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Abstract: An improved model based on the Chaboche constitutive model is proposed for cyclic plastic
behavior of metal and low cycle fatigue of notched specimens under cyclic loading, considering
the effect of strain gradient on nonlinear kinematic hardening and hysteresis behavior. The new
model is imported into the user material subroutine (UMAT) of the finite element computing
software ABAQUS, and the strain gradient parameters required for model calculation are obtained
by calling the user element subroutine (UEL). The effectiveness of the new model is tested by the
torsion test of thin copper wire. Furthermore, the calibration method of strain gradient influence
parameters of constitutive model is discussed by taking the notch specimen of Q235 steel as an
example. The hysteresis behavior, strain distribution and fatigue failure of notched specimens under
cyclic loading were simulated and analyzed with the new model. The results prove the rationality of
the new model.

Keywords: strain gradient effect; Chaboche model; model parameters calibration; notched specimen;
low cycle fatigue

1. Introduction

Due to the requirements of functional design, weight reduction, and component connection, many
engineering load bearing components usually have notches or holes. Due to the stress concentration,
they tend to be the weak points of the structure, resulting in fatigue cracks under cyclic loads. Therefore,
it is necessary to study how the notch affects the fatigue performance of components.

It has been thought that the fatigue life of components is the same if the local stress or strain is
the same, whether there is a notch or not [1–3]. For example, in the early nominal stress and strain
method, it is believed that the fatigue life of a material is the same if its stress concentration coefficient
and stress spectrum are the same. Later, the local stress and strain method [4,5] calculated the local
stress-strain history of the notch by the Neuber method or finite element method, and then combined
with the stress-life curve or strain-life curve of the material to predict the fatigue life. A large number
of test results proved that the predicted result of this method was too conservative [6–8]. A large
number of tests show that there is a great difference in the fatigue life duration between the notched
specimen and the smooth specimen. The fatigue life of notched specimen is estimated according to
‘equal stress or strain, equal fatigue life’, and the prediction is often too low [9,10]. There are different
understandings of this phenomenon. Some scholars believe that only considering the stress-strain
level at the danger point of the notch cannot accurately reflect the fatigue strength of the specimen,
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because the strain gradient exists near the notch of the specimen, which may have an important
influence on the initiation of fatigue crack [11–13]. Due to the existence of the gradient, the influence
of the stress-strain state in a certain range around the danger point should also be considered, so the
critical distance method is proposed [14–17]. The critical distance is used to determine the effective
stress or strain at the hot spot localized at critical distance (point method) or by averaging stress and
strain distribution over critical distance (line method). This latter method is used when taking into
account the stress or strain gradient. The key of the critical distance method is to determine the critical
distance, but different scholars give different definitions of the critical distance [18–20], which is not
convenient for engineering components. Considering the existence of the stress field gradient, Yao
proposed the stress field strength method in 1997 [21]. This method obtains the stress field strength
by weighting the stress in the local damage area of the notch. When the stress field strength of the
notch root is the same as that of smooth specimen, the fatigue life of both specimens is considered
to be the same. In addition, if the effect of strain gradient on the constitutive behavior of materials
is considered, the evaluation of fatigue of notch specimens will also change. Xiong et al. believe
that the strain gradient causes strain hardening of material near notch, which increases the initial
yield strength of the material in the high strain gradient region, which will change the local strain
of the notch [8]. They found that the fatigue life assessment of notched specimens according to this
mechanism was more reasonable. Many scholars have studied the effect of strain gradient on the
constitutive behavior of materials. Based on J2 flow theory, Fleck and Hutchinson proposed the couple
stress theory considering the influence of rotation gradient, and successfully explained the size effect
problems such as torsion of thin copper wire and bending of thin beam [22]. Then they improved the
couple stress theory and proposed the stretch and rotation strain gradient plasticity theory (SG) which
can consider both tension and torsion gradient [23]. Gao and Huang (1999, 2000) proposed a strain
gradient plasticity theory based on mesoscopic dislocation mechanism, namely MSG theory, which
combined macroscopic plasticity theory and dislocation mechanism by establishing a multi-scale and
hierarchical theoretical framework [24,25]. These types of theoretical formulas introduce high-order
stress, and the equilibrium equations and boundary conditions are relatively complicated. It will
be more difficult to apply them to analyze actual materials. Aifantis proposed a low-order strain
gradient theory without high-order stress and additional boundary conditions [26]. The primary and
secondary Laplace operators of equivalent strain are introduced into the classical plastic constitutive
model to consider the effect of strain gradient on the plastic flow law of materials. The model can be
used to explain the shear band and local instability in metals. Applying the low-order strain gradient
theory, the strain gradient can enter the constitutive relationship by modifying the plastic hardening
modulus, which is convenient to be combined with the finite element method, such as the Taylor-based
nonlocal theory (TNT) proposed by Gao [27] and the conventional theory of mechanism-based strain
gradient (CMSG) proposed by Huang [28]. Based on this, Qu et al. combined CMSG theory with the
finite element method to study the indentation size effect in the spherical indentation test, and the
predicted indentation hardness was relatively consistent with the test results [29]. Yan et al. established
a two-dimensional multi particle finite element model based on TNT theory, which can better reflect
the size effect of particles [30].

