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Abstract: Currently the investigation on recycled cement concrete aggregate has been widely
conducted, while the understanding of the recycled polymer concrete aggregate is still limited. This
study aims to fill this knowledge gap through the experimental investigation on mechanical and
durability performance. Specifically, the remolded polyurethane stabilized Pisha sandstone was
collected as the recycled polymer concrete aggregate. The remolded Pisha sandstone was then applied
to re-prepare the polyurethane-based composites. After that, the mechanical performance of the
prepared composites was first examined with unconfined and triaxial compressive tests. The results
indicated that the Pisha sandstone reduces the composite’s compressive strength. The reduction
is caused by the remained polyurethane material on the surface of the remolded aggregate, which
reduces its bond strength with the new polyurethane material. Aiming at this issue, this study
applied the ethylene-vinyl acetate (EVA) to enhance the bond performance between the polyurethane
and remolded sandstone. The test results indicated both the unconfined and triaxle compressive
strength of the polyurethane composites were enhanced with the added EVA content. Furthermore,
the durability performance of the EVA-modified composites were examined through freeze-thaw and
wet-dry cycle tests. The test results indicated the EVA could enhance the polyurethane composites’
resistance to both wet-dry and freeze-thaw cycles. Overall, the modification with EVA can compensate
for the strength loss of polyurethane composites because of the applied remolded aggregate and
enhance its sustainability.

Keywords: W-OH polyurethane; Pisha sandstone; ethylene-vinyl acetate (EVA); wet-dry cycles;
freeze-thaw cycles; unconfined compressive strength; triaxle compressive strength

1. Introduction

The demolishing of the aged infrastructure has led to numerous construction waste, which has
led to severe environmental burden [1], including the occupation of landfill [2] and pollution of
underground water [3]. Recycling of construction waste as aggregate or supplementary cementitious
materials is a promising way to resolve environmental burden [4]. Currently, the study on recycling
of construction waste has been widely conducted, including the study on the recycled concrete
aggregate [5,6], recycled asphalt pavement [7,8], recycled asphalt shingles [9], and etc. Specifically,
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the recycled cement concrete aggregate has now been applied in field application after detailed
investigation, including the application on unpaved road [10], concrete beams [11,12], masonry
mortar [13,14], concrete columns [15], and etc. Although currently the study and understanding
on recycled polymer concrete aggregate is still quite limited [16]. Specifically, the polyurethane
materials have been widely applied to stabilize sandstone for water conservation. However, the
aging of polyurethane stabilized sandstone had led to numerous waste polymer concrete and also
deteriorated its water conservation ability. This study aims to resolve these issues by recycling the
waste polymer concrete as aggregate to re-prepare polyurethane-based composites for sustainable
water conservation applications.

Currently, polyurethane is widely applied in construction due to its novel mechanical
performance [17], water retention ability [18,19], and proper adhesive performance [20]. Wang et al. [21]
immobilized the bacteria with the polyurethane shell to prepare the self-healing concrete. It is found
that the higher strength recovery was achieved for the samples with polyurethane immobilized bacteria,
compared to that with silica gel immobilized bacteria. The study by Akkoyun and Akkoyun [22]
indicated reinforcement with fly ash and blast furnace slag can enhance the tensile strength of the
polyurethane composites. Yang et al. [23] examined the performance of polyurethane-based composites
with the waste red mud, which can achieve the compressive strength of 38.6 MPa and flexural strength
of 12.4 MPa, respectively. It was also found that the polyurethane foam waste can be applied as
aggregate and enhance the fatigue performance of the mortar samples [24]. Chen et al. [25] applied
the polyurethane to enhance the deicing performance of the asphalt pavement. It was found that the
adhesion force to the external ice layer can be significantly reduced with the attached polyurethane layer.
The study by Lu et al. [26] supported that the polyurethane-based composites owned better long-term
mechanical performance than that of the traditional asphalt concrete. Lu et al. [27] further prepared
the pervious pavement with the polyurethane stabilized recycled ceramic aggregate. It was found the
prepared samples owned higher compressive strength and rutting resistance compared to that of the
normal asphalt concrete. Huang et al. [28] indicated the applied polyurethane can enhance the impact
resistance of the subgrade bed under the high-speed railway. The study by Lee et al. [29] indicated
the utilization of polyurethane can enhance the damping performance and tensile performance of the
polymer concrete prepared with replaced concrete aggregate. Further study by Lee et al. [30] indicated
the polyurethane can also enhance the damping property of the prepacked concrete. Junco et al. [31]
applied the waste polyurethane foam as an aggregate substitute for mortar preparation. It was found
that the polyurethane foam can enhance the workability but deteriorated its alkaline stability. Similar
results were also reported in the study by Gadea et al. [31]. Polyurethane [32] has been applied to
fix the potholes because of its strong adhesion with the asphalt materials and used as a stabilizer for
sandstone [33–35]. Despite the wide application of polyurethane as construction materials, the research
on recycled polyurethane-based composites is currently still limited.

