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Abstract: Graphite nanoplatelets (GNPs), a functional 2D nanofiller for polymer nanocomposites,
utilize natural graphite as a raw material due to its stacked graphene layers and outstanding material
properties upon successful exfoliation into nano-thick sheets. However, the increasing demand
for natural graphite in many industrial applications necessitates the use of graphite from waste
resources. We synthesized GNPs from waste chicken feathers (WCFs) by graphitizing carbonized
chicken feathers and exfoliating the graphitic carbon by high-speed homogenization and sonication.
We then separated GNP from non-exfoliated carbon by centrifugation. This paper describes the
morphology, chemical, and crystalline properties of WCF and its carbon derivatives, as well as the
structural features of WCF-derived carbons. We obtained GNPs that have a 2D structure with huge
variations in particle size and thickness. The GNP shows the presence of carbonyl groups, which are
mostly attached at the edges of the stacked graphene sheets. Defects in the GNP are higher than in
graphene synthesized from direct exfoliation of natural graphite but lower than in graphene oxide
and reduced graphene oxide. To produce GNP of high quality from WCF, restacking of graphene
sheets and concentration of carbonyls must be minimized.
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1. Introduction

With their commercial availability, low cost, and structure similarity to graphene, graphite
nanoplatelets (GNPs) continue to be a significant component of modern polymer nanocomposites [1–6].
These 2D nanofillers consist of stacked layers of graphene, with thickness ranging from a few to a
hundred nanometers [1,2,4–11]. GNPs have high aspect ratio and surface area, low mass density, and
excellent thermal, electrical, and mechanical properties [2,3,5,6,8–10,12–14]. Recent application of
GNPs in different polymers demonstrates improvement in thermomechanical characteristics [7,15–23],
electrical behavior [15,17,20,24], and corrosion resistance [25] of nanocomposites.

GNPs have been prepared previously, using different methods [5,8], but the exfoliation of
intercalated graphite (GIC), followed by mechanical agitation, remains to be the most common
approach [1,2,4,5,7,9–11,13–15,17,23–30]. In this method, GIC (natural graphite intercalated with acids
or alkali metals) undergoes exfoliation by thermal treatment or microwave irradiation, to produce
exfoliated graphite (EG). Mechanical agitation of EG in a solvent, usually by sonication, produces
GNPs. At present, natural graphite serves as the main precursor of GNPs. However, the demand for
natural graphite is continuously growing due to its many industrial applications, such as in refractories,
lubricants, brakes, batteries, and chemically resistant materials [31,32]. As an important and strategic
raw material, the widespread and heavy exploitation of natural graphite will result in its resource
depletion [33]. The use of graphite derived from waste resources can alleviate the supply shortage and
promote sustainability in the production of GNPs, graphene, and other related industries.

To contribute to this effort, we have prepared GNPs from carbonized and graphitized waste chicken
feathers (WCFs). Recently, carbon-based nanomaterials have been produced from WCFs [34,35] and,
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in general, from waste biomass [36–40], to demonstrate the utilization of carbon feedstocks unrelated
to fossil fuels. In the EU, WCFs and other keratinaceous wastes amount to 5 × 106 t annually [41].
Worldwide, the poultry meat processing industry generates 40 × 106 t of WCFs every year [42]. While
there is a huge supply, the demand for WCFs is low and most are burned, landfilled, or converted into
feather meal as livestock feed or fertilizer [43]. The mass accumulation of WCFs and its slow degradation
in nature pose an environmental problem [44]. However, with keratin as the main component and
with a carbon content of more than 40 wt% [35], WCF is a potential precursor of GNP. Carbonization of
WCF produced carbonaceous biochar (carbonized chicken feather or CCF), which was graphitized
at low temperature and acidic conditions, using an iron catalyst. The graphitized chicken feather
(GCF) underwent liquid-phase exfoliation, to yield GNPs. We employed high-speed homogenization,
sonication, and centrifugation to facilitate the exfoliation of GCF into GNPs [45,46]. This paper reports
the morphology, chemical, and crystalline properties of WCF and its carbon derivatives (CCF, GCF,
and GNP). This paper also presents the structural characteristics of WCF-derived carbons obtained by
Raman spectroscopy.

2. Materials and Methods

WCFs were obtained from a poultry processing plant in Bulacan, Philippines. Hydrochloric
acid (36 vol%, Univar, Ajax Finechem, Melbourne, Australia) and FeCl3·6H2O (AR grade, Techno
Pharmchem, Delhi, India) were used in the graphitization of CCF. Moreover, 2-propanol (ACS
Basic, Scharlau, Barcelona, Spain) and deionized water were utilized as a solvent during high-speed
homogenization of GCF.