Previous studies of strain gradients introduced into plastic constitutive models have focused on
problems under monotonic loading, with little consideration given to the common material hysteresis
behavior and fatigue failure problems under alternating loads. In view of these problems, the following
studies were carried out in this paper. The effect of strain gradient on cyclic plastic behavior of materials
was introduced into the Chaboche constitutive model, and the torsion of fine copper wire was analyzed
with the new model to verify the validity and rationality of the model. Based on this, taking the
Q235 steel notched specimen as an example, the calibration method of the strain gradient influencing
parameters in the constitutive model is discussed, and then the model is used to analyze the strain
distribution at notch root of a notched specimen under cyclic loading and to evaluate the fatigue life of
the specimen.
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2. Materials, Specimens and Experiments

2.1. Smooth and Notched Specimens

The experimental materials are ordinary carbon-structured hot-rolled steel plates, grade Q235B.
The mechanical properties and main chemical components of the materials are shown in Tables 1 and 2.

Table 1. The mechanical properties of Q235B.

Yield Strength (MPa) Tensile Strength (MPa) Young’s Modulus (MPa) Poisson’s Ratio Elongation

260 550 193900 0.277 20%

Table 2. Main chemical components of Q235B (%).

C Si Mn P S As Cep

0.14 0.032 0.4 0.03 0.019 0.031 0.42

There are two types of specimens: smooth specimens and notched specimens. The notch radii (R)
of the notched specimens are 0.5, 1, 2, and 4 mm, and the geometric dimensions are shown in Figures 1
and 2. The notch was cut by molybdenum wire and polished to ensure smooth surface. The machining
accuracy is IT8-IT7, and the surface roughness is Ra25-Ra1.6.
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Figure 2. The geometric dimension of notched specimens (unit: mm).

2.2. Fatigue Experiment of Smooth Specimens

The MTS809 fatigue testing machine (MTS Systems Corporation, Eden Prairie, MN, USA) was
used in the experiment, and the loading waveform was a sinusoidal wave with a maximum frequency
of 2 Hz. Tensile and compressive fatigue experiments at constant axial strain amplitudes of 0.004, 0.005,
0.006, and 0.008 were conducted by controlling the strain in the extensometer section of the specimen.
The stress-strain hysteretic curves of each experiment are shown in Figure 3, and the experimental
results are shown in Table 3.
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Table 3. Fatigue experimental results of smooth specimens.

Axial Strain
Amplitude

Fatigue Life (Cycles) Average Fatigue
Life (Cycles)Specimen 1 Specimen 2 Specimen 3

0.004 8369 8183 9877 8810
0.005 6000 5565 5332 5632
0.006 3094 2911 3151 3052
0.008 1814 1397 2512 1908

2.3. Fatigue Experiment of Notched Specimens

The experimental loading waveform is still sinusoidal wave, and the maximum experimental
frequency is 2 Hz. For the convenience of analysis, the cyclic hysteresis behaviors of four notched
specimens were simulated by the Chaboche model without considering the effect of strain gradient.
When the strain amplitudes of the notch root obtained from the simulation were 0.005, 0.006, and
0.008, respectively, the strain amplitudes of the extensometer section were taken as the control strain
amplitudes in the fatigue experiments of the notch specimens (Table 4). The measured nominal
stress-strain hysteresis curves are shown in Figure 4 (the nominal stress and strain here are engineering
stress and strain), and the experimental results are shown in Table 4.

