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Abstract: Atmospheric plasma spraying (APS) was taken to fabricate the NiCrAlY coating.
The corrosion-wear properties of NiCrAlY coating was measured respectively under deionized
water, artificial seawater, NaOH solution and HCl solution. Experimental results presented that
the as-sprayed NiCrAlY coating consisted of NizAl, nickel-based solid solution, NiAl and Y,Os.
In deionized water, the coating with the lowest corrosion current density (icor) 0f 7.865 X 1078 A/em?
was hard to erode. Meanwhile, it presented a lower friction coefficient and the lowest wear rate. In HCI
solution, NiCrAlY coating gave the highest corrosion current density (ico) of 3.356 X 107® A/cm? and
a higher wear rate of 6.36 x 107® mm?/Nm. Meanwhile, the emergence of Al(OH)3 on the coating
surface could reduce the direct contact between the counter ball and sample effectively, which was
conducive to the lowest friction coefficient of 0.24.

Keywords: corrosion-wear performance; dense structure; corrosion potential; corrosion rate;
worn surface

1. Introduction

In engineering fields, wear often occurs under different corrosive circumstances leading to the
degradation rate of engineering parts [1]. For instance, some mechanical parts utilized in the marine
atmosphere, pulping and mining, suffer the collaborative destruction of corrosion and wear [2-6].
Meanwhile, the synergism of corrosion and wear decreases the service life of the material. In the
process of friction, the passive film on the worn surface could be destroyed by friction force and the
new passive film is hard to form, which would make the material suffering more serious damage.
Normally, the corrosion-wear material loss is greater than the sum of corrosion and wear. Therefore,
it is very imperative to improve the corrosion-wear resistance property of mechanical parts in different
corrosive environments. To meet this requirement, the protective coatings are applied to protect
the mechanical parts without changing the external structure. MCrAlY (M = Cobalt and/or Nickel)
alloys with excellent oxidation resistance, corrosion resistance and wear resistance performance
have been widely used in nuclear power, automotive and marine industries acting as the protective
coatings [1,7-15]. J. Chen et al. investigated the tribocorrosion behavior of NiCoCrAlYTa coating
in corrosion. The results showed that this kind of coating presented an extremely dense structural
characteristic and excellent tribological performance in NaOH and HCl solutions [1]. M. Marcu et al.
studied the microstructure and oxidation resistance of as-sprayed NiCrAlY/Al,O3 coating. The results
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presented that the as-sprayed NiCrAlY/Al,O3 coating has the best cyclic oxidation resistance with an
oxidation rate of 2.62 X 10712 gZ.cm~*:s7! at high temperature and good adhesion during the cyclic
oxidization treatment [8]. Current researches mainly focus on the oxidation resistance, corrosion,
mechanical and tribological performance of the coatings [16-22]. These materials are also used for
reciprocating parts in corrosive environments [23], so the research of the wear-corrosion resistance
is still important in the process of sliding. However, few researches pay attention to the synergy of
corrosion and wear [24], and its mechanism is still unclear.

In this work, the tribocorrosion properties of NiCrAlY coating were studied and the synergistic
mechanisms between wear and corrosion in different corrosive environments were discussed in detail.
The objective of this paper is to research how corrosive environments affect the tribological behavior of
NiCrAlY coating and the interaction degree between corrosion and wear. This research would provide

usable direction to the NiCrAlY coating application in corrosive environments.
2. Materials and Methods

2.1. Coating Preparation

Gas atomized spherical NipCripAl; oY (wt.%) powder (53-106 pm) was bought from Sulzer Metco
(Winterthur, Switzerland). The NiCrAlY coating was prepared by atmospheric plasma spraying (APS).
The Inconel 718 alloy was sand-blasted, then ultrasonically cleaned with ethanol before spraying.
The coating thickness was about 300 um. The specific spraying parameters presented were: flow rate
of Ar was 40 L/min; flow rate of H, was 5 L/min; spraying angle was 90°; feed rate of the powder was
42 g/min; voltage was 60 V; the current was 500 A and spray distance was 110 mm.

