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Abstract: Dental implant biomaterials are expected to be in contact with living tissues, therefore their
toxicity and osseointegration ability must be carefully assessed. In the current study, the wettability,
cytotoxicity, and genotoxicity of different alumina-zirconia—titania composites were evaluated.
The surface wettability determines the biological event cascade in the bioceramic/human living
tissues interface. The measured water contact angle indicated that the wettability strongly depends
on the ceramic composition. Notwithstanding the contact angle variability, the ceramic surfaces
are hydrophilic. The cytotoxicity of human gingival fibroblast cells with materials, evaluated by
an (3-(4,5 methylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) test, revealed an absence of
any cytotoxic effect. A relationship was found between the cell viability and the wettability. It was
subsequently deduced that the cell viability increases when the wettability increases. This effect
is more pronounced when the titania content is higher. Finally, a comet test was applied as
complementary biocompatibility test to detect any changes in fibroblast cell DNA. The results showed
that the DNA damage is intimately related to the TiO, content. Genotoxicity was mainly attributed to
ceramic composites containing 10 wt.% TiO,. Our research revealed that the newly developed high
performance alumina—zirconia-titania ceramic composites contain less than 10 wt.% TiO,, and display
promising surface properties, making them suitable for dental implantology applications.

Keywords: ceramic composites; wettability; genotoxicity; cytotoxicity; dental application

1. Introduction

One of the most important challenges in the dental implantology is the substitution of
metal alloys with more biocompatible materials such as ceramic to overcome the biocompatibility
issues [1-4]. Indeed, dental ceramics have attracted researchers’ attention thanks to their good chemical
resistance, excellent mechanical and physical properties, and especially their high biocompatibility.
These performances can reduce the negative biological reactions to the implants such as the aseptic
loosening and the osteolysis [5].

Alumina, or aluminum oxide (Al,O3), was the first ceramic used for biomedical applications
because of its high hardness and chemical and aesthetic properties. Nevertheless, the modest toughness

Materials 2020, 13, 1374; d0i:10.3390/ma13061374 www.mdpi.com/journal/materials


http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0003-2579-3871
https://orcid.org/0000-0002-2923-7664
https://orcid.org/0000-0001-8852-7023
https://orcid.org/0000-0002-6679-7214
http://dx.doi.org/10.3390/ma13061374
http://www.mdpi.com/journal/materials
https://www.mdpi.com/1996-1944/13/6/1374?type=check_update&version=2

Materials 2020, 13, 1374 2of 14

of alumina is also its main deficiency. Indeed, the high rate of fractures in various alumina-based
implants was reported on by clinical evaluations [6]. Zirconia (ZrO,) ceramics were then introduced in
implantology due to their resistance to fracture, their toughness (which is higher than the alumina), and
their excellent biocompatibility [7]. However, zirconia bioceramics have a low resistance to ageing due
to their transformation from the tetragonal phase (t) to the monoclinic phase (m) in the human body.
This transformation is accompanied by an expansion of about 4% to 5% in volume. This volumetric
expansion creates compressive stresses resulting in the drop of mechanical performances [8].

Up to now, great efforts have been made to produce a new class of dental biomaterials with high
mechanical performances. The combination of the high stiffness of alumina and the excellent toughness
of zirconia could be an effective strategy [9]. Nevertheless, the previous works on alumina—zirconia
ceramic composites revealed complex and high cost manufacturing processes such as hot-press
sintering [10].

Furthermore, several additives, such as TiO,, have been used in order to improve the sintering
and enhance the ceramic performances of composites [11]. TiO; has also showed excellent bioactivity,
promoting the attachment of implants with living bone tissues in a short time [12]. Al,O3-ZrO,-TiO,
ceramic composites for dental application have recently been developed [13-15]. The composition,
physical properties, microstructure, and processing techniques of these new ceramic composites are
different from those of the conventional ones used in dentistry, thus potentially influencing their
inertness. Thus, biosafety cannot be deduced from the analysis of one ceramic composition to other
formulations or conditions [16].

In our previous works [13-15,17], we successfully elaborated and optimized ternary
AlyO3-ZrO,-TiO; ceramic composites, through an easy and low-cost manufacturing process, with
high mechanical performances (stiffness, strength, and toughness) and an exceptional aging resistance.
Indeed, our fabricated ternary ceramics showed higher aging resistance than the commercial zirconia
based dental ceramics without any significant degradation of mechanical performances over a simulated
duration of 40 years of clinical use [18].

