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Figure S1. Characterization of the SBA-15 template: nitrogen sorption isotherm (a) XRD
diffractogram (b) and SEM images (c,d).
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Figure S3. XRD diffractograms of the carbons studied.
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Figure S4. Raman spectra of the carbons studied.
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Figure S5. Values of zeta potential of the studied carbons as a function of pH.
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Figure S6. XPS survey spectra for the carbons studied: P-CMK (a), H-CMK (b), D-CMK (c), T-CMK
(d).
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Figure S7. Deconvolution of C 1s energy level for the carbons studied: P-CMK (a), H-CMK (b),
D-CMK (c), T-CMK (d).
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Figure S8. Deconvolution of O 1s energy level for the carbons studied:P-CMK (a), H-CMK (b),
D-CMK (c), T-CMK (d).
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Figure S9. Functional group content versus pHier of the carbons studied.
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Figure S10. Nitrogen adsorption isotherm of Norit SX2 (left), SEM images of Norit SX2 (right).
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Figure S11. Comparison of DICL adsorption kinetics onto the studied CMK materials and Norit SX2
carbon (initial concentration of DICL: 50 mg L-).
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Table S1. Results of the deconvolution of the XPS C 1s and O 1s core energy levels.
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Binding Energy (eV) Bond Assignment P-CMK D-CMK T-CMK H-CMK
Cls 91.0 94.8 92.4 81.8
283.9-284.2 C=C sp? 90.6 90.4 85.7 84.8
284.8-285.6 C-Csp? 2.8 44 8.8 41
285.9-286.1 -0 (alcohol, phenol, ether), C-N 5.0 34 34 35
(amine, amide)
286.6-286.8 C=0 (carbonyl) 1.6 - - 1.6
288.2-288.6 O-C=0 (ester, carboxyl) - 1.8 2.1 6.0
O1ls 7.0 5.2 4.5 15.9
530.8-531.0 O=C (carbonyl) 21.7 2.6 5.1 11.2
531.4-531.6 O'=C-O (ester, carboxyl) 21.7 - - 33.1
532.2-532.6 Aliphatic C-O (alcohol, phenol) 36.8 449 53.1 25.4
533.5-533.8 Aromatic C-O (ether) 19.8 52.5 41.8 30.3
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Table S2. Comparison of DICL maximum adsorption capacities by carbon-derived sorbents reported in the literature.

Observed Uptake

Sorbent (mg &) Remarks Ref.

Oxidized activated carbon (treated with a solution of 487 me o1 Optimal pH: 5.5-6.0. Oxidation increases adsorbed amount 6 times. Proposed mechanism based on [

ammonium persulfate and sulfuric acid) 88 electrostatic interactions and hydrogen bonding. Desorption by acetone provides up to 5 reusable cycles.
Multi-walled carbon nanoz;l:‘:);s treated with dilute nitric 24 mg g Opt. pH: 5.0. Fast (teq= 1 h) and multilayered adsorption was observed. [2]
. . . Opt. pH: 10.0. Adsorption equilibrium reached after
h de reduced d hydrid =
Graphene oxide reduced by sodium borohydride 60mgg 3 h. Proposed mechanism based on m—mt interactions, electrostatic attraction and hydrogen bonding. (8]
Opt. pH: 7.0, teg= 4 h. Proposed mechanism based on
Activated carbon from cocoa shell 64 mg g ni—ni—stacking, hydrogen bonding and van der Waals forces. AC effectively removed 96% of a mixture of [4]
different organic compounds in a medium with high salinity and sugar content.
Activated carbon from agricultural by-product 56 mg g Opt. pH: 7.0, teg> 5 h. Proposed mechanism based on - stacking, hydrogen bonding and/or van der Waals (5]
forces.

Graphene oxide 500 mg g Opt. pH: 7.0, teq~ 24 h. Proposed mechanism based on hydrophobic interactions and n—mt stacking. [6]

Expanded graphite 330 mg g Fast (Eq. time= 0.5 h) adsorption onto energetically uniform carbon surface. [7]

Activated carbon from olive stones 11mgg? Opt. pH: 2.0. Fast (teq= 0.5 h) adsorption of DICL related to film diffusion and intraparticle diffusion. [8]
Activated carbon from Terminalia catanpa 91 me o1 Opt. pH: 5.0; teg= 2 h. Proposed mechanism based on hydrogen bonding. Desorption at pH =5 and 60 °C 9]

PP 88 provides up to 8 reuses with 85% removal.
Carbon derived from TiC by chlorination 551 mg g1 Fast (teq= 0.5 h), selective and multilayered adsorption was observed. [10]
t. pH: 7.5; teq> 20 days. Oxidation d dsorpti ity. P d hani d on di i
Activated carbon cloth Hamg g Opt. p 5; teq> 20 days. Oxidation decreases adsorp ion capacity. Proposed mechanism based on dispersive [11]
and hydrophobic interactions.
Activated Iti-walled t d
ctivated carbon, clzlc:nv:laani) ﬁ;il:zon nanotubes an 329 mg g1 Slow (teq > 14 days) and non-selective adsorption was observed. [12]
Iron-enriched magnetic biocarbon 316 me o1 Opt. pH: 5; teg> 3 h. Proposed mechanism based on electrostatic interactions, hydrogen bonding and r—mt (13]
& 88 stacking. Desorption by acetone provides up to 4 recyclable runs.
Iron-enriched activated carbon from orange peels 144 me o1 Opt. pH:4.5; teq> 3 h. Proposed mechanism based on hydrogen bonding, m—m stacking, ion-dipole interactions (14]
gep 88 and Fenton-like degradation.
Hydrochar from dried fruit powder 601 mg g1 Opt. pH: 4.4. Fast (teq = 1.5 h) and physical adsorption was observed. [15]
COe-activated carbon from coconut shell 1033 mg g1 Opt. pH: 7.0; teg> 7 days. Proposed mechanism based on m—m stacking and electrostatic interactions. [16]
. Opt. pH: 6.0, teg= 1 h. Proposed mechanism based on electrostatic attraction, m—mt stacking, hydrogen bonding

D h 1 7 -1 17

3D reduced graphene oxide aeroge 597 mg g and hydrophobic interactions. [17]
Activated carbon from tea waste 62 mg g1 Opt. pH: 6.5; teg> 6 h. Spontaneous, endothermic and physical adsorption was observed. [18]
Multi-walled carbon nanotubes 6 mg g Opt. pH: 7.0; teg= 0.5 h. Desorption by 0.1 M HCl provides 1 reuse cycle. [19]

Thi

Thermochemically modified CMK-3 carbon 241 mg g Opt. pH = 5.5-6.0. Fast adsorption kinetics, possibility of partial regeneration woi‘i
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	Observed Uptake (mg g−1)
	Ref.
	Remarks
	Sorbent
	Optimal pH: 5.5–6.0. Oxidation increases adsorbed amount 6 times. Proposed mechanism based on electrostatic interactions and hydrogen bonding. Desorption by acetone provides up to 5 reusable cycles. 
	Oxidized activated carbon (treated with a solution of ammonium persulfate and sulfuric acid)
	[1]
	487 mg g−1
	Multi-walled carbon nanotubes treated with dilute nitric acid
	[2]
	Opt. pH: 5.0. Fast (teq ≈ 1 h) and multilayered adsorption was observed.
	24 mg g−1 
	Opt. pH: 10.0. Adsorption equilibrium reached after 3 h. Proposed mechanism based on π–π interactions, electrostatic attraction and hydrogen bonding.
	[3]
	60 mg g−1
	Graphene oxide reduced by sodium borohydride
	Opt. pH: 7.0, teq ≈ 4 h. Proposed mechanism based on
	[4]
	π–π-stacking, hydrogen bonding and van der Waals forces. AC effectively removed 96% of a mixture of different organic compounds in a medium with high salinity and sugar content.
	64 mg g−1
	Activated carbon from cocoa shell
	Opt. pH: 7.0, teq > 5 h. Proposed mechanism based on π–π stacking, hydrogen bonding and/or van der Waals forces.
	[5]
	56 mg g−1
	Activated carbon from agricultural by-product
	[6]
	Opt. pH: 7.0, teq ≈ 24 h. Proposed mechanism based on hydrophobic interactions and π–π stacking.
	500 mg g−1
	Graphene oxide
	[7]
	Fast (Eq. time≈ 0.5 h) adsorption onto energetically uniform carbon surface.
	330 mg g−1
	Expanded graphite
	[8]
	Opt. pH: 2.0. Fast (teq ≈ 0.5 h) adsorption of DICL related to film diffusion and intraparticle diffusion.
	11 mg g−1
	Activated carbon from olive stones
	Opt. pH: 5.0; teq ≈ 2 h. Proposed mechanism based on hydrogen bonding. Desorption at pH = 5 and 60 °C provides up to 8 reuses with 85% removal.
	[9]
	91 mg g−1
	Activated carbon from Terminalia catappa
	[10]
	Fast (teq ≈ 0.5 h), selective and multilayered adsorption was observed.
	551 mg g−1
	Carbon derived from TiC by chlorination
	Opt. pH: 7.5; teq > 20 days. Oxidation decreases adsorption capacity. Proposed mechanism based on dispersive and hydrophobic interactions.
	[11]
	414 mg g−1
	Activated carbon cloth
	Activated carbon, multi-walled carbon nanotubes and carbon nanofibers
	[12]
	Slow (teq > 14 days) and non-selective adsorption was observed.
	329 mg g−1
	Opt. pH: 5; teq > 3 h. Proposed mechanism based on electrostatic interactions, hydrogen bonding and π–π stacking. Desorption by acetone provides up to 4 recyclable runs.
	[13]
	316 mg g−1
	Iron-enriched magnetic biocarbon
	Opt. pH:4.5; teq > 3 h. Proposed mechanism based on hydrogen bonding, π–π stacking, ion-dipole interactions and Fenton-like degradation. 
	[14]
	144 mg g−1
	Iron-enriched activated carbon from orange peels
	[15]
	Opt. pH: 4.4. Fast (teq ≈ 1.5 h) and physical adsorption was observed.
	601 mg g−1
	Hydrochar from dried fruit powder
	[16]
	Opt. pH: 7.0; teq > 7 days. Proposed mechanism based on π–π stacking and electrostatic interactions.
	1033 mg g−1
	CO2-activated carbon from coconut shell
	Opt. pH: 6.0, teq ≈ 1 h. Proposed mechanism based on electrostatic attraction, π–π stacking, hydrogen bonding and hydrophobic interactions.
	[17]
	597 mg g−1
	3D reduced graphene oxide aerogel
	[18]
	Opt. pH: 6.5; teq > 6 h. Spontaneous, endothermic and physical adsorption was observed.
	62 mg g−1
	Activated carbon from tea waste
	[19]
	Opt. pH: 7.0; teq ≈ 0.5 h. Desorption by 0.1 M HCl provides 1 reuse cycle.
	6 mg g-1
	Multi-walled carbon nanotubes
	This work
	Opt. pH ≈ 5.5–6.0. Fast adsorption kinetics, possibility of partial regeneration
	241 mg g-1
	Thermochemically modified CMK-3 carbon
	References