2.2. Characterization

The micromorphologies of cross-section and worn surface of this coating were measured by
field emission scanning electron microscopy (FE-SEM, Tescan Mira 3, Bron, Kohoutovice, Czech
Republic). A Philips X'Pert-MRD X-ray diffractometer (XRD; Cu-K; radiation, current 150 mA,
potential 40 kV, Philips, Eindhoven, The Netherlands) was utilized to analyzed phase composition.
The phase compositions on the worn surface were analyzed by Czemy-Tumer Labram HR800 Raman
spectrometer (Horiba, Paris, France).

2.3. Tribocorrosion Tests

The tribocorrosion experiments were tested in deionized water (pH = 7), artificial seawater
(pH = 8.2), 0.1 M NaOH solution (pH = 13) and 0.1 M HCI solution (pH = 1), with reciprocating
ball-on-disk tribometer (UMT, Karlsruhe, Germany). The schematic diagram is shown in Figure 1.
The polytetrafluoroethylene (PTFE) does not corrode as it is chemically inert to corrosion. So it acted
as the solution cell material. The Al,O3 ceramic ball acted as the counter ball, whose diameter was
5 mm. Before the friction experiment, the surface of the coating was burnished till the roughness close
to 0.5 pm. The tests were performed at the conditions below: room temperature, 5 N normal load,
0.8 mm/s sliding speed, 3.5 mm amplitude and 60 min duration. Repeated experiments were tested in
every corrosive environments. The color 3D laser scanning microscope (VK-9710, Keyence, Osaka,
Japan) and SEM were utilized to analyze the worn surface. The wear rate was got by W = V/LF, where
W represented the wear rate (mm3/Nm), V represented the wear volume loss (mm?3), L represented the
sliding distance (m) and F represented the load (IN).
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Figure 1. Reciprocating ball-on-disc tribometer schematic diagram.

3. Results and Discussions

3.1. Morphology and Composition of Powders and NiCrAlY Coating

Figure 2 presents the SEM micromorphology and XRD pattern of NiCrAlY powder. The spherical
shape powder with a size of 53-106 um (Figure 2a) exhibits satisfactory flowability and thus it is very
beneficial to the feeding rate in the process of spraying [25]. The results of the XRD pattern show
that the NiCrAlY powder composes of NizAl, NiAl and nickel-based solid solution and has high
crystallinity (Figure 2b).
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Figure 2. SEM micromorphology (a) and XRD pattern (b) of NiCrAlY powder.

Figure 3 presents the SEM morphology of the cross-section and diffraction pattern of NiCrAlY
coating. The coating contains some cracks and pores. Meanwhile, every phase combines well
and between any two phases have no evident cracks (Figure 3a). Compared with the NiCrAlY
powder (Figure 3b), a new phase of Y,03 formed on the coating, which could obviously increase the
microhardness and strength [26].
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Figure 3. SEM morphology of (a) cross-section and (b) XRD pattern of NiCrAlY coating.
3.2. Electrochemical Performance of NiCrAlY Coating

Figure 4 gives the potentiodynamic polarization curves of NiCrAlY coating sliding conditions
in different corrosive solutions. Key test parameters such as the corrosion potential (E), corrosion
current density (icorr), anodic and cathodic Tafel slopes (8, and f.) are obtained from Figure 4 and
shown in Table 1. The polarization resistance value (Ry) is calculated by Stern-Geary equation:
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Figure 4. Potentiodynamic polarization curves of NiCrAlY coating sliding conditions in different
corrosive solutions.

Results indicate that the corrosion potential (Eqo) of NiCrAlY coating under deionized water
is the highest of —0.428 V (vs. SCE). However, the E+ of the coating in artificial seawater, HCI
and NaOH shift to —0.516 V (vs. SCE), —0.559 V (vs. SCE) and —0.535 V (vs. SCE) respectively.
Simultaneously, the corrosion current density (icorr) of this coating in deionized water shows the
lowest of 7.865 x 1078 A/cm?. Generally speaking, corrosion current density, whose rate is often used
as corrosion rate, is a crucial reference to evaluate corrosion resistance [13,27]. Therefore, the coating
under deionized water with the lowest corrosion rate is hard to corrode. The coating in HCI presenting
the highest corrosion current density is very easy to be corroded. At the same time, the coating in
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deionized water has the highest 8,, B and R, of 0.072 V/dec, 0.049 V/dec and 1.610 x 10° Q) respectively,
which further illustrates that the coating in deionized water holds a good corrosion resistance.

