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Abstract: This paper reports the results of research on the effect of hydrogen permeation and the
absence of passive layers on the variations in the corrosive properties of aluminum alloys. The study
demonstrated that such variations contribute to the deterioration of corrosive properties, which in
turn contributes to shortening the reliability time associated with the operation of aluminum alloy
structures. The analysis involved structural aluminum alloys: EN AW-1050A, EN AW-5754, and EN
AW-6060. It was demonstrated that the absorption of hydrogen by the analyzed alloys led to the
shift of the electrode potential to the negative side. The built hydrogen corrosion cells demonstrate
in each case the formation of electromotive force (EMF) cells. The initial EMF value of the cell and
its duration depends on the duration of hydrogenation. As a result of removing the passive layers,
the electrode potential also changes to the negative side. Following the removal of the passive layer
from one of the electrodes, the cells also generated a galvanic (metal) cell. The duration of such a
cell is equivalent to the time of restoration of the passive layer. The formation of such hydrogen and
metal galvanic cells changes the electrochemical properties of aluminum alloys, therefore deteriorates
the corrosive properties of aluminum alloys.
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1. Introduction

One of the reasons for the degradation of metals and their alloys, both in terms of mechanical and
corrosion resistance, is associated with the permeation of hydrogen into them [1–7]. That situation
is particularly important in the case of structural elements (e.g., during their operation), as well as
during the transport or production of hydrogen (e.g., hydrogen pipes, fuel cells, pumps, or generators).
Hydrogen mainly affects constantly, and in this respect this phenomenon is well-explored, and taken
into account during the processes that involve them [1–3,5–7]. However, aluminum alloys have been
increasingly applied in recent decades [8–15]. They are employed in boat and ship designs, in aviation,
astronautics, and in automotive industries, as well as in bridge structures and many other applications.
It is very important, therefore, to analyze the effect of hydrogen on these alloys [16–25].

In enclosed or emfi-enclosed areas, when the structure contacts the corrosive solution, the pH of
the solution decreases. Such areas can take the form of corrosive cracks (Figure 1A) or originate in a
failure of the anti-corrosive coating (Figure 1B). This leads to the hydrogenation of the alloy [26–38].
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Figure 1. Spots corresponding to greater hydrogen concentrations i.e. lower pH. (Figures are not in 
scale.) (A) Stress corrosion cracking, (B) faults in protective coating. 

Figure 2 presents a pitting on the passivated surface of the aluminum alloy and the location 
represented by hydrogen formation [27]. 

 

Figure 2. Diagram of pitting on passivated aluminum surface. 

Hydrogen permeation from solutions is due to the reduction of hydrogen derived from the 
solution during the cathodic process [20,26,27]. During the cathodic reaction on the metal surface, as 
a result of the diffusion and migration of the H+⋅H2O ion, hydrogen cation is reduced, and this is 
coupled with the formation of H0 atoms adsorbed on the surface. Most of the monatomic hydrogen 
(H0) atoms are combined into H2 molecules and released into the atmosphere. However, a small 
amount is absorbed into the metal. This absorption takes place in accordance with laws of diffusion 
(Fick’s first and second law) [30,31]. The hydrogen permeation in the form of H0 is promoted by the 
very small size of the hydrogen atom compared to the crystal metal structure (or metal alloy). 
Nevertheless, the distribution of hydrogen over the volume of the metal surface is not uniform. In 
the places where the highest tensile mechanical stresses occur and the crystal structure expands, the 
concentration of hydrogen is much higher than the concentration in those elements of the metal 
structure where tensile stresses are absent. Under mechanical loads, hydrogen grates into the vertices 
of the stress corrosion cracking gaps (where tensile mechanical loads occur) as a result of long periods 
of storage, and this considerably accelerates the development of the cracking gaps. Figure 3 illustrates 
stress cracking with absorbed hydrogen. Hydrogen concentrates in the places of the largest tensile 
stress [20,26,30,31]. 

Figure 1. Spots corresponding to greater hydrogen concentrations i.e., lower pH. (Figures are not in
scale.) (A) Stress corrosion cracking, (B) faults in protective coating.