Table 4. Fatigue experimental results of notched specimens.

Notched
Specimen

Controlled Strain
Amplitude

Fatigue Life (Cycles) Average Fatigue
Life (Cycles)Specimen 1 Specimen 2 Specimen 3

R = 0.5 mm
0.00087 24,351 33,570 19,238 25,720
0.00098 11,217 8210 14,059 11,162
0.00111 5900 6370 8967 7079

R = 1.0 mm
0.00104 14,680 11,524 12,687 12,964
0.00114 6294 7034 9611 7646
0.00135 4287 5078 4143 4503

R = 2.0 mm
0.00120 12,781 12,032 11,800 12,204
0.00136 6117 4654 9935 6902
0.00169 3529 4578 4882 4330

R = 4.0 mm
0.00142 8863 12,050 10,800 10,571
0.00158 6784 4654 9935 6628
0.00188 3727 3239 3990 3652
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The stress and strain in the experimental section of the smooth specimen are in a uniform state,
and its cross-sectional strain is known, while the strain at the notch root of the notched specimen (crack
initiation) needs to be calculated. Including or excluding the effect of strain gradient in the constitutive
model will affect the calculation results of the strain at the notch root of the notched specimens, thus
affecting the evaluation of the fatigue life law of the notched specimens.

3. Constitutive Model

3.1. Chaboche Constitutive Model Excluding the Effect of the Strain Gradient

When the effect of strain gradient is not considered, the yield criterion of the Chaboche constitutive
model [31] is defined as:

f =

√
3
2
(s′ −α′) : (s′ −α′) −R = 0, (1)

where f is the yield surface function, is the deviator of stress tensor, is the deviator of the back stress
tensor α, andis the radius of yield surface.

The Chaboche model divides the hardening caused by plastic deformation into two parts: isotropic
hardening and kinematic hardening. Isotropic hardening is characterized by swelling of the yield
surface, that is:

R = σ0 + Q[1− exp(−bp)], (2)
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whereis the initial yield stress, andare material parameters determined by experiments, andis the
cumulative equivalent plastic strain as follow:

p =

∫
.
pdt,

.
p =

√
2
3

.
ε

p :
.
ε

p, (3)

where εp is the plastic strain tensor,
.
p and

.
ε

p are their rates, respectively.
While kinematic hardening is represented by the movement of the yield surface, which is expressed

by nonlinear kinematic hardening, and its expression is:

.
α
(k)

=
2
3

C(k) .
ε

p
− γ(k)α(k) .

p, (4)

α =
M∑

k=1

α(k), (5)

wheredenotes theth component of the back stress, andis the number of back stress components.
The more back stress components, the closer the simulated stress-strain curve is to the experimental
curve. Some studies have shown that a better simulation result can be obtained when is set as 2 [32], so
this paper takes the same value. andare the parameters describing the characteristics of the kinematic
hardening of the material. The above parameters can be calibrated by combining the measured
hysteresis curve of the smooth specimen (Figure 3) with the calculation of the finite element model.
The calibration results are shown in Table 5.

Table 5. Chaboche constitutive model parameters of Q235B.

σ0 (MPa) Q (MPa) b C(1) (MPa) γ(1) C(2) (MPa) γ(2)

245 −78 200 98,000 1150 9500 800

Substituting the parameters in Table 5, the cyclic hysteresis behavior of the smooth specimen
described by this model under different strain amplitudes is in good agreement with the measured
experimental results, as shown in Figure 5.
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by experiment.