Table 1. Corrosion parameters of NiCrAlY coating from potentiodynamic polarization curves.

g;’lr;‘t’ls;:’lz Ecorr (V, vs. SCE) oy (AJem?)  Ba (V/ded  —B (V/ded) R, (Q)
Deionized water —0.428 7.865 x 1078 0.072 0.049 1.610 x 10°
Artificial seawater —0.516 8.986 x 1077 0.043 0.042 1.027 x 10*
0.1 M HCl -0.559 3.356 x 107° 0.036 0.039 2.422 x 103
0.1 M NaOH -0.535 1.039 x 1076 0.039 0.038 8.044 x 103

3.3. Tribological Behavior of NiCrAlY Coating

Figure 5 shows the friction curves and wear rate of NiCrAlY coating in different corrosive solutions.
The friction coefficient (COF) of the coating under the NaOH solution was the highest, with a value of
0.46. In artificial seawater and deionized water, it was 0.37 and 0.26, respectively. Surprisingly, the COF
reduced to 0.24 and remains steady in HCl solution. Nevertheless, the NiCrAlY coating has a high
wear rate (WR) of 6.36 X 10~® mm3/Nm in the HCl solution. This phenomenon is likely to show the
high corrosion rate of coating in HCl solution (Figure 4). The synergistic effect of corrosion and wear
in a corrosive environment leads to the loss of large material, which usually larger than the synergistic
effect of the sum of corrosion and wear [28,29]. So, the coating under the HCl solution presents a more
obvious wear rate. The coating in the NaOH solution has the highest wear rate of 6.89 X 107 mm?3/Nm.
At the same time, the coating in deionized water gives the lowest WR of 2.36 X 10"° mm?3/Nm, which
is caused by the lowest corrosion rate of coating in deionized water (Figure 4).
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Figure 5. Friction curves (a) and wear rate (b) of NiCrAlY coating in different corrosive solutions.

Figure 6 presents the 2D and 3D configurations of NiCrAlY coating worn surfaces in different
corrosive solutions. The worn surface has the shallowest and narrowest friction trace in deionized
water (Figure 6a,e). Therefore, the COF and WR are lower (Figure 5). It further illustrates that the
coating in deionized water shows excellent corrosion and wear resistance. The worn surface of NiCrAlY
coating in HCI corrosive solution is very rough and has serious corrosion (Figure 6¢c). So, the coating
obtains high WR under HCI corrosive solution (Figure 5). The worn track of NiCrAlY coating in
NaOH corrosive solution is the deepest and widest (Figure 6d,f). Therefore, this coating has the worst
tribological performance (Figure 5).
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Figure 6. 2D and 3D configurations of NiCrAlY coating worn surfaces in different corrosive solutions:
(a) deionized water, (b) artificial seawater, (c¢) HCI solution and (d) NaOH solution; (e) 2D profiles of A
and B regions; (f) 2D profiles of C and D regions.

To further research the influence of corrosive solution upon the corrosion-wear property of
NiCrAlY coating, Raman analysis is tested. Figure 7 shows the Raman spectra of the worn surface of
NiCrAlY coating in different corrosive solutions. The Al,O3, Cr,O3 and NiO are the main phases on
the worn surface of NiCrAlY coating after sliding in deionized water, artificial seawater and NaOH
solution. Nevertheless, the worn surface of NiCrAlY coating observes the new phase of Al(OH)3
after sliding in HCI corrosive solution [30]. The results indicate that the NiCrAlY coating has suffered
serious corrosion in the HCI corrosive solution because of the existence of stronger and more numerous
peaks [1]. The corrosion products are easily worn out during the friction process. So the wear rate of
the coating under HCl solution is very high (Figure 5).
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Figure 7. Raman spectra of worn surface of NiCrAlY coating in different corrosive solutions.
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3.4. Lubrication Behavior of AI(OH)3z on NiCrAlY Coating in HCI Solution