Based on our promising results, an improvement in the knowledge of the biocompatibility of
these ternary ceramic composites is required in order to consider them potentially effective for dental
implantology applications.

The aim of this work is to study how the surface behavior (wettability) can influence the cytotoxicity
and the genotoxicity of the ternary mixtures of Al,O3-ZrO,-TiO, ceramic composites with the purpose of
identifying the key factors in determining the optimal formulation for dental implantology. The surface
wettability of materials was studied through the static contact angle. In vitro studies were conducted
on human gingival fibroblast (HGF) cells. An MTT (3-(4,5 methylthiazol-2-yl)-2,5-diphenyl-tetrazolium
bromide) test was used for the determination of cell proliferation. DNA damage was evaluated using
a comet assay.

2. Materials and Methods

2.1. Ceramic Composites Manufacturing

Al,O3 (<50 nm), TiO; (<21 nm), ZrO; (12% CeO,) powders with purity >99.5%, purchased
from Aldrich, were utilized for composite ceramics preparation. After carefully weighing, powders
with absolute ethanol were homogeneously mixed and then dried at 80 °C. Afterwards, the mixtures
of different powders were molded by uniaxial cold pressing (150 MPa) to obtain green pellets
(diameter = 10 mm, thickness = 3 mm). All pellets were sintered for 2 h in a digital furnace in air at
1400 °C followed by controlled furnace cooling. All composites underwent the same preparation steps
and have a comparable roughness (Ra < 0.5 pm).

Table 1 summarizes the details of the different prepared specimens. All specimens were coded by
TxAxZx, X represents the amount (wt.%) of each added component.
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Microstructural and mechanical characterization and aging stability of ceramic mixtures have
been reported in previous works [13-15].

Table 1. Codes and details of components amount (wt.%).

Code TiO, Al,O3 ZrO, (12 mol.% CeO»)
T1A0Z299 0.27 0 99.73
T10A0Z90 10 0 920
T1A99Z0 0.27 99.73 0
T10A90Z0 10 90 0
T5A0Z95 5 0 95
T1A50Z50 0.27 49.87 49.87

T10A45745 10 45 45
T5A9570 5 95 0
T5A47747 5 47.50 47.50
T2A24774 2.5 23.75 73.75
T7A24769 7.5 23.75 68.75
T2A74724 2.5 73.75 23.75
T7A69724 7.5 68.75 23.75

2.2. Wettability Measurements

The bone cells are anchorage cells and have been shown to adhere better on material with
high wettability [19-21]. Thus, the control of the wettability is an important requirement that has
to be fulfilled in order to obtain a bioceramic material with good biological performance, and is an
interdisciplinary challenge. For this reason, the surface wettability of the sintered ceramic composite
was studied through the static contact angle technique using a sessile drop measurement machine
(optical tensiometer Attension by Biolin Scientific, Gothenburg, Sweden). A 2 uL droplet of bidistilled
water was set on the composite surface in atmospheric condition at 25 °C. The drop image was
taken by a micro CCD (Charge-Coupled Device) camera and automatically analyzed by a suitable
Attension software (OneAttension by Biolin Scientific, Gothenburg, Sweden) with a drop profile fitting
(Young-Laplace) in order to measure the contact angle (CA) of the bidistilled water droplet on the
ceramic surface. Five replicas for each measurement were carried out.

2.3. Cell Culture and Treatment

HGF-1 cells, human gingival fibroblast (ATCC-CRL-2014), were cultured in complete D-MEM
(Dulbecco’s modified Eagle’s medium) supplemented with 10% fetal bovine serum supplemented
with penicillin 100 U/mL and streptomycin 100 ug/mL. All these products were purchased from
Sigma-Aldrich (St. Louis, Missouri, United States). HGF-1 cells were then plated at a density of
2 x 10° cells/mL in plates and chamber slides containing the discs and incubated for 3 days at 37 °C in
an incubator with 5% CO,.

2.4. Cell Viability Assay

The mitochondrial activity of living cells was evaluated via the quantitative colorimetric MTT assay
to understand the effect of the formulation of different ceramics on the human gingival cells’ viability.