One major obstacle prohibiting the wide application of the recycled aggregate is that the remained
binder on its surface [36] can deteriorate its bonding strength with the new binder materials. Various
protocols have been proposed to resolve this issue. One major solution is to conduct the surface
treatment for the recycled aggregate to enhance its bonding strength with the new binder material,
including surface washing [37] and cement coating [2]. Specifically, the study by Brand and Roesler [38]
indicated that surface washing with the acid solution can enhance the bonding strength between
the cement matrix and the reclaimed asphalt pavement. Furthermore, it was found that the surface
washing could enhance the surface hydrophilicity of the recycled aggregate and thus led to a denser
interfacial transition zone between the recycled aggregate and the new binder material [39].

Another type of solution is to modify the binder material for the mixture design optimization.
Currently, the addition of superplasticizer [40,41], replacing Portland cement with SCMs [42,43] and
adjusting the water/cement ratio [44] have all been conducted for the performance improvement
of the concrete with recycled concrete aggregate. Cartuxo et al. [45] applied both the regular and
high-performance superplasticizer to adjust the rheological behavior of the concrete with fine recycled
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concrete aggregate and improve its mechanical/durability performance. The test results indicate the
regular and high-performance superplasticizer can increase its 28-day compressive strength by 35%
and 63% respectively compared to that of the reference sample. Furthermore, the 90-day shrinkage can
be reduced by 2% and 30% by the regular and high-performance plasticizer respectively. Besides that,
the study by Brand and Roesler [39] indicated the porous interfacial transition zone along the recycled
aggregate can be strengthened with the added silica fume. The compressive strength of the concrete
with reclaimed asphalt pavement can thus be enhanced.

Besides the study on bonding performance, the investigation on the durability performance of
the concrete with recycled concrete aggregate has also been widely conducted [46]. The freeze-thaw
cycle tests indicated the recycled concrete aggregate can deteriorate the freeze-thaw resistance of
concrete [47–49]. When exposed to freeze-thaw cycles, its inappropriate freeze-thaw resistance can
further deteriorate its loading capacity [50], compressive performance [51], seismic performance [52]
and cyclic mechanical performance loading capacity [53]. The further study by Salem et al. indicated
the recycled concrete aggregate can achieve similar freeze-thaw resistance to normal aggregate under
proper air-entraining [54]. Similar results have also been reported in reference [55,56]. The study by
Gokce et al. [57] indicated the recycled aggregate from the non-air entrained concrete can deteriorate
the freeze-thaw resistance of the concrete. Besides that, the study by Kim et al. [58] indicated
replacing cement with waste glass sludge can help to enhance the freeze-thaw resistance of concrete.
The study by Farnam et al. [59] indicated that exposing to sodium chloride solution can further
promote the development of freeze-thaw damage. Meanwhile, the study on the wet-dry resistance
of concrete containing recycled concrete aggregate is relatively limited [60,61]. The study by Zhang
et al. [62] indicated the generated thenardite crystals due to wet-dry cycles mainly located in the
interfacial transition zone between new cement and the unwrapped surface on the recycled concrete
aggregate. The study further supports that the interfacial transition zone between old and new cement
demonstrated a more stable performance than that between old and new cement under wet-freeze
thaw cycles. The study by Saha et al. [63] indicated the wet-dry resistance of the concrete containing
recycled concrete aggregate can be enhanced by replacing cement with fly ash. A similar result was
also reported in the study by Qi et al. [64]. On the contrary, the durability study on the concrete
with recycled polymer concrete is still limited and the knowledge gap needs to be filled, especially
polyurethane polymer-based composites [65,66].