3.2. Chaboche Constitutive Model Including the Effect of the Strain Gradient

The effect of strain gradient on the hysteresis behavior of materials can be reflected in the isotropic
hardening and kinematic hardening during the cycling process. As a preliminary analysis, we only
consider the effect of strain gradient on nonlinear kinematic hardening in the model. Considering
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this effect, the strain gradient influence factorsandare introduced. Equation (4) of Chaboche model is
rewritten as:

.
α
(k)

= K(k)
1 C(k) 1

R
(s−α)

.
p−K(k)

2 γ(k)α(k) .
p, (6)

where the strain gradient influence factorsandare defined as:

K(k)
1 = 1 + β(k)·

(
1 +

l0
l

)n

·

(
l0·ηeq

)0.5
, (7)

K(k)
2 = 1 +

κ(k)(
1 + l0

l

)n ·
(
l0·ηeq

)0.5
, (8)

where, l0 is the intrinsic length of the material, which is generally considered to be related to the
microstructure of the material. According to previous studies by other scholars, the intrinsic length of
copper and Q235 is 0.0037 mm [23] and 0.0021 mm [33], respectively, in this paper. is the characteristic
length of the specimen; when there is no notch, it is the radius or the length of the short side of the
specimen; when there is a notch, it is the minimum radius of curvature of the notch root. is the
size effect index, determined by the experiment. andare the strain gradient constants related to the
material. For the sake of simplicity, we will not consider the correction of the strain gradients of C(2)

andtemporarily, and take bothandas 1. Therefore, only the parametersandneed to be determined. is
the equivalent strain gradient. Referring to the theory of Aifantis [26] and Tsagrakis [34], to avoid
high-order stresses and additional boundary conditions, the derivative of the Mises equivalent strain
to spatial coordinates is taken as the strain gradient. While:

εi j =
1
2

(
ui, j + u j,i

)
, (9)

ε =

√
2
3
εi j : εi j. (10)

So, the strain gradient is:

ηi =
∂ε
∂xi

. (11)

The equivalent strain gradient is:

ηeq =
√
η1

2 + η22 + η32. (12)

In finite element calculation, taking the eight-node hexahedron element (C3D8) as an example,
the cumulative displacement un

c and displacement increment ∆un at node n of the element are known.
By using the shape function Nn, the incremental step displacement u of any position in the element can
be obtained:

u =
8∑

n=1

Nn(un
c + ∆un). (13)

The derivative of displacement u with respect to the coordinate axis yields ui, j, namely:

ui, j =
∂ui
∂x j

=
8∑

n=1

∂Nn

∂x j
un

i . (14)

Therefore, the following formula can be used to calculate the strain gradient in the finite element
calculation:

ηi =
∂εn

∂xi
=

8∑
n=1

∂Nn

∂xi
εn. (15)
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It should be noted that ABAQUS program (Dassault Systemes, Vélizy-Villacoublay, France) cannot
calculate the strain gradient of the current incremental step using only the UMAT subroutine. In
order to solve this problem, this paper uses a combination of UEL and UMAT subroutines, using the
same two sets of nodes and units. The keyword ‘*EQUATION’ is used to bind the degrees of freedom
between the corresponding nodes of the two sets of models to ensure that the corresponding node
displacement and element deformation are consistent. Only the strain gradient is calculated when the
UEL subroutine is called, and then the UMAT subroutine is called to calculate the constitutive relation.
This has two advantages: (1) it is convenient for post-processing analysis; (2) the UEL subroutine
for calculating the strain gradient can be combined with other UMAT subroutines to introduce the
strain gradient into other constitutive models without rewriting the UEL subroutine, so as to expand
the application scope. It must be pointed out that in this paper, we try to use a simplified method to
characterize the inhomogeneity of strain distribution near the notch root of the notched specimen. As a
preliminary study, the mechanical behavior of non-Cauchy higher-order continuum is not considered.

3.3. Validation of the New Model

Many experimental studies have shown that when the characteristic length of the material is close
to the order of microns, the material will show a strong size effect [35–37], among which the classic
experiment is the tensile and torsion experiment of fine copper wire conducted by Fleck et al. [23].
In the tensile test, the material did not show a significant size effect, but in the torsion test, when the
diameter of the fine copper wire decreased from 170 µm to 12 µm, the normalized torque increased by
two times. This phenomenon cannot be explained in the traditional continuum mechanics, and the
strain gradient theory is considered as one of the effective methods to explain the size effect, which has
been verified by many scholars [26,38,39].