Figure 2 presents a pitting on the passivated surface of the aluminum alloy and the location
represented by hydrogen formation [27].
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Hydrogen permeation from solutions is due to the reduction of hydrogen derived from the
solution during the cathodic process [20,26,27]. During the cathodic reaction on the metal surface, as a
result of the diffusion and migration of the H+

·H2O ion, hydrogen cation is reduced, and this is coupled
with the formation of H0 atoms adsorbed on the surface. Most of the monatomic hydrogen (H0)
atoms are combined into H2 molecules and released into the atmosphere. However, a small amount
is absorbed into the metal. This absorption takes place in accordance with laws of diffusion (Fick’s
first and second law) [30,31]. The hydrogen permeation in the form of H0 is promoted by the very
small size of the hydrogen atom compared to the crystal metal structure (or metal alloy). Nevertheless,
the distribution of hydrogen over the volume of the metal surface is not uniform. In the places where
the highest tensile mechanical stresses occur and the crystal structure expands, the concentration of
hydrogen is much higher than the concentration in those elements of the metal structure where tensile
stresses are absent. Under mechanical loads, hydrogen grates into the vertices of the stress corrosion
cracking gaps (where tensile mechanical loads occur) as a result of long periods of storage, and this
considerably accelerates the development of the cracking gaps. Figure 3 illustrates stress cracking with
absorbed hydrogen. Hydrogen concentrates in the places of the largest tensile stress [20,26,30,31].

A proportion of the absorbed hydrogen H0 accumulates in the metal pores, where it is combined
into molecular hydrogen H2. If the cathode activity stops, i.e., the process of hydrogen reduction
on the metal surface is ceased (e.g., after the metal is removed from a solution or the current flow
is discontinued), the hydrogen surface concentration drops to zero, and immediately the process of
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hydrogen desorption is initiated in the way of diffusion from the metal volume. Hydrogen is removed
from the metal throughout the time, lasting approximately one day [31].Materials 2019, 12, x FOR PEER REVIEW 3 of 13 
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In an acidic environment, hydrogen is released from H+
·H2O ions, whereas in alkaline solutions

it forms H2O. The hydrogen release reaction from neutral environments is also possible, but this
requires a high potential. It is generally believed that the permeation of hydrogen released from acidic
solutions occurs more intensely in comparison to the case when hydrogen is removed from alkaline
solutions. Hydrogen permeation into the metal is also intensified by the high concentration of e.g.,
either arsenic or sulfur in the solution [20,26]. Aluminum alloys are characterized by rapid passivation
of the surface, which protects them from susceptibility to the environmental conditions. The failure of a
passive layer can have a significant effect on the service life of the structure or equipment. Damage can
also occur under mechanical forces acting during operation. The increasing use of aluminum alloys
makes it necessary to undertake research concerned with the effect of hydrogen and the deficiencies in
passive layers on the variations in the corrosive properties of these alloys. The knowledge of these
mechanisms will offer a way in which protection methods can be developed with the purposes of
extending the service life and reliability of the structures. From an environmental engineering point of
view, the option of extending service lives plays an important practical design consideration. The time
needed to produce new components decreases as well, and the material and energy consumption is
reduced, as well as the amount of the required maintenance [16,17,20,26]. In addition, when using
aluminum alloys in e.g., hydrogen installations (in a fuel cells (FC), in a fuel cell vehicle (FCV), or in a
hydrogen generators e.g., in a electrolysers, a bio-hydrogen production installations, or in a microbial
electrolysis cells (MEC)), an important consideration is the effect of hydrogen on the materials that are
applied in a specific structure [32–38]. Moreover, the aluminum and aluminum alloys can be used as
source of hydrogen [39,40].

This work reports the results of a study concerned with the effect of hydrogen and the absence of
passive layers on the electrochemical properties of aluminum alloys, therefore the effect of hydrogen
and the absence of passive layers on the deteriorates and the corrosive resistance of aluminum alloys.

2. Materials and Methods

The research material included samples of technical aluminum alloys EN AW-1050A, EN AW-5754,
and EN AW-6060 applied for plastic reworking [41]. Selected alloys are easily accessible and widely
employed as construction materials. All of the analyzed alloys are also easily weldable. The chemical
composition of the tested samples is given in Table 1.

Table 1. Chemical composition of aluminum alloys applied in measurements [41].

Alloy Designation Si Fe Cu Mn Mg Cr Zn Ti Others

EN AW-1050A 0.25 0.40 0.05 0.05 0.05 - 0.07 0.05 -
EN AW-5754 0.4 0.4 0.1 0.5 2.6–3.6 0.3 0.2 0.15 0.15
EN AW-6060 0.3–0.6 0.1–0.3 0.1 0.1 0.3–0.6 0.05 0.15 0.1 0.15

With the purpose of assessing whether hydrogen (or the absence of a passive layer) affects the
change in alloy surface properties at all, measurements of the variations in in the electrode potential of
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the investigated alloy following hydrogenation (or after removal of the passive layers) were performed
in the initial phase. Figure 4 presents the experimental setup applied for measurement of electrode
potential changes.
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Figure 4. Experimental setup applied in the measurements of electrode potential following
hydrogenation (or after the removal of passive layers). 1: sample of alloy, 2: salt bridge, 3: calomel
half-cell, 4: electrolyte, 5: multimeter/potentiostat.

