412467561
http://dx.doi.org/10.1016/j.carbon.2011.05.027
http://dx.doi.org/10.3390/polym3042142
http://dx.doi.org/10.1590/S1517-707620150001.0009
http://dx.doi.org/10.1002/aic.14277
http://dx.doi.org/10.1007/s10973-017-6208-5
http://dx.doi.org/10.37358/MP.19.4.5261
http://dx.doi.org/10.1088/1757-899X/202/1/012088
http://dx.doi.org/10.1016/j.msea.2010.09.095
http://dx.doi.org/10.1016/j.compscitech.2008.08.011
http://dx.doi.org/10.1002/pi.4867
http://dx.doi.org/10.1021/acsami.6b05545
http://dx.doi.org/10.1007/s00289-017-2076-1


Materials 2020, 13, 5710 21 of 21

59. Functionalization of Shortened SWCNTs Using Esterification. Bull. Korean Chem. Soc. 2004, 25, 1301–1302.
[CrossRef]

60. Jaswal, S.; Gaur, B. Curing and Decomposition Behaviour of Cresol Novolac Based Vinyl Ester Resin.
Chem. Eng. Trans. 2013, 32, 1591–1596.

61. Fockaert, L.-L.I.; Ganzinga-Jurg, D.; Versluis, J.; Boelen, B.; Bakker, H.J.; Terryn, H.; Mol, J. Studying
Chemisorption at Metal–Polymer Interfaces by Complementary Use of Attenuated Total Reflection–Fourier
Transform Infrared Spectroscopy (ATR-FTIR) in the Kretschmann Geometry and Visible–Infrared
Sum-Frequency Generation Spectroscopy (SFG). J. Phys. Chem. C 2020, 124, 7127–7138. [CrossRef]

62. Hyer, M. Stress Analysis of Fiber-Reinforced Composite Materials; Destech Publications Inc.: Lancaster, PA, USA,
2008.

63. Hashemi, F.; Tahir, P.M.; Madsen, B.; Jawaid, M.; Majid, D.; Brancheriau, L.; Juliana, A.H. Volumetric
composition and shear strength evaluation of pultruded hybrid kenaf/glass fiber composites. J. Compos.
Mater. 2015, 50, 2291–2303. [CrossRef]

64. Haque, P.; Barker, I.A.; Parsons, A.; Thurecht, K.J.; Ahmed, I.; Walker, G.S.; Rudd, C.; Irvine, D.J. Influence of
compatibilizing agent molecular structure on the mechanical properties of phosphate glass fiber-reinforced
PLA composites. J. Polym. Sci. Part A Polym. Chem. 2010, 48, 3082–3094. [CrossRef]

65. Ratner, B.D.; Hoffman, A.S.; McArthur, S.L. Physicochemical Surface Modification of Materials Used in
Medicine. In Biomaterials Science; Elsevier BV: Amsterdam, The Netherlands, 2020; pp. 487–505.

66. Chakraborty, A.K.; Plyhm, T.; Barbezat, M.; Necola, A.; Terrasi, G.P. Carbon nanotube (CNT)–epoxy
nanocomposites: A systematic investigation of CNT dispersion. J. Nanoparticle Res. 2011, 13, 6493–6506.
[CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.5012/bkcs.2004.25.9.1301
http://dx.doi.org/10.1021/acs.jpcc.9b10775
http://dx.doi.org/10.1177/0021998315602948
http://dx.doi.org/10.1002/pola.24086
http://dx.doi.org/10.1007/s11051-011-0552-3
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials 
	Pre-Pultrusion Preparation and Analysis Methods 
	Pultrusion Process 
	Post-Pultrusion Experimental Testing and Analysis Methods 
	Degree of Cure 
	Fiber Volume Fraction and Microcopy 
	Fourier-Transform Infrared Spectroscopy (FTIR) 
	Mechanical Testing of the Pultruded GFRP Bars 

	Results and Discussion 
	Results from Rheological Evaluations 
	Results from SEM Investigations 
	Results of Fiber Volume Fraction, Microscopy, and Cure Characteristics 
	Results of FTIR Spectral Analyses 
	Results from Mechanical Testing 

	Conclusions 
	Patents 
	References