In order to test the rationality of Chaboche model considering strain gradient, the numerical
simulation of Fleck’s torsion experiment of thin copper wire is carried out. In the torsion experiment of
thin copper wire conducted by Fleck, the torsional mechanical response of 170 µm copper wire is close
to the response at the macro scale. Therefore, in this paper, according to the torsion curve of 170 µm
copper wire given by Fleck, the model material parameters are obtained as shown in Table 6. Through
the trial adjustment of the remaining torsion curves, the strain gradient material constant was obtained
as shown in Table 7. The simulation results are shown in Figure 6, indicating that the model can well
reflect the size effect.

Table 6. The material parameters of copper.

Young’s Modulus (MPa) Poisson’s Ratio σ0 (MPa) Q (MPa) b C(1) (MPa) γ(1) C(2) (MPa) γ(2)

108,500 0.326 62 158 2.5 16,000 520 2000 200
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Table 7. The strain gradient material constants of copper.

β(1) κ(1) β(2) κ(2) n

353.5 568.8 1.0 1.0 3.0

4. Fatigue Life Evaluations of Notched Specimens

The mesh size will affect the simulation results of stress and strain at notch root and the
determination of strain gradient parameters. Some scholars found that it was more appropriate to set
the mesh size as 0.2 mm when studying crack propagation [40] and nonlocal damage problems [41].
However, the strain gradient at the notch is not as large as that at the crack tip. Therefore, considering
the accuracy and computing time, the mesh at the notch root is refined with a size of 0.25 mm. In order
to improve the calculation efficiency, only the extensometer section of the notched specimens was
taken for calculation (Figure 7).
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4.1. Material Constants Determination of the Strain Gradient Model

To determine the strain gradient at the root of the actual notched specimen, the method shown
in Figure 8 is adopted in this paper: Horizontal lines were drawn on the surface of the specimen
where the strain was to be measured, and high-resolution photographs of the horizontal lines were
taken with an optical microscope. This photo was imported into MATLAB (MathWorks, Natick, MA,
USA), and the command “rgb2gray” was used to gray it, so as to obtain a matrix storing the gray
scale value of each pixel of the horizontal line. From this gray scale value matrix, it can be seen that
the marked position has a gray scale value of 0 and the other position is 255. Therefore, according
to the number of pixels in the width direction of the horizontal line, the width changes before and
after tensile deformation at different positions of the horizontal line can be determined. Thus, the
distribution of tensile strain of the horizontal line can be determined.
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Specific steps to determine the material constants of the strain gradient model are as follows:

1. Two horizontal lines were drawn at the notch root of the notched specimen for marking, and
high-resolution photos of the marks were taken after magnification of 30×, 50×, 100×, and 150×,
respectively, under an optical microscope. At a magnification of 30×, the whole marker line can
be captured (Figure 9a), while at a magnification of more than 30×, only partial photos can be
captured, so the left and right photos are taken, respectively (Figure 10).

2. The specimen was subjected to tensile test, loaded to the nominal strain of 0.0088, and
then unloaded.

3. Under the same shooting conditions, the marker lines was photographed with the method of step
1 to obtain the photos after the tensile test (Figure 9b).
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Figure 10. Marker lines before the tensile test (50×). (a) Left; (b) Right.

MATLAB software is used to gray the photos with the command “rgb2gray” (Figure 11).
The number of pixels marked is counted and the strain distribution at the notch root of the specimen
is calculated.
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Figure 11. The image of the marker lines after gray processing (30×). (a) Before the tensile test; (b)
After the tensile test.

Theoretically, the smaller the statistical range and the width of the horizontal line, the closer the
calculated result is to the true strain. However, in the case of constant magnification of the shooting, the
smaller the width of the horizontal line means the fewer pixels in the width direction of the horizontal
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line, the lower the calculation accuracy. Therefore, taking into account the need for calculation accuracy
and to be close to the real strain, combined with the consideration of the marking position and other
reasons, this paper counted the pixels from the lower edge of the upper marker line to the lower edge
of the lower marker line and calculated the strain, as shown in Figure 12. Thus, at 30× and 150×
magnification, approximately 86 and 430 pixels can be counted, and the calculation accuracy of strain
is 0.0116 and 0.0023, respectively.
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Figure 12. The pixel statistical area.