The calomel half-cell was applied as the reference electrode [42]. The electrolyte was a 3% NaCl
solution [18,19,27,32,43]. The samples of alloys for measurements were made as electrodes with the
dimensions of 10 × 30 × 1 mm. For shaping, the samples were formed from the analyzed alloys,
and they were annealed in a muffle furnace (ELIOG Industrieofenbau GmbH, Römhild, Germany) at
a temperature of 2/3 of the melting temperature of aluminum. This procedure was designed to remove
internal stresses in the samples.

The hydrogenation of the samples was carried out in a Hoffman apparatus (Fabryka Pomocy
Naukowych, Nysa, Poland) in a 0.1N H2SO4 solution. The anode was made of platinum, whereas the
alloys formed the cathode in the process. The surface area of both electrodes was identical. The samples
(analyzed alloys) were hydrogenated for 5, 15, and 25 minutes. Cathodic polarization was carried out
at a current of 20 mA. On the other hand, the removal of passive layers was carried out mechanically
using fine-grained sandpaper.

In order to investigate the effect of hydrogen (or the absence of the passive layer) on the analyzed
aluminum alloys, a galvanic cell was designed in which one of the electrodes was hydrogenated
(or did not include passive layers). The difference in potentials of a hydrogenated electrode (or
without passive layers) and an unreacted electrode (with passive layers) resulted in the formation
of electromotive force (EMF) in the cell. Figure 5 contains the image of the galvanic cell applied for
measuring the electromotive force following hydrogenation (or after removing the passive layers) of
one electrode. A 3% NaCl solution played the role of the electrolyte. The samples had the dimensions
of 10 × 30 × 1 mm.
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Figure 5. Galvanic cell for measuring the variations in electromotive force (EMF) after hydrogenation (or
after removing passive layers). 1: hydrogenated (or without passive layers) sample of alloy, 2: salt bridge,
3: non hydrogenated (or with passive layers) sample of alloy, 4: electrolyte, 5: multimeter/potentiostat.

Figure 6 contains details of the measurement plan: preparation and measuring setup and the
order of measurements.
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Figure 6. Preparation and experimental setups and schedule of measurements. 1: preparation of alloy
samples, 2: annealing in a muffle furnace, 3: degreasing of alloy samples, 4: Hoffman apparatus,
5: electrolyte preparation, 6: removal of passive layers, 7: measurements of electrode potential after
hydrogenation (or after removing passive layers), 8: measurements of cell electromotive force (EMF)
after hydrogenation (or after removing passive layers), 9: preparation of calomel half-cell, 10: computer.

The KS 520/14 silt furnace (ELIOG Industrieofenbau GmbH, Römhild, Germany) was used for
annealing of alloy samples. An AMEL System 500 potentiostat (Figure 18; 6) (Amel S.l.r., Milano, Italy)
and a Fluke 8840A multimeter (Fluke Corporation, Everett, WA, USA) was used for the electrical
measurements. The potentiostat was controlled by a computer with CorrWare software (Scribner
Associates Inc., Southern Pines, NC, USA). A Zortrax M200 printer (Zortrax S.A, Olsztyn, Poland)
was used to print an electrodes support elements. To prepare the 3D object (the support elements) for
printing, Z-Suite software (Zortrax S.A, Olsztyn, Poland) was used.
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3. Results

The entire measurement program was carried out in accordance with the program of measurements
presented in Figure 6. Figures 7–9 present the change in the electrode potential after the hydrogenation
of alloys.
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Figures 10–12 contain data with regard to the decrease in cell EMF over time during the
desorption of hydrogen from one of the electrodes. The hydrogenation time of the samples prior to the
measurements was equal at 5, 15, and 25 min.
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Subsequently, potential measurements were carried out for the electrodes with the removed
passive layer. Figures 13–15 contain details regarding the variations in electrode potential (after
removing the passive layers) to the negative side.
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Figures 16–18 contain data regarding the decrease of cell EMF accompanying the absence of a
passive layer on one of the electrodes.
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4. Discussion