As mentioned above, currently the investigation and understanding of the recycled polymer
concrete aggregate are quite limited. A detailed experimental investigation was conducted in this
study to fill this knowledge gap. This study first examined the mechanical and durability performance
of the original polyurethane-based composites incorporating the remolded sandstone aggregate. Then
the strategy of modifying binder material was adopted for the performance enhancement. The original
polyurethane was modified using the EVA content in this study, and the influence of the EVA content
on the mechanical performance was then conducted with the unconfined and triaxle compressive
tests. Furthermore, the influence on durability performance was also investigated by the wet-dry and
freeze-thaw tests. The logic structure of the whole paper is demonstrated in Figure 1. This study can
provide a feasible and sustainable protocol for the recycling of remolded sandstone aggregate in the
polyurethane-based composites.
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Figure 1. Demonstration for the logic structure of the whole paper.

2. Sample Preparation and Experiment

The raw material for the sample preparation includes the collected Pisha sandstone from the field
site and the W-OH type hydrophilic polyurethane. The original Pisha sandstone sample was collected
from the Huangpu River Basin, Inner Mongolia, China, where the water erosion and soil loss is a
long-term issue. The former studies indicated that the polyurethane could help to stabilize the fragile
Pisha sandstone [67,68]. However, the stabilized Pisha sandstone can get aged and cracked due to the
insufficient durability of the polyurethane [68], which is called remold Pisha aggregate in this study.
The main phase composition of the Pisha sandstone includes quartz, illite, montmorillonite, feldspar,
plagioclase, and kaolinite [35]. The as-received Pisha sandstone was further sieved and the samples
with the No. 8 sieve size (2.36 mm) were collected for further sample preparation.

The W-OH type polyurethane has been used for repairing the concrete materials in the former
study [69], which was purchased from the JCK New Material Technology Co. Jiangsu, China. The
as-received W-OH polyurethane primer stays in the oil state under the ambient condition as shown in
Figure 2a. The W-OH material will get hardened when mixing with water (Figure 2b) and the hardening
time can range from 3–15 min based on the polyurethane/water ratio. The hardened polyurethane
composite belongs to ductal materials as indicated in Figure 2c.

2.1. Preparation and Remolding of the Original Pisha Sandstone/W-OH Composites

The first step is to prepare the polyurethane composites with original Pisha sandstone. The
ready-prepared W-OH solution was quickly mixed with the sieved Pisha sandstone (No. 8 sieve size)
during the preparation and the mass ratio between the sandstone and W-OH solution is selected to be
4:1 based on the filed experience [67]. To investigate the influence of the W-OH concentration on the
mechanical performance of the composites, five different concentration of W-OH solution was used
for the sample preparation: 4%, 5%, 6%, 7%, and 8% as shown in Table 1. The mixture of the W-OH
solution and the Pisha sandstone aggregate was evenly mixed using the handheld blender for 2 min.
Then the mixture was swiftly compacted into the cylinder molds (diameter of 39.1 mm and height
of 80 mm) before the hardening of the W-OH polyurethane. The sample was then demolded after
48 h curing.

The next step is to obtain the remolded Pisha sandstone aggregate. The prepared polyurethane
composites with original Pisha sandstone first went through 12 wet-dry cycles and then were manually
cracked to obtain the remolded Pisha sandstone particles. This process simulated the natural
degradation of the polyurethane-based composites and the freeze-thaw cycles were applied based
on the protocol shown in Section 2.3. Five types of remolded Pisha sandstone aggregates were then
obtained as shown in Table 1. The major difference between the original and the remolded Pisha
sandstone aggregate is that the remolded Pisha sandstone was now partially or fully covered with the
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W-OH polyurethane. The remolded Pisha sandstone aggregate was also sieved to obtain the particles
with the size around 2.36 mm for the further sample preparation. The as-received and remolded Pisha
sandstone aggregates are shown in Figure 2d,e respectively. It is obvious that more agglomerated Pisha
particles were found in Figure 2e because of the binding effect of the remained polyurethane materials.
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Figure 2. Demonstration of the raw materials for sample synthesis. (a) The original W-OH polyurethane
primer under oil state; (b) tap water to initiate the polymerization process; (c) the generated polyurethane
polymer; (d) the as-received Pisha sandstone aggregate; (e) the remolded Pisha sandstone particles
with remained polyurethane on the surface.