WCFs were washed several times with water mixed with liquid detergent, to remove blood,
manure, and other unwanted components. The washed WCFs were laid out on galvanized iron sheets
and sun-dried for 3 days. WCFs were further conditioned in a laboratory oven (YLD 2000, Labtron
Trading, Hampshire, UK) at 105 ◦C for 24 h before being cut into ~10 mm long pieces. After manually
separating the rachis, the barbs were cut into ~2 mm long fibers and milled in an analytical mill
(A11 Basic, IKA, Staufen, Germany) for 10 min. The resulting WCF powder was sieved (mesh 100)
before carbonization.

The carbonization and graphitization of WCF were performed by following the method of
Akhavan et al. [47]. Briefly, 5 g WCF was placed and covered in a crucible with limited air access.
Covered crucibles containing WCF were transferred into a muffle furnace (FN 1208, Constance, London,
UK) for carbonization at 400 ◦C for 5 h. The yield of CCF from WCF was 39.6 wt%. CCF was ground
into a powder and sieved (mesh 100) before graphitization. CCF and FeCl3·6H2O (at 2:1 carbon-catalyst
mass ratio) were added to distilled water (100 mL g−1 CCF). The pH of the solution was adjusted
~2 by adding HCl. The mixture was heated at 60 ◦C for 5 h, using a hot plate (MSH-30D, Daihan
Scientific, Gangwon, South Korea), while being continuously homogenized at 1000 rpm by a high-speed
homogenizer (T50 Digital Ultra-Turrax, IKA) equipped with a dispersing element (S50N-G45G, IKA).
GCF was separated from the homogenized solution by vacuum filtration and dried in a laboratory
oven at 105 ◦C for at least 48 h before further use.

To prepare GNP, 10 g GCF was added to 1000 mL of 40 wt% 2-propanol aqueous solution and
was subjected to high-speed homogenization at 5000 rpm for 90 min. The homogenized solution was
probe sonicated (Q700, QSonica, Newton, CT, USA) under an ice bath at amplitude 80 for 90 min. GNP
was separated from non-exfoliated GCF by centrifugation (Rotofix 32A, Hettich, Tuttlingen, Germany)
at 500 rpm for 120 min. The upper 30 mL of the centrifuged mixture was pipetted to several watch
glasses and dried in a hot plate at 100 ◦C, to recover the brown GNP powder. The concentration of
GNP in the pipetted solution was estimated to be 0.6 mg mL−1, as measured by drop-casting and
drying until constant weight. The yield of GNP from GCF was 4.8 wt%.

The morphologies of WCF, CCF, and GCF were examined by using a scanning electron microscope
(SEM; Zeiss UltraPlus) operated at 2 kV. The samples were mounted on a carbon tape placed on an
aluminum stub. A small amount of GCF was diluted in ethanol, drop-casted, and dried in a sample
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stub before viewing in a field emission transmission electron microscope (TEM; JEOL JEM-2100F)
operated at 200 kV. GNP solution was drop-casted and dried in a clean glass slide before examining
in an atomic force microscope (AFM; XE-70 Park Systems, Santa Clara, CA, USA) at non-contact
mode. Two-dimensional images were generated at 10 × 10 µm scan size. Analysis of line profiles
was performed by using XEI software (1.7.6, Park Systems, Santa Clara, CA, USA). The particle size
distribution of GNPs was determined by using ImageJ software (1.8.0, National Institutes of Health,
MD, USA).

The chemical structures were studied, using a Fourier transform infrared spectrometer (FTIR;
Frontier-IR, PerkinElmer, Waltham, MA, USA) coupled with a diamond/ZnSe attenuated total
reflectance (ATR) crystal plate accessory. Four scans were accumulated for each measured spectrum,
with a range of 650–4000 cm−1 and resolution of 4 cm−1. The background spectrum was obtained
without the sample prior to the actual measurements.