Figure 8 shows the corrosion-wear mechanisms of NiCrAlY coating in the HCl solution. The surface
becomes very smooth because the corrosion-wear effect with the mix of oxides and hydroxides formed
by electrochemical reactions (Figures 6 and 7). In terms of the potential values, aluminum is the least
noble element and the order of potentials follows Ni > Cr > Al [1]. So the aluminum element is more
likely to be corroded at first. The following electrochemical reactions could explain the process of
Al(OH)3 formation:

Al — Al3" 4 3e” )
2H' +2¢~ - H, 3)
H,O +2e~ — H, 4+ 20H" (4)
AI3T +30H™ — Al(OH), (5)

< AlO,+H*+H,0—Al(OH), |

Al —AP*+3e

2H™+2e —H,

.| H,0+2e —H,+20H-

e " AP*30H —AI(0H)

. e o AP*+40H—2H,0+AlO,
0068 2 2
NiCrAlY coating NiCrAlY coating 2Cr+3H,0—Cr,0,+6H"+6e

Corrosion-wear

Figure 8. Schematic diagram of corrosion-wear mechanisms of NiCrAlY coating in HCI solution.

Terryn et al. [31] illustrated that the generation of Al(OH); is related to local pH changes in the
hydrogen reduction region. Hence, the AI(OH)3 could be formed where the hydrogen evolution occurs.
Furthermore, when the local pH rises to above 9, Al** ions will react with excessive OH™ ions and
forms aluminate anions [1]. Aluminate anions cannot maintain stable in HCI corrosive solution and
will precipitate as Al(OH); (Figure 8). This reaction can be described as follows:

AlI3" +40H — AlO,™ +2H,0 (6)

AlO,” +HT + H,0 — AI(OH), @)

Thus, it inexistences the AI(OH)z on the worn surface of NiCrAlY coating in NaOH solution in
the process of sliding but the following reaction [32]:

2A1+20H™ + H,O — 2A10,™ + 2H, 8)

Of course, in addition to the Al dissolution, according to the standard of electrode potentials,

Cr element is also dissolved at the anodic cycle and is electrochemically oxidized to Cr,Os, which is

well consistent with the micro-Raman results (Figure 7) [1]. The oxidation reaction process can be
illustrated as follows [30]:

2Cr + 3H,O — Cry,O3 + 6H™ + 6e~ )
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The above oxidation reactions and metal dissolution explain the smooth surface. AI(OH); can be
evenly distributed on the smooth worn surface and effectively reduce the direct contact of counter ball
and sample. At the same time, the frictional shear stress can form the lubricating layer on the worn
surface, which can obviously reduce the friction coefficient of coating in HCI corrosive solution [1].
Therefore, the COF of NiCrAlY coating in the HCI corrosive solution is the lowest of 0.24 (Figure 5).

4. Conclusions

In this work, the corrosion-wear properties of NiCrAlY coating were studied under deionized
water, artificial seawater, 0.1 M HCI solution and 0.1 M NaOH. The main conclusions are given
as follows:

(1) The NiCrAlY coating is composed of NizAl, nickel-based solid solution, NiAl and Y;Os.

(2) In deionized water, the NiCrAlY coating with the lowest corrosion current density of
7.865 x 1078 A/cm? is hard to erode. Meanwhile, it presents a lower friction coefficient and
the lowest wear rate.

(3) In HCI corrosive solution, the coating gives the highest corrosion current density (icorr) of
3.356 X 107® A/ecm? and a higher wear rate of 6.36 X 107® mm3/Nm.

(4) In HCI corrosive solution, the emergence of AI(OH); on the coating surface could reduce the
direct contact between the counter ball and sample effectively, which is conducive to the lowest
friction coefficient of 0.24.
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