Figure 13 is the strain distribution curve of the notch root of the specimen calculated from the
photos taken at 30×, 50×, 100×, and 150×magnification, and the abscissa is the distance from the left
to right of the notch root. We know that the width of the horizontal line will stretch in the loading
direction and shrink in the length of the horizontal line after tensile test, so there may be a few pixels
deviation in the photo after the tensile test (Figure 14). In addition to some inevitable errors, the results
of the obtained strain distribution fluctuate, but the width of the horizontal line can be determined.Materials 2020, 13, x FOR PEER REVIEW 12 of 20 
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Figure 14. Pixel deviation diagram.

The whole image of the marker lines can be photographed at 30× magnification, but due to
insufficient magnification, the number of pixels of the marker line is small, and the error of the strain
calculated at the notch root will be relatively large (Figure 13a). At a magnification of more than 30×,
only the part of the marker line can be photographed, so it is inevitable that the processing result will
be affected by human factors if images are to be stitched together. Therefore, the strain distribution
calculated at various magnification factors was superimposed together (Figure 15). On the one hand,
the results obtained at different magnification can be verified by each other; on the other hand, more
accurate results could be obtained as far as possible without interference from human factors.Materials 2020, 13, x FOR PEER REVIEW 13 of 20 
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Figure 15. The superposition results of strain distribution at the notch root obtained from the photos
with different magnification.

The above tensile test was simulated using the new model proposed in this paper, which considered
the effect of strain gradient, to calibrate the strain gradient constants of Q235 (see Table 8) according
to the measured strain distribution in Figure 15. By using the constants in Table 8, the finite element
calculation results can be obtained that are in good agreement with the measured strain distribution
(Figure 16).

Table 8. The strain gradient material constants of Q235.

β(1) κ(1) β(2) κ(2) n

545.0 6.5 1.0 1.0 3.0
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4.2. Numerical Simulation of Cyclic Hysteresis Behavior of Specimens

The strain gradient term was introduced into the Chaboche model to simulate the fatigue
experiments of the Q235 notched specimens, and the effect of strain gradient could be reflected by
the strain gradient influence factors. Now, a row of elements on the notch root surface of the notch
specimen with a notch radius of 0.5 mm is numbered, and it is listed as 1 to 12 from the edge of the
notch to the inside. The relation of the peak values of the strain gradient influence factor K1

(1) of these
12 elements with the cycle index is shown in Figure 17. As can be seen from the figure, the strain
gradient mainly affects 3 to 4 elements at the edge of the notch, and the K1

(1) at the inner element is
close to 1.Materials 2020, 13, x FOR PEER REVIEW 14 of 20 
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Figure 18. Measured and simulated nominal stress-strain curves. (a) Controlled strain amplitude is 

0.00120; (b) Controlled strain amplitude is 0.00136; (c) Controlled strain amplitude is 0.00169. 

4.3. Fatigue Life Evaluation of Notched Specimens 

The Coffin-Manson formula is used to fit the fatigue experiment results of the smooth specimens 

in Table 3 (Figure 19). The Coffin-Manson formula is as follows: 

Figure 17. The relation of the peak values of K1
(1) of 12 elements on the notch root surface with the

cycle index.

The cyclic hysteresis behavior of the Q235 notched specimen simulated by Chaboche model
considering the effect of strain gradient is shown in Figure 18. In the figure, the measured nominal
stress-strain hysteresis curves of the specimens with a notch radius of 2 mm are compared with the
calculated hysteresis curves considering the effect of strain gradient, which basically coincide. The same
is true for other notched specimens, which are not listed due to space limitations.
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4.3. Fatigue Life Evaluation of Notched Specimens

The Coffin-Manson formula is used to fit the fatigue experiment results of the smooth specimens
in Table 3 (Figure 19). The Coffin-Manson formula is as follows:

∆εp
t

2
= ε f

(
2N f

)c
(16)

where ∆εp
t is the residual plastic strain range (in the case of complex stress, ∆εp

t is taken as ∆εp
eq at

the edge of the notch root, and ∆εp
eq is the residual equivalent plastic strain range), ε f is the fatigue

ductility coefficient, c is the fatigue ductility index, the value range is generally between −0.5 and −0.7,
N f is the fatigue life. ε f and c obtained by fitting are 1.02 and −0.612, respectively.