Table 1. Preparation of the Pisha sandstone composites with original polyurethane.

Sample Type O-P/W-1 O-P/W-2 O-P/W-3 O-P/W-4 O-P/W-5

Aggregate Original Pisha Sandstone around 2.36 mm

W-OH concentration 4% 5% 6% 7% 8%
Remolded Aggregate Type R-P-1 R-P-2 R-P-3 R-P-4 R-P-5

2.2. Preparation and Improvement of the Remold Pisha Sandstone /W-OH Composites

In the field construction, the remolded and cracked Pisha sandstone/W-OH composites are
re-solidified with the W-OH polyurethane to resume its water conservation ability [70]. To simulate the
re-solidification process, the remolded Pisha/W-OH particles in Table 1 was re-mixed with the W-OH
solution to prepare the remolded Pisha sandstone /W-OH composites. Two types of W-OH solution
with a concentration of 4% and 8% were applied to re-solidify the remolded Pisha sandstone particles.
The cylinder samples as shown in Figure 3a were prepared for further examination, which owns a
diameter of 39.1 mm and a height of 80 mm.
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Figure 3. The prepared cylinder samples for the mechanical and durability tests. (a) The cylinder
samples prepared with original Pisha sandstone/W-OH composites; (b) indication of the convection
oven for sample drying.

As the remained W-OH polyurethane on the surface of the remolded Pisha particle can deteriorate
the performance of the remolded Pisha/W-OH composites, the modification on the W-OH was
conducted by using ethylene-vinyl acetate (EVA) based on the former research results [69]. Three
replacement mass ratios based on the W-OH polyurethane were applied: 5%, 10%, and 20%.

2.3. Characterization and Performance Test of the Remolded Pisha/W-OH and Original Pisha/W-OH
Composites

The scanning electron microscopy was first conducted to examine the morphology difference
between the original and remolded Pisha sandstone particles. The particles were coated with a 20 µm
carbon layer before the examination.

Besides the microscale characterization, the macroscale performance evaluation was also
conducted, including the unconfined and triaxle compression tests. The unconfined compression test
was conducted with the prepared cylinder samples in Sections 2.1 and 2.2 by using the MTS-CMT5105
universal testing machine. The triaxle compression test was conducted by utilizing the Triaxle shear
tester. Three types of confining pressure were applied during the triaxle tests, 50, 100, and 200 kPa.
Both the unconfined and triaxle compression tests were conducted based on the standard for soil test
method (GB/T50123-1999) [71].

2.4. Durability Test of the Pisha Sandstone/W-OH Composites

To better understand the sustainability of the Pisha/W-OH composites in the field condition,
the durability tests were conducted for the prepared Pisha Sandstone/W-OH composites, including
the freeze-thaw and wet-dry cycle tests. The infrastructure in Inner Mongolia goes through frozen
temperatures in the winter and dry conditions in the summer season, respectively. The field examination
also indicated the freeze-thaw cycles and wet-dry cycles are the major durability threats to the long-term
performance of the infrastructure [72]. Hence these two durability tests were selected for the durability
analysis. During the freeze-thaw cycles, the samples were first frozen to −20 ◦C for three hours and
then thawed at 20 ◦C for another three hours. 80 freeze-thaw cycles were applied to the composites
for the durability analysis. During the wet-dry test, the wet cycle was conducted by submerging the
polyurethane samples in the water tank with distilled water for 23 h under temperature 20 ± 3 ◦C.
Then the dry cycle was followed by first air-drying the samples for 2 h and then drying the samples in
a conventional oven as shown in Figure 3b for another 23 h under 50 ◦C ± 3 ◦C. It took 48 h to finish
one wet-dry cycle and 12 wet-dry cycles were applied to the composites for the stability evaluation.
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3. Results and Discussion

3.1. Compressive Performance Test of the Original Pisha Stone/W-OH Composites Un

The measured unconfined compressive strength for the five type samples in Table 1 is shown in
Table 2. It is clear that the compressive strength will increase with the concentration of the W-OH
solution, which is inconsistent with the findings in reference [72]. The increased W-OH concentration
will lead to a higher W-OH amount in the composites, which can cover more surface area of the Pisha
sandstone aggregate, generate more internal links, and thus lead to higher compressive strength.