In all cases (Figures 7–9), following the hydrogenation of the alloy, the electrode potential shifted
to the negative side (for AW-1050A alloy shifted of about −111 mV, for EN AW-5754 −58 mV, and for
EN AW-6060 −57 mV), which clearly demonstrates that hydrogen affects the variations in the potential
of the alloy surface. Thus, the hydrogenated alloy takes over the function of the anode. Therefore,
further EMF measurements of the cell were performed (Figure 4). Measurements demonstrated that in
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each case a galvanic cell was created capable of generating EMF. EMF measurements of the cell after
the hydrogenation of one of the electrodes demonstrated that this force decreases over time. This is
due to hydrogen desorption during the measurements. Desorption time and level of EMF are closely
related to the time of hydrogenation of the samples (Figures 10–12). We can note that the shorter
hydrogenation time leads to higher the initial EMF value of the cell (the highest initial values were
recorded after 5 minutes of hydrogenation, for EN AW-1050A alloy −176 mV, for EN AW-5754 −180 mV
and for EN AW-6060 −290 mV). However, longer hydrogenation time results in the longer life of the
cell, despite the lower initial EMF value (Figures 10–12, orange lines). This is due to the fact that during
hydrogenation from electrolytes, hydrogen accumulates below the alloy surface. Coupled with the
short hydrogenation time, hydrogen desorbs quickly from the sample. However, following a long
hydrogenation time, it permeates into the deeper layers of the alloy and desorbs from it in the long run.

However, regardless of the value of the cell EMF, this type of cell is generated e.g., in corrosion
cracks (Figure 19). Since hydrogen accumulates in the tip of the crack (due to the largest tensile forces),
this tip acts as an anode. In contrast, the walls (that do not contain hydrogen) perform the role of
the cathode (Figure 19). The electrolyte in such a cell forms a corrosive environment, i.e., a moist
environment of operation. Such a link is constantly closed, i.e., the load is the internal resistance of the
alloy. During operation, such a link reduces the corrosive properties at the tip of the crack.
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Such a cell acts like a hydrogen fuel cell and should be analyzed as such. The time of the operation
of this type of cell results from the desorption time of hydrogen from the alloy. Quite evidently, from an
energy point of view, the efficiency of such a cell is negligible (low amount of hydrogen, low reaction
rate due to existence of aluminum electrodes/catalysts). Nevertheless, a constantly operating cell of
this type can lead to the deterioration of the corrosive properties of aluminum alloys.

For measurements conducted in the conditions marked by the absence of the passive layer (as
in the case of alloy hydrogenation), in all cases (Figures 13–15), the electrode potential shifted to the
negative (for EN AW-1050A alloy shifted of about −324 mV, for EN AW-5754 alloy −346 mV, and for
EN AW-6060 −350 mV), which clearly demonstrates that the absence of the passive layer affects the
alteration of the alloy surface potential. Therefore, further EMF measurements of the cell (Figure 4)
were carried out while the passive layer was removed from one of the electrodes.

The operating time of such a cell is synonymous with the time needed to restore the passive
layer. We should note that the highest initial EMF value (−500 mV) was characterized by a cell
with electrodes with the highest aluminum content (99.5%), i.e., the EN AW-1050A alloy (Figure 16).
However, the lowest initial value of EMF (−540 mV) was characterized for the cell with electrodes
made of the EN AW-6060 alloy (Figure 18). This alloy has the highest content of alloy elements (Table 1).
Following the mechanical pitting (cracking) of the corrosion gap (e.g., as a result of exploitation of
the structure comprising aluminum alloy), a surface absent of the passive layers is formed at the
crack tip. This leads to the formation of a galvanic cell, in which in the absence of the passive
layers, anode function is taken on by the pitting, and the walls of the crack act as anode (Figure 20).
The electrolyte in such a cell is a corrosive environment, i.e., a moist operating environment. As in the
case of hydrogen cells, such a cell is constantly closed, i.e., the load is the internal resistance of the alloy.
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During operation, such a link reduces the corrosion property at the tip of the crack (in the absence of
passive layers).
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5. Conclusions

This paper explored the effect of hydrogen and the absence of passive layers on the decrease
of corrosive properties of aluminum alloys. The analysis involved structural aluminum alloys: EN
AW-1050A, EN AW-5754, and EN AW-6060. It was demonstrated that the absorption of hydrogen
by the analyzed alloys led to the shifted of the electrode potential to the negative side (Figures 7–9).
The developed and built hydrogen corrosion cells (Figure 4) demonstrate in each case the formation of
EMF cells. The initial EMF value of the cell and its duration depends on the duration of hydrogenation
(Figures 10–12). As a result of removing the passive layers, the electrode potential also shifts to the
negative side (Figures 13–15). Following the removal of the passive layer from one of the electrodes,
the cells also generated a galvanic (metal) cell. The duration of such a cell is equivalent to the time of
restoration of the passive layer (Figures 16–18). The formation of such hydrogen and metal galvanic
cells changes the electrochemical properties of aluminum alloys, therefore deteriorates the corrosive
properties of aluminum alloys (Figures 19 and 20). Therefore, the process of designing elements made
of aluminum alloys or installations related to the transport or production of hydrogen needs to take
into account the level of hydrogen permeation in operating conditions.
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