Table 9 shows the residual equivalent plastic strain amplitude at the notch root simulated by
the Chaboche model including and excluding the strain gradient effect. It should be noted that
the simulation conducted to determine the experimentally controlled strain amplitude of the four
notched specimens ensured that the simulated strain amplitudes at the notch root of all the four notch
specimens were 0.005, 0.006, and 0.008, respectively. So, the simulated residual equivalent plastic strain
amplitudes at notch root of all the four notch specimens are the same at the corresponding amplitude
(Table 9, first column).
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Table 9. Simulation results of residual equivalent plastic strain amplitude at the notch root.

Excluding the Strain
Gradient in FEM

Including the Strain Gradient in FEM

R = 0.5 mm R = 1.0 mm R = 2.0 mm R = 4.0 mm

0.00366 0.00171 0.00194 0.00199 0.00198
0.00455 0.00241 0.00244 0.00283 0.00264
0.00653 0.00324 0.00386 0.00429 0.00399

By combining the data in Tables 4 and 9, the relationship between residual equivalent plastic
strain amplitude and fatigue life of the notched specimen can be obtained, which is compared with the
smooth specimen, as shown in Figures 20 and 21.Materials 2020, 13, x FOR PEER REVIEW 16 of 20 

 

 Considering the 

 strain gradient 

 in FEM

 R=0.5mm

 R=1.0mm

 R=2.0mm

 R=4.0mm

1000 10000 20000 30000

0.002

0.004

0.006

0.008

N
f
 (cycles)

1
/2

Δ
εp e

q
 (

m
m

·m
m

-1
)

 smooth

 Coffin-Manson curve

         for smooth specimens

 

Figure 20. The residual equivalent plastic strain amplitude considering the effect of strain gradient -

fatigue life relationship of notched specimens was compared with that of smooth specimens. 

Non-considering the 

strain gradient in FEM

 R=0.5mm

 R=1.0mm

 R=2.0mm

 R=4.0mm

1000 10000 20000 30000

0.002

0.004

0.006

0.008

N
f
 (cycles)

1
/2

Δ
εp e

q
 (m

m
·m

m
-1

)

 smooth

 Coffin-Manson curve

         for smooth specimens

 

Figure 21. The residual equivalent plastic strain amplitude without considering the effect of strain 

gradient-fatigue life relationship of notched specimens was compared with that of smooth specimens. 

As a comparison, the critical distance methods was used to analyze the experimental and 

simulation results. Here we choose the line method and the critical distance (L) of Q235 is 0.458 mm 

[42]. The average residual plastic strain amplitude within 2L is taken as the effective strain amplitude

Δ
eff
ε , that is: 

2

0

1
Δ Δ ,

2

L
p

eff eq
ε ε dx

L
   (17) 

the integral path is shown in Figure 22, and the results is shown in Table 10. 

 

Figure 22. The integral path of line method 

Figure 20. The residual equivalent plastic strain amplitude considering the effect of strain gradient
-fatigue life relationship of notched specimens was compared with that of smooth specimens.



Materials 2020, 13, 1001 16 of 20

Materials 2020, 13, x FOR PEER REVIEW 16 of 20 

 

 Considering the 

 strain gradient 

 in FEM

 R=0.5mm

 R=1.0mm

 R=2.0mm

 R=4.0mm

1000 10000 20000 30000

0.002

0.004

0.006

0.008

N
f
 (cycles)

1
/2

Δ
εp e

q
 (

m
m

·m
m

-1
)

 smooth

 Coffin-Manson curve

         for smooth specimens

 

Figure 20. The residual equivalent plastic strain amplitude considering the effect of strain gradient -

fatigue life relationship of notched specimens was compared with that of smooth specimens. 