Table 2. Relationship between the W-OH concentration and the unconfined compressive strength of
the original Pisha stone/W-OH composites.

Sample Type O-P/W-1 O-P/W-2 O-P/W-3 O-P/W-4 O-P/W-5

Strength (MPa) 0.47 0.69 0.76 0.91 0.10

The further compressive tests were then conducted with the Remolded Pisha sandstone/W-OH
composites. The crushed samples and the test setup are shown in Figure 4a,b respectively. As
mentioned in Section 2.2, the composites were prepared with the R-P-1/R-P-5 type remolded aggregate
and the original polyurethane. The samples prepared with original sandstone (“0” type sample) were
deteriorated by local destruction, while the samples prepared with remolded aggregate (“8” type
sample) demonstrate a whole scale shear type failure. The transition on the failure mode is caused
by the reduced bond strength because of the remained polyurethane on the aggregate surface. Based
on the test results shown in Figure 5, it is clear that the remolded Pisha sandstone will decrease the
strength of the polyurethane-based composites. A similar phenomenon has been also reported for the
recycled concrete aggregate, where the remained cement paste [73] will decrease the bond strength
between the recycled aggregate and the new cement paste. It is assumed that the strength reduction
in this study is also caused by the remained polyurethane on the aggregate surface. Specifically, it
is obvious that the higher reduction rate was obtained for the R-P-5 type remolded Pisha sandstone
aggregate compared to that of this R-P-1 type aggregate. This phenomenon can be caused by that more
surface area of the R-P-5 type remolded aggregate (8% W-OH solution) is covered by the remained
W-OH. Furthermore, it can be found that the reduction rate will be affected by the concentration
of the new W-OH solution for the preparation of remolded Pisha/W-OH composites. Compared
to the reference sample, the strength of the R-P-1 type specimen prepared with 4% and 8% W-OH
polyurethane solution decreases by 27.9% and 8.4%, respectively. Similarly, the compressive strength
for the R-P-5 type composites using 4%, 5%, 6%, 7%, and 8% W-OH solution was lowered by 66.5%,
59.3%, 59.0%, 45.5%, and 47.8%, separately. These results indicated the strength reduction caused by
the remolded aggregate can be partially compensated by adjusting the W-OH solution concentration.
This can be caused by the mechanism that a higher concentration W-OH solution can help to generate
more internal links with Pisha sandstone and lead to higher strength.