The crystallinity of the samples was analyzed by X-ray diffraction (XRD; D2 Phaser, Bruker,
Billerica, MA, USA), using Cu-Kα radiation (λ = 0.154 nm) at 30 kV and 10 mA. Diffraction patterns
were recorded from 2θ = 5◦–80◦, with an increment of 0.04◦. Moreover, d-spacing and stacking height
(Lc) of graphitic carbon detected in GNP and GCF were determined by using Bragg and Scherrer
equations [48]. The Bragg angle and the full width at half maximum (FWHM) were obtained by fitting
a Lorentzian function to the diffraction peak, in the range of 2θ = 10–40◦, using GRAMS/AI software.
Impurities in CCF were determined by X-ray fluorescence (XRF; HD Mobile Analyzer, XOS Inc., East
Greenbush, NY, USA) operated at 25–50 kV and 200 µA for an analysis area of 1 mm.

Raman spectra of carbon samples were taken on a micro-Raman spectrometer (Renishaw inVia,
Gloucestershire, UK) with a 50 mW, 532 nm diode laser for excitation. Raman spectra were recorded
from 800 to 2000 cm−1 and analyzed by using GRAMS/AI. After manual baseline correction, curve-fitting
was performed by using the Levenberg–Marquardt algorithm. The spectra were deconvoluted, using
Gaussian functions, and best-fitted with 5 bands.

3. Results and Discussion

The morphology of WCF (Figure 1a) shows a large amount of long and fibrous barbs attached to
thick and stiff rachis, which is the main shaft of the feather. As natural protein fibers, barbs (Figure 1b)
have a fibrillar surface and a honeycomb cellular cross-section [49]. Carbonization of WCF to form
CCF melted the barbs and formed particulates of varied size and shape (Figure 2a). The volatilization
of different components at 200–375 ◦C during carbonization [50] resulted in pores at the surface of CCF
(Figure 2b).
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Figure 2. SEM images of CCF at (a) 250× and (b) 1000×magnification.

High-speed homogenization applied during graphitization of CCF to produce GCF decreased
the particle size (Figure 3a). Moreover, the surface of GCF shows the growth of short and clustered
micron-sized tubules (Figure 3b). Previously, in [51], nanotubes were developed on the surface of
carbonized sawdust after iron-catalyzed graphitization by pyrolysis. The difference in the size of grown
graphitic tubules could be attributed to the amount and type of catalyst used relative to carbon precursor,
e.g., 0.002 mol FeCl3·6H2O g−1 CCF and 0.0001–0.001 mol Fe(NO3)3·9H2O g−1 sawdust in [51], and the
type of graphitization method employed. Nevertheless, both studies demonstrate the formation of
graphitic tubules due to iron catalyst particles etching through the bulk carbon. Graphitization has also
only occurred at the surface of CCF. In the nanoscale, GCF shows the aggregation of 2D nanoplatelets
(Figure 4a). The thickness of these nanoplatelets varies within a cluster of GCF (Figure 4b).
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The liquid-phase exfoliation of GCF to yield GNP resulted in 2D nanomaterials of varied particle
sizes and thicknesses (Figure 5). Most of the GNPs have a particle size of less than 1 um (Figure 6).
During high-speed homogenization, GCF particles were drawn axially into the dispersion head and
ejected radially through the slots of the rotor-stator assembly [52]. The strong shear and thrust forces
experienced by GCF facilitated its size reduction and extensive exfoliation. Sonication further assisted
the exfoliation process, and centrifugation effectively separates the suspended GNP from non-exfoliated
GCF, which settled at the bottom of the container. Still, we observed a huge variation in the thickness
of the GNPs, with most of the particles remaining thick after exfoliation. This is due to the absence of
intercalant and the high tendency of the graphene sheets to restack [53].
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The chemical structure of GNP (Figure 7) indicates the stretching vibrations of C=C and C=O
of carboxylic acids and carbonyl groups (strong intensity at 1630 cm−1) [54,55]. The brownish color
of GNP observed after exfoliation of black GCF indicates graphite oxidation [54]. The carbonyl,
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which is also prominent in GCF and CCF, originates from the peptide bonds (–CONH of Amide I) of
WCF [56,57]. Carbonizing WCF to produce CCF resulted in the scission of Amide A (3280 cm−1) and
Amide II (1533 cm−1) [58] in the keratin structure. Retention of the carbonyl group in CCF suggests
incomplete carbonization of WCF. Meanwhile, residual moisture remained in GCF (broad peak at
3273 cm−1), which was eliminated after its exfoliation and drying to produce GNP.Materials 2020, 13, x FOR PEER REVIEW 6 of 12 
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Figure 7. ATR–FTIR spectra of GNP, GCF, CCF, and WCF.