After incubation, HGF-1 cells were treated at 37 °C for 4 h with MTT (concentration = 0.5 mg/mL).
Afterwards, the mitochondrial dehydrogenases in viable cells produced insoluble purple formazan
crystals. The acidic solution 0.04 M HCl in absolute isopropanol was used to dissolve these crystals
at 37 °C for 4 h. Then, the microplate reader (Sunrise, Tecan, Mdnnedorf, Switzerland) was used to
evaluate the optical density at 570 nm and the cell viability percentage was calculated by the absorbance
ratio of exposed cells vs control cells.
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2.5. Analysis of Cell Morphology

At the end of treatment, HGF-1 cells were fixed with methanol at —20 °C for 20 min, and
permeabilized with 0.2% TritonX-100 in PBS (phosphate-buffered saline). Then, specimens were
incubated with Turk’s reagent for 3 min at room temperature, and washed with PBS. A Leica DM IRB
microscope (Laborlux K, Leica Microsystems GmbH, Heidelberg, Germany), equipped with Canon
Power Shot S50 camera (Canon, Ohta-ku, Tokyo, Japan), was used to analyze the morphology of the
stained specimens.

2.6. Single-Cell Gel Electrophoresis (SCGE, Comet Assay)

The DNA damage was assessed using the SCGE method, also known as comet assay, as previously
described [22]. The fibroblast cells were briefly harvested from suspension and then embedded in a
thin layer of agarose gel (1% low melting) upon clear microscope slides. Cells were lysed and DNA was
unwound under alkaline conditions (1 mM EDTA and 300 mM NaOH-pH 13) for 20 min. Afterwards,
electrophoresis was employed for 30 min at 300 mA and 25 V (*0.86 V/cm). Following electrophoresis,
the slides were washed with 0.4 M tris(hydroxymethyl)aminomethane (Tris) (pH 7.5) and stained with
ethidium bromide (2 pg/mL). Analysis was carried out by using a DM IRB fluorescence microscope
(Leica Microsystem, Heidelberg, Mannheim, Germany), equipped with a digital recording Power Shot
S50 camera (Canon, Milan, Italy). Two replicas for each batch were carried out. Images of 50 cells
per slide (100 cells per batch) were randomly acquired and analyzed using CASP software (v.1.2.3,
Casplab, Wroctaw, Poland). The featured parameters were: length (TL), percentage of DNA (% T-DNA)
and moment (TM) of the tail. All values were statically evaluated by one-way ANOVA (Analysis
of Variance).

3. Results and Discussion

3.1. Wettability

The results of the contact angle measurement used to evaluate the wettability of the different
ceramic composites are illustrated in Figure 1. The contact angle is a quantitative measure of the
wetting behavior of the solid by the liquid. The interaction between the solid surface and the liquid
surface is, in fact, strongly related to surface energy. High surface energy generally promotes high
interaction with the water molecule, leading to a depressed drop shape and low contact angle. In the
reverse, low surface energy leads to low interaction with the water molecule, leading to a spherical
drop and high contact angle [23]. As shown in Figure 1, the ceramic mixture composition strongly
affects the wettability. The wettability of zirconia containing composites is, in fact, higher than pure
titania—alumina ones. The high wettability of the sintered zirconia was already observed by Yilbas et al.
(0ZrOy/Hp0 = 51°) [24]. Therefore, the contact angle between water and pure zirconia can be lower
than alumina one [25]. Furthermore, a significant increase of the contact angle of zirconia-based
ceramics was observed when adding 5 wt.% and 10 wt.% TiO,. This phenomenon has been attributed
to the wettability difference between the zirconia and titania, the former being more hydrophilic than
the latter [26,27]. This influences the water interaction with the ternary composite ceramic, inducing a
progressive increase of the contact angle, increasing titania and alumina oxides.
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Figure 1. Contact angles of different ceramics with water on a ternary TiO;-Al,O3-ZrO, plot.

On the other hand, concerning alumina rich mixtures, the addition of different amounts of titania
to alumina induces the decrease of the contact angle. Zhang et al. showed that the contact angle of
water on alumina is higher than on the titania surface, which confirm our results [28].

In addition, the presence of oxygen vacancies in titania—alumina ceramics may lead to enhanced
wettability. The sintered titania doped alumina is, in fact, characterized by the presence of oxygen
vacancies which are a result of the presence of aluminums in rutile lattice as a defect with a single
negative charge AlTi’ according to the following reaction:

Al,O3 — 2Al7y + Vo + 307 )

Increasing the titania content, these vacancies increase [13]. As shown by Samandi et al. the
formation of defects such as vacancies and interstitials would result in decreasing the contact angle
(enhanced wettability) [29].

In Alumina—Zirconia ceramics, the addition of titania does not induce any significant effect on
the wettability of composites which is probably due to the formation of intermediate phases such as
ApTiOs and ZrTiOy4. In our previous study [13], we proved, in fact, that the addition of TiO; in zirconia
and alumina stimulated the formation of intermediate phases due to its high reactivity.

The contact angle values of studied ceramic composites ranged from 53° to 81°, indicating that,
notwithstanding the variability, the wetting liquid was being drawn towards the surface. These contact
angles, lower than 90°, designate surfaces as hydrophilic and thus they display high wettability of
ceramic composites. The hydrophilic ceramic surfaces can facilitate the physiological interactions
between body fluid and implant to obtain a suitable cell adhesion and, consequently, an optimal
osseointegration [30-32]. According to Anselme et al. [33], the wettability of alumina and zirconia
is higher than that of metals and polymers used for orthopedic application thus promoting the
osseointegration of the implant. In addition, Hao et al. found better protein [34] human fibroblast [35]
and osteoblast [36] attachment on the magnesia partially stabilized zirconia when it was characterized
by higher wettability characteristics.

3.2. Cytotoxicity

3.2.1. Cell Viability

Other aspects to be taken into consideration to characterize new biomaterials are cytotoxicity and
genotoxicity. The cell viability of HGF-1 cells cultured for three days over the composite samples is
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presented on Figure 2. The values are similar in the five compositions containing less than 10 wt.%
TiO,. The cell viability is higher than 95%. Therefore, it can be assumed that the variation of
Al,O3 and ZrO; content did not induce significant changes in the cell viability. These results were
confirmed by Sequeira et al. showing similar cell viability and proliferation in both ATZ (Alumina
Toughened Zirconia) and ZTA (Zirconia Toughened Alumina) composites [37]. In addition, according
to Marchi et al. [38], the mixing of ceramics that have differences in bioactivity could lead to a similar cell
proliferation. However, TI0A0Z90 and T10A90Z0 composites, containing 10 wt.% of TiO,, presented
lower values compared to other samples. This was previously confirmed by the study carried out by
Agac et al., which reported that the co-doping of zirconia with titanium dioxide and alumina induced
higher cell viability and attachment than the doping of zirconia with only titanium dioxide [12]. A high
value of cell viability was expected on the mixtures containing the highest amount of titania because of
its well-known bioactivity. However, it was observed that the presence of titania containing secondary
phases could significantly alter such behavior. Furthermore, as shown by Kaluderovi¢ et al., the
proliferation of cells cultured on zirconia containing 11-13% TiO, was significantly lower compared
to that on pure zirconia [39], thus confirming that the chemical compositions and secondary phase’s
presence and distribution are important determinants of cell behavior [38].

However, all composites showed a cell mortality that did not exceed 17%. Therefore, according
to the international standard guide ISO 10993-5, that classifies a cytotoxic effect as a decrease in cell
viability by more than 30%, we can confirm that our studied composites are not cytotoxic [40,41].
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Figure 2. Cell viability of human gingival fibroblast (HGF-1) cells cultured on the composite samples
for three days.

3.2.2. Relationship between Cell Viability and Surface Wettability

In order to understand the relationship between wettability and cell viability, the effect of the
contact angle of different ceramic composites on their cell viability is shown in Figure 3. We can
distinguish three families. The first family includes low titania content ceramics: T1A0Z99, T1A99Z0,
and T2A24774. The second family consists of medium titania content ceramic composites (T5A47747,
T7A24769, and T7A69724), while high titania content ceramics (T10A0Z90 and T10A90Z0) represent a
third distinct ceramic family.
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Figure 3. Variation of cell viability with contact angle of investigated ceramics.

The cell viability of human gingival cells on low and medium titania content composites is high,
thus it is not significantly influenced by changes in wettability behavior. This aspect is more notable in
low titania content ceramics with a contact angle as high as 81° which, however, still showed a cell
viability higher than 95%. Moreover, the effect of wettability on cell proliferation was improved by
adding 5 wt.% of TiO,. This result was expected because the titania is known by its high bioactivity [42].
The viability/wettability relationship for the high titania content family is the most important. Indeed,
the effect of wettability on cell viability is more pronounced when the titania content increases from
5 wt.% (medium titania family) to 10 wt.% (high titania family). This effect is likely due to the formation
of secondary phases. The titanium dioxide solubility in alumina and zirconia is limited, in fact.
Above this solubility value, a further addition of TiO, induced the formation of secondary phases,
such as zirconia—titania and alumina—titania. According to Capel et al., stable titania—zirconia solid
phases could be obtained in these conditions [43].

As shown in our previous study [13], the oxides’ interactions are more important in a high titanium
dioxide system than in a medium titania one, thus the content of secondary phases is higher in high
TiO, ceramic composites which have a crucial role on wettability and, consequently, on cell viability.

Moreover, for different titania families, the cell viability increases when the wettability increases,
corresponding to the decrease of contact angle. These results can be explained by observing the
adsorbed water content on the ceramic surface that can enhance the cell proliferation, i.e., human
cells are more likely to adhere to a wet surface. Furthermore, Marchi et al., in their study of the
biocompatibility of mixed ceramic composites using human gingival fibroblast cell lines, showed
that H,O functional groups revealed by the DRIFTS (Diffuse Reflectance Infrared Fourier Transform)
analysis on surface of the ceramics control the cell adherence and growth [38].

3.2.3. Cell Morphology

Human gingival fibroblast cells showed a typical spindle-shaped morphology with extended
cellular processes like filopodi and lamellopodia [44]. No marked morphological changes were
observed between the control and fibroblasts cultured with different composites (Figure 4). The absence
of cytotoxicity was also indicated by the nonappearance of morphological alterations in HGF-1 cells
such as a loss of spindle shape and cell lysis. This result was in line with previous studies on cells in
culture with alumina and zirconia ceramics [45].

However, these aspects, which are of fundamental importance in the proper selection of bioceramic
materials, need to be investigated further.
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According to published guidelines [46], the determination of genotoxic potential of materials must
follow the cell viability study because DNA damage can be an important confounding factor. Hence, we
studied the genotoxicity of our composites via the comet test in order to confirm their biocompatibility.

Figure 4. Cell morphology of negative control (A), TTA0Z99 (B), TI0A0Z90 (C), T1A99Z0 (D), TI0A90Z0
(E), T5A47747 (F), T2A24774 (G), T7A24Z69 (H), and T7A69224 (K).

3.3. Genotoxicity

Typical SCGE images for the control and each composite were shown in Figure 5A. SCGE images
were captured and analyzed by the CASP package, and the tail length, tail DNA%, and tail moment of
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all the 100 selected cells of each experiment group was calculated (Figure 5B). According to tail length
results, TI0A0Z90 (133.09 + 8.66) and T10A90Z0 (148.51 + 10.08) showed significant differences with
negative control (36.86 + 3.56) and with other composites (T1IA0Z99, TIA99Z0, T5A47747, T2A24774,
T7A24769, and T7A69Z724) (p < 0.001). Similar results were obtained in the tail DNA% and tail moment
analysis. None of the TIA0Z99 (3.08 + 0.47), TLA99Z0 (2.91 + 0.46), TSA47747 (3.92 + 0.40), T2A24774
(3.48 + 0.29), T7A24769 (4.05 + 0.46), and T7A69724 (4.09 + 0.53) cell groups showed statistically
significant differences with the negative control (2.90 + 0.36) (p > 0.001), in fact, while TI0A0Z90
(11.24 + 1.08) and T10A90Z0 (11.89 + 1.05) were significantly different with these composites and
negative controls (p < 0.001). As indicated by tail moment results, none of the TIA0Z99 (2.12 + 0.39),
T1A9970 (2.03 + 0.37), T5A47747 (2.28 + 0.39), T2A24774 (2.16 + 0.28), T7A24769 (2.57 + 0.49), and
T7A69724 (2.56 + 0.35) cell groups showed differences with negative control (1.67 + 0.25) (p > 0.001),
while T10A0Z90 (11.85 + 1.07) and T10A90Z0 (13.61 + 1.14) were significantly different with these
composites and negative control (p < 0.001).