3.2. Triaxle Mechanical Performance of the Induration Prepared with Polyurethane and Remolded Pisha
Sandstone

The triaxle compressive tests were further conducted with the remolded Pisha sandstone, original
Pisha sandstone/W-OH composites, and remolded Pisha sandstone/W-OH composites separately to
better understand the compressive performance under confining pressure. The triaxle compressive tests
were conducted under the unconsolidated-undrained condition and the confining pressure (50 kPa, 100
kPa, and 200 kPa) was selected based on the local crustal stress condition. The obtained stress–strain
relationship for the remolded Pisha sandstone is shown in Figure 6. The clear strain hardening can be
observed for all the remolded Pisha sandstone samples as shown in Figure 6, which is inconsistent
with the performance of loose sandy soil [74] and indicate the internal connections generated by the
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W-OH have been almost completely destructed. On the contrary, the straining soft performance can be
observed for the original Pisha sandstone/W-OH composites as shown in Figure 7, which is similar to
the triaxle property of the soft rock [75]. Furthermore, it is also clear that the failure pressure for all the
five types of remolded Pisha aggregate increases with the confining pressure as indicated in Figure 6,
which is also caused by the hardening effect of the loose remolded Pisha sandstone. Another observed
phenomenon is that the failure stress of remolded Pisha sandstone can increase with its original W-OH
concentration. This result can be caused by the enhanced internal friction caused by the remained
W-OH polyurethane [76] on the surface of the remolded Pisha sandstone.
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samples with original (0), R-P-1 (4) and R-P-5 (8) type aggregates; (b) test setup for the compressive
strength examination.
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In this study, the stress when the axial strain reaches 15% was defined as the failure stress based on
the recommendation in the reference [77]. The comparison of the failure stress between the remolded
sandstone and the original Pisha/W-OH composites was then conducted and the results are indicated
in Figure 8. At the confining pressure of 50 kPa, the failure stress of the original Pisha sandstone/W-OH
composites increases from 433.7 kPa at 4% W-OH concentration to 843.7 kPa at 8% W-OH concentration.
This result is in accordance with the research findings based on unconfined compressive strength shown
in Table 2. Furthermore, the reduction of failure stress because of remolding was 64.2% and 75.2%
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respectively for the 4% and 8% W-OH specimen at the confining pressure of 50 kPa. The confining
pressure also significantly affects the failure pressure. Under the confining pressure of 200 kPa, the
failure stress of original Pisha sandstone/W-OH composites increases from 904.3 kPa at 4% W-OH
concentration to 1171.3 kPa at 8% W-OH concentration. It is clear that the increased confining pressure
will lead to higher failure stress and relative lower strength reduction ratio. A more detailed study was
conducted to determine the cohesion strength and friction angle based on the Mohr-Coulomb failure
criterion [78] and the obtained results are shown in Figure 9. The cohesion strength for the original
Pisha/W-OH composites at 4%, 5%, 6%, 7%, and 8% W-OH concentration were 71.9 kPa, 101.1 kPa,
145.4 kPa, 148 kPa, and 208.9 kPa respectively. The related reduction rates on cohesion strength caused
by remolding increase from 83.0% at 4% W-OH concentration to 92.9% at 8% W-OH concentration
respectively. The increase of the strength reduction rate is because more internal links will be broken
during remolding for the samples prepared with a higher concentration of W-OH solution. Meanwhile,
the friction angle for the remolded samples increases from 31.4◦ at 4% W-OH concentration to 36.5◦ at
8% W-OH concentration. The increase is caused by the enhanced internal friction because of the higher
amount remained W-OH material [76] on the surface of the remolded Pisha aggregate.
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Figure 9. Relationship between cohesion and internal friction angle of remolded solid body and W-OH
Pisha sandstone solidified body. (a) Demonstration of the measured cohesion for remolded solid body
and W-OH Pisha sandstone solidified body; (b) Indication of the determined internal friction angle for
the remolded solid body and W-OH Pisha sandstone solidified body.
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3.3. Mechanical and Durability Examination of the Composites Prepared with Remolded Pisha Sandstone and
EVA Modified W-OH Material

The results in Section 3.2 indicated that the remolding can almost completely break the internal links
in the Pisha/W-OH composites and significantly reduce its triaxle compressive strength. Furthermore,
the data in Section 3.1 demonstrated that the utilization of remolded Pisha sandstone can reduce
the compressive strength of the polyurethane composite. To resolve this issue, the modification of
the original polyurethane was conducted to enhance its internal bonding with the remolded Pisha
sandstone. Based on the former research experience [69], the modification with EVA was conducted to
enhance the bonding performance between W-OH and remolded Pisha sandstone.

The examined compressive strength results for the samples re-solidified with EVA modified
W-OH is demonstrated in Figure 10. It is obvious that the modification with EVA can significantly
enhance the unconfined compressive strength of the composites containing remolded Pisha sandstone.
The data are shown in Figure 10 demonstrated under 5% EVA content, the compressive strength for
the polyurethane composites containing original Pisha aggregate, R-P-1, and R-P-5 type remolded
aggregates are 1.18, 1.17 and 1.04 MPa respectively, which are 107.5%, 106.4%, and 95.4% compared
to that of the reference sample (the composites prepared with 8% original W-OH polyurethane and
original Pisha sandstone as indicated in Table 1). Furthermore, the samples prepared with 10% EVA
modified W-OH can fully compensate for the strength loss because of the remolded Pisha sandstone
(106.8% and 105.0% for R-P-1 and R-P-5 type remolded aggregate respectively).

Besides the performance evaluation on mechanical performance, further studies on the durability
performance of the EVA modified W-OH composites were also conducted. Based on the local climate
condition in Inner Mongolia, the durability performance under wet-dry and freeze-thaw cycles were
examined. The evaluation was conducted by comparing the unconfined compressive strength before
and after the durability tests as shown in Figure 10. The results indicated the lowest strength reduction
was achieved by the composites with 10% EVA modified W-OH. The strength for the samples containing
R-P-1 and R-P-5 type remolded aggregate were reduced by 2.21% and 2.86% respectively by the 12
wet-dry cycles, and 8.69% and 4.24% separately by the 80 freeze-thaw cycles as shown in Figure 9.
Although higher strength was achieved for the samples with 20% EVA modified W-OH composites, the
better durability performance was achieved by the samples with 10% EVA modified W-OH. The results
are because of the observed phenomenon in the former reference that the higher EVA concentration can
lead to agglomeration in the W-OH materials [69]. The agglomeration will lead to uneven distribution
of mechanical properties and thus cause stress concentration under the recycled environmental or
mechanical loading [79], which can then lead to reduced durability performance.

Furthermore, the triaxle compressive tests were conducted for the EVA modified W-OH composites.
The obtained results are shown in Figure 11. It is clear that the added EVA can also enhance the triaxle
compressive strength of the W-OH composites, which is inconsistent with the unconfined compressive
strength. Specifically, it should be noticed that the samples with remolded Pisha aggregate has higher
triaxle compressive strength compared to the composites with original Pisha aggregate as shown in
Figure 11. This is caused by the higher friction angle of the remolded Pisha aggregate as shown in
Figure 9.
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20% EVA modified W-OH Polyurethane were applied to re-solidify the remolded Pisha sandstone).
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3.4. Constitutive Analysis for the Remolded Pisha Sandstone Composites

To better understand the influence of confining pressure and remolding on the stress–strain
performance of the composites, the Duncan–Zhang model was applied for the constitutive analysis of
the Pisha sandstone composites as shown in Equation (1).

σ1 − σ3 =
ε1

a + bε1
(1)

where the parameters a, b represent the soil properties and confining pressure, σ3 is the confining
pressure value (kPa), and ε1 is the axial strain.
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One example of the fitted results based on Equation (1) is demonstrated in Figure 12. It is clear
that the test curve and the fitting curve are in good agreement. The correlation coefficients for all the
fitted samples are all above 0.97, which further supports the compatibility of the Duncan-Zhang model.
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Figure 12. Constitutive analysis for the remolded W-OH Pisha sandstone composited with the W-OH
concentration of 4%.

It can be known from Equation (1) that when ε1→∞, (σ1 − σ3)ult can be represented with 1/b.
The destruction ratio Rf can be further defined as shown in Equation (2). According to the relevant
literature [80], the destruction ratio Rf is generally between 0.5 and 1. In summary, the destruction
ratio Rf of remolded solidified body, the model parameters a, b, the ultimate deviatoric stress and the
destructive stress are shown in Table 3. The fitted failure stress is in accordance with the analysis in
Section 3.3.

Rf =
(σ1 − σ3)f

(σ1 − σ3)ult
(2)

Table 3. Demonstration of the fitted parameters based on the Duncan–Zhang model.

σ3/kPa W-OH
Concentration/% a b (σ1 −

σ3)ult /kPa
(σ1 − σ3)f
/kPa

Rf
The Average
Value of Rf

50 4 0.00739 0.00601 166.39 153.78 0.941

0.93
50 5 0.00555 0.00533 187.62 175.44 0.957
50 6 0.00543 0.00484 206.61 192.23 0.940
50 7 0.00624 0.00461 216.92 198.97 0.934
50 8 0.00597 0.00442 226.24 207.56 0.879

100 4 0.00683 0.00352 284.1 251.56 0.906

0.90
100 5 0.00677 0.00306 326.8 284.8 0.906
100 6 0.00561 0.00287 348.43 308.26 0.932
100 7 0.00689 0.00266 375.94 320.58 0.874
100 8 0.00792 0.00254 393.7 325.95 0.880

