
Supplementary Materials

3D Printing of Polycaprolactone–Polyaniline Electroactive Scaffolds for Bone Tissue Engineering

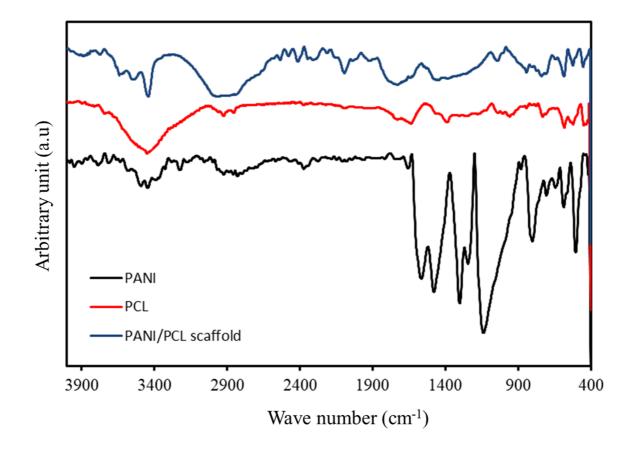
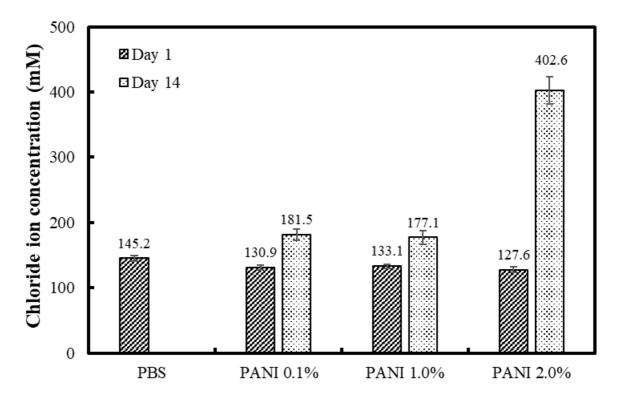

Arie Wibowo ^{1,2,*,+}, Cian Vyas ^{3,*,+}, Glen Cooper ^{3,*}, Fitriyatul Qulub ¹, Rochim Suratman ¹, Andi Isra Mahyuddin ⁴, Tatacipta Dirgantara ⁵ and Paulo Bartolo ³

Figure S1. Optical microscopy images of the 3D printed PCL/PANI scaffolds: **a**) PCL, **b**) 0.1%, **c**) 1.0% and **d**) 2.0% wt. PANI (scale bar = 1 mm).

Figure S2. Optical microscopy of scaffold with 0 and 0.1 wt.% PANI scaffold highlighting the observable inclusion of the PANI microparticles within the PCL matrix. Scale bar = 0.2 mm.

Figure S3. FTIR spectra of PANI, PCL and PANI/PCL scaffold. Suggesting that no new bonds are formed between PCL-PANI in the composite scaffold; this implies that only physical blending of PANI and PCL occurred in the PCL/PANI scaffold.


Table S1. pH observation of phosphate buffered saline solution after immersion of scaffolds as a function of immersion time (n = 3).

Incubation	Samples					
time (days)	PCL-PANI 0%	PCL-PANI 0.1%	PCL-PANI 1.0%	PCL-PANI 2.0%		
0	7.45 ± 0.02	7.45 ± 0.01	7.45 ± 0.01	7.45 ± 0.01		
1	7.45 ± 0.01	7.45 ± 0.02	7.45 ± 0.02	7.45 ± 0.01		
3	7.44 ± 0.01	7.44 ± 0.01	7.44 ± 0.01	7.44 ± 0.02		
5	7.44 ± 0.01	7.44 ± 0.01	7.44 ± 0.01	7.44 ± 0.01		
7	7.34 ± 0.01	7.35 ± 0.01	7.34 ± 0.01	7.33 ± 0.01		
9	7.34 ± 0.01	7.36 ± 0.01	7.31 ± 0.02	7.32 ± 0.02		
11	7.33 ± 0.02	7.34 ± 0.01	7.31 ± 0.01	7.30 ± 0.01		
14	7.31 ± 0.01	7.33 ± 0.03	7.28 ± 0.01	7.27 ± 0.01		

Table S2. Scaffold weight loss during incubation in PBS solution for up to 15 days (n = 3).

Sample	Remaining mass of scaffold (%) as incubation time (days)						
Sample	0	3	6	9	12	15	

PCL-PANI 0.0%	$100.00 \pm$	99.92 ±	99.84 ±	99.23 ±	99.23 ±	98.96 ±
PCL-PANI 0.0%	0.23	0.08	0.16	0.19	0.25	0.10
	$100.00 \pm$	99.56 ±	99.47 ±	99.29 ±	99.35 ±	98.99±
PCL-PANI 0.1%	0.13	0.18	0.24	0.32	0.22	0.22
	$100.00 \pm$	99.66 ±	99.70 ±	99.16 ±	98.65 ±	98.82 ±
PCL-PANI 1.0%	100.00 ± 0.24	99.66 ± 0.29	99.70 ± 0.35	99.16 ± 0.17	98.65 ±	98.82 ± 0.29
PCL-PANI 1.0%						

Figure S4. Determination of chloride ion in phosphate buffered saline (PBS) solution after immersion of scaffolds for 1 and 14 days (n = 3).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).