Control T1A0Z59 T10A0Z90

>

T1A99Z0

T10AS0Z0 TSA47Z47

T2A24274 T7A24269

T7A69Z24

Figure 5. Cont.
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Figure 5. DNA damage analysis of differentiated HGF-1 cells. (A) Representative images of the
comet assay performed in the presence or absence of ceramic composites. (B) DNA damage was
evaluated by measurement of tail length (TL), Tail DNA (%) and tail moment (TM) in CASP software.
Values are shown as mean =+ standard error of the mean (SEM). *** p < 0.001 in comparison with controls;
§8§ p < 0.001 in comparison with cells cultured with different composites.
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These results lead to the conclusion that the composites containing 10 wt.% TiO; induced DNA
damage. There was, indeed, a significant difference in the tail length, the tail DNA%, and the tail
moment between the negative control and the two composites TI0A0Z90 and T10A0Z90. On the other
hand, the composites that had a lower percentage of TiO, (0.27; 2.5; 5; 7.5 wt.%) did not induce any
significant DNA damage.

Previous studies highlighted that zirconia and alumina ceramic materials do not show any
genotoxicity risk, based on in vitro tests [47,48].

These biocompatibility capabilities are preserved also on binary zirconia—alumina composites, as
assessed by Maccauro et al. [49]. Their results, based on DNA damage, mutagenicity, and cancerogenetic
potential in mammalian cells, confirmed that ZTA material could be considered suitable for biomedical
applications. The addition of titania could induce non-significant genotoxic effects [50-52]. However,
as observed by Lu et al. [53], who studied the effects of titania on the induction of sister chromatid
exchanges and micronuclei in Chinese hamster ovary-K1 cells, the titania could have a potentially
genotoxic effect. This detrimental action could be due to the high dose of TiO, that could stimulate
the DNA damage, thus limiting the threshold TiO, percentage on ceramic composites for biomedical
applications [54,55].

By comparing the tail length, tail DNA%, and the tail moment of different composites among
themselves and with the control, we noted that the two composites TI0A0Z90 and T10A90Z0, which
contain the highest content of titania (10 wt.%), are statistically different from other ceramic composites
and control. These results were previously confirmed by cell viability results. Indeed, the minimum
values of cell viability were reached with these two composites. Thus, the genotoxic effect only
appears with composites containing 10 wt% TiO,, which is probably due to titania content, previously
confirmed to have a great influence on cell viability, wettability, and ceramic phase content. As shown
by Marchi et al., the presence of secondary phases is an important determinant of the DNA-damage of
materials [38].

To summarize, the aim of the present work was to evaluate if different composites in the
alumina-zirconia-titania system are able to integrate with human host tissues by studying their
wettability, cytotoxicity, and genotoxicity in vitro. In vitro tests have gained large acceptance among
biocompatibility tests because the methodology is able isolate potential biases from the environment
and assesses subtle cell metabolism modifications [56], allowing for the evaluation of data with higher
accuracy [57]. The results revealed that the wettability was adequate enough to have potentially reliable
osseointegration behaviors for dental implantology. Indeed, the ceramic composites can promote cell
adhesion and bonding in the tissue and implant interface, and thus minimize the clinical failure rates
of implants.

Regarding cytotoxicity, all the tested composites did not cause significant cell death, according to
the ISO 10993 standard. In addition, it is assumed that the genotoxicity to human gingival fibroblasts
induced by different ceramic composites was dose-dependent.

Considering that the in vitro tests do not take into account the complex homeostatic phenomenon
that takes place in the human body;, clinical studies in vivo are desirable in order to further assess the
biological behavior of these dental ceramic composites on human cells, and to study the osseointegration
when they are used as dental implant material, along with the osteoinductive activity when they are
used as bone grafting implants.

4. Conclusions

The ceramic composites presented in this study were originally developed for the improvement
of clinically used biomaterials. Several compositions were tested and wettability behavior, cytotoxicity,
and genotoxicity were studied. The results are summarized as follows.

e  The studied ceramic composites with high wettability could be used to manufacture dental
implants with a high capacity of osseointegration.
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The results of the biological tests highlighted the absence of cytotoxicity when compared to
the control.

The DNA damage is closely related to TiO, content. Genotoxicity towards human gingival
fibroblasts was mainly attributed to composites containing 10 wt.% TiO;.
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