200 4 0.00729 0.00169 591.72 459.56 0.813

0.80
200 5 0.00765 0.00142 704.22 518.13 0.777
200 6 0.00653 0.00135 740.74 560.12 0.807
200 7 0.0074 0.00122 819.67 583.66 0.768
200 8 0.00449 0.00129 775.2 629.2 0.817

3.5. Morphology Characterization of the Original/Remolded Pisha Sandstone and Pisha/W-OH Composites

Further studies were conducted for the morphology analysis of the original and remolded Pisha
aggregate. The examination was conducted with SEM and the results are shown in Figure 13. It is clear
that the typical layer structure for the sandstone [81] can be observed in Figure 13a. The W-OH and
sandstone can be clearly separated by the surface morphology difference, which has also been adopted
in reference [82]. The area covered by the remained W-OH increases with the W-OH concentration can
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be found for the remolded sandstone aggregate shown in Figure 13b,c. The poor adhesion between the
remained W-OH and new W-OH materials can lead to the decreased performance of the remolded
Pisha/W-OH composites. Similar issues were also reported for the recycled concrete aggregate with
remained hydrated cement on the aggregate surface [83,84]. Compare to the R-P-1 type aggregate,
the higher surface area in the R-P-5 type aggregate is covered by the remained polyurethane, which
can explain the difference in strength reduction rate shown in Figure 5. The morphology analysis was
further conducted for the remolded aggregate re-solidified with original W-OH and EVA modified
W-OH respectively. The related results are shown in Figures 14 and 15 respectively. It is clear the
added EVA can enhance the surface area covered by the W-OH as shown in Figures 14 and 15. These
results support the assumption that the EVA can lead to the higher internal bond between the remolded
Pisha aggregate.
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Figure 13. Demonstration of the remolded Pisha sandstone solidified with W-OH type polyurethane.
(a) The original Pisha sandstone; (b) R-P-1 type remolded Pisha sandstone (4% W-OH); (c) R-P-5 type
remolded Pisha sandstone (8% W-OH).
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Figure 14. Demonstration of the aggregate in the composites prepared with remolded Pisha aggregate
(R-P-1 Type) and original polyurethane with 8% concentration. (a) and (b) Indication of the local
structure for the composites prepared with remolded Pisha aggregate (R-P-1 Type) and original
polyurethane with 8% concentration.
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Figure 15. Demonstration of the aggregate in the composites prepared with remolded Pisha aggregate
(R-P-1 Type) and 20% EVA modified polyurethane with 8% concentration. (a–c) Demonstration of the
local structure for the composites prepared with remolded Pisha aggregate (R-P-1 Type) and 20% EVA
modified polyurethane with 8% concentration.

4. Conclusions

This study investigated the mechanical and durability performance of the polyurethane composites
with remolded sandstone aggregate. To compensate for the strength loss due to the added remolded
aggregate, the EVA content was applied for the modification of the W-OH polyurethane. Then the
unconfined and triaxle compressive tests were conducted to evaluate the mechanical performance tests.
The durability under wet-dry and freeze-thaw cycles were also investigated. The major conclusion of
this study are shown below:

(1) The remained polyurethane material on the surface of the remolded sandstone aggregate can
enhance its internal friction. The samples with a higher amount of remained polyurethane can
have higher compressive strength under the triaxle test.

(2) The remained polyurethane material can reduce the unconfined compressive strength of the
polyurethane composites containing remolded aggregate. The reduction is caused by the poor
bonding between the remained polyurethane on the remolded aggregate surface and the new
polyurethane material. The strength loss can be partially compensated with a higher concentration
of polyurethane solution.

(3) The modification with EVA can fully compensate for the strength loss of the polyurethane-based
composites due to the applied remolded sandstone aggregate.

(4) The EVA content can enhance the resistance to both freeze-thaw and wet-dry resistance of the
polyurethane-based composites. The optimized EVA content based on mechanical and durability
performance is 10m% based on the polyurethane content.

In the future, the research team aims to further apply the research findings in field construction to
resolve the environmental burden because of the accumulated remolded Pisha sandstone and improve
its resistance to environmental loadings. Furthermore, the field examination will help to identify the
possible limitation of the proposed protocol and point out further research needs.
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