Non-considering the 

strain gradient in FEM

 R=0.5mm

 R=1.0mm

 R=2.0mm

 R=4.0mm

1000 10000 20000 30000

0.002

0.004

0.006

0.008

N
f
 (cycles)

1
/2

Δ
εp e

q
 (m

m
·m

m
-1

)

 smooth

 Coffin-Manson curve

         for smooth specimens

 

Figure 21. The residual equivalent plastic strain amplitude without considering the effect of strain 

gradient-fatigue life relationship of notched specimens was compared with that of smooth specimens. 

As a comparison, the critical distance methods was used to analyze the experimental and 

simulation results. Here we choose the line method and the critical distance (L) of Q235 is 0.458 mm 

[42]. The average residual plastic strain amplitude within 2L is taken as the effective strain amplitude

Δ
eff
ε , that is: 

2

0

1
Δ Δ ,

2

L
p

eff eq
ε ε dx

L
   (17) 

the integral path is shown in Figure 22, and the results is shown in Table 10. 

 

Figure 22. The integral path of line method 

Figure 21. The residual equivalent plastic strain amplitude without considering the effect of strain
gradient-fatigue life relationship of notched specimens was compared with that of smooth specimens.

As a comparison, the critical distance methods was used to analyze the experimental and
simulation results. Here we choose the line method and the critical distance (L) of Q235 is 0.458
mm [42]. The average residual plastic strain amplitude within 2L is taken as the effective strain
amplitude ∆εe f f , that is:

∆εe f f =
1

2L

∫ 2L

0
∆εp

eqdx, (17)

the integral path is shown in Figure 22, and the results is shown in Table 10.
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Table 10. Effective strain amplitude calculated by line method.

R = 0.5 mm R = 1.0 mm R = 2.0 mm R = 4.0 mm

0.00102 0.00161 0.00228 0.00270
0.00145 0.00221 0.00307 0.00352
0.00215 0.00377 0.00443 0.00521

Also, by combining Tables 4 and 10, the relationship between effective strain amplitude and
fatigue life of the notched specimen can be obtained, as shown in Figure 23.
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Figure 23. The effective strain amplitude-fatigue life relationship of notched specimens was compared
with that of smooth specimens.

The residual equivalent plastic strain amplitudes at the notch root calculated by the three models
in Tables 9 and 10 are substituted into Equation (16) to compare with the results of experiments
(Figure 24).
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Figure 24. The estimated fatigue life compared with the measured results. (a) R = 0.5 mm; (b) R = 1.0
mm; (c) R = 2.0 mm; (d) R = 4.0 mm.

As can be seen from Figure 24, if the effect of strain gradient is not taken into account, the estimated
result deviates greatly from the measured result, and the smaller the notch radius (the larger the strain
gradient), the greater the deviation. The results obtained by the critical distance method are in good
agreement with the measured results when the notch radius is large. But, when the notch radius is 0.5
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mm, some of the predicted results exceed the double factor region and are biased to danger. By the
Chaboche model, including the effect of strain gradient, the estimated life is obviously close to the
measured result, and all the predicted points are within the double factor range. This result proves
that it is reasonable to consider the effect of strain gradient in the constitutive relation for the fatigue
life analysis of notched specimens.

5. Conclusions

1. Strain gradient term is introduced to modify the plastic hardening modulus to improve the
traditional Chaboche model which can reflect the size effect of materials.

2. By observing the change of the marker line on the surface of the notched specimen before and
after the tensile test under an optical microscope, it is confirmed that the constitutive relationship
of the material is indeed affected by the strain gradient. Using this method, the model parameters
can be calibrated.

3. The Chaboche model including the effect of strain gradient can be used to analyze the strain
gradient effect of materials by combining UEL and UMAT subroutines.

4. The strain at the notch root can be directly compared with the strain–fatigue life curve of the
smooth specimen to predict the fatigue life of the notched specimen.

The above results demonstrate that it is reasonable to consider the effect of strain gradient in constitutive
relation for improving the fatigue life evaluation of notched specimens, but it is only preliminary.
For more complex cases and considerations, the selection of model parameters and the relationship
between the characteristic length and notch radius need to be further studied.
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