Both GNP and GCF show a graphite-like arrangement (002 diffraction peak around 2θ = 25◦) in
their crystalline structures (Figure 8). The lowered and broadened diffraction intensity of GNP relative
to GCF indicates a high degree of exfoliation [59]. GNP has a smaller d-spacing than GCF (0.348 nm for
GNP; 0.355 nm for GCF), resulting from the mild evaporation of intercalated H2O molecules during
thermal annealing of GNP at 100 ◦C [60]. Moreover, GNP has slightly higher Lc than GCF (2.1 nm for
GNP; 1.6 nm for GCF) as a result of restacked graphene sheets due to thermal annealing [53,61,62].
These XRD results are consistent with the observed C=C bonds from the ATR–FTIR findings (Figure 7).
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CCF also shows graphitic ordering, as observed previously for pyrolyzed feathers [58]. Other
diffraction peaks of CCF correspond to different calcium compounds, e.g., CaO (32.6◦), Ca(OH)2 (34.5◦),
and CaCO3 (24.2◦, 27.0◦, and 32.6◦) [63,64]. Results of XRF confirm the presence of calcium in CCF
(Cl-5969, Ca-3212, Zn-290, Fe-140, Cu-17.6, and Sr-14.5 ppm). CaCl2 and Na2CO3 in detergent [65]
have remained in the WCF after washing, which led to the formation of the said compounds during
carbonization. Note that the calcium impurities are no longer present in GNP and GCF, as graphitization
and exfoliation (both performed in aqueous solution) removed these impurities. Besides the formation
of graphitic carbon and calcium compounds, carbonization also caused the disappearance of α-helix
(10.2◦) and β-sheet (20.7◦) crystal structures of peptide chains in WCF [56].
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The Raman spectra of WCF-derived carbons (Figure 9) exhibit the following peaks: the G band
(1560 cm−1) for the in-plane bond stretching motion of sp2 carbon; the D1 band (1339 cm−1) for the
in-plane breathing vibration of sp2 carbon within structural defects; the D3 band (1433 cm−1) for the
amorphous sp2 carbon; and the D4 band (1224 cm−1) for the sp2-sp3 bonds or C-C and C=C stretching
vibration in polyenes [66–70]. The band B (1140 cm−1) denotes an artifact of the instrumental setup
and is not related to the carbon samples [66]. Table 1 summarizes the results of peak deconvolution,
including the position of the bands, FWHM, and the ratio of the band to the total Raman peak area
(I/ITotal). In all the samples, the G and D1 bands have the largest band areas as compared to the other
bands. The FWHMs of G (154.0–167.7 cm−1) and D1 (128–140.4 cm−1) bands are larger than in natural
and synthetic graphites (16–19 cm−1 for the G band; 38–52 cm−1 for the D1 band) but comparable to
graphene oxide (114–133 cm−1 for the G band; 214–226 cm−1 for the D1 band) and thermally reduced
graphene oxide (109–125 cm−1 for the G band; 198–217 cm−1 for the D1 band) [71]. This confirms
the presence of oxygen functionalities in the carbon samples primarily as carbonyl groups (Figure 7).
Considering the absence of a diffraction peak at 2θ = 11◦ for graphene oxide (Figure 8), the carbonyl
groups must be present at the edges of the graphitic carbon and not at its interlayer space [60]. The
wide G band of our samples indicates a high concentration of basal-plane defects [72]. The wide D1
band, which describes both basal-plane and edge defects [72], suggests the presence of heteroatoms or
point dislocations in the structure [71].
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Table 1. Position, FWHM, and I/ITotal of peaks after deconvolution of Raman spectra.

Sample Peak (cm−1) FWHM (cm−1) I/ITotal (%)

GNP

1560.1 167.7 49.7
1431.1 84.3 8.1
1340.6 128.0 27.8
1224.4 108.1 9.2
1114.0 71.6 1.6

GCF

1560.3 154.0 46.2
1435.8 96.5 10.4
1337.6 138.6 34.8
1222.0 94.9 6.8
1137.6 38.6 0.2

CCF

1560.1 165.1 44.2
1432.9 84.4 7.1
1337.8 140.4 31.2
1225.5 86.7 5.2
1140.1 191.6 9.2

All carbon samples show a well-ordered graphitic structure (IG/ITotal > ID1/ITotal). GNP has the
lowest ID1/IG ratio, i.e., GCF (0.75) > CCF (0.71) > GNP (0.56), meaning that it has the lowest number
of defects [71,72]. Although defects were introduced to GCF during homogenization and sonication to
produce GNP, centrifugation separates GNP from large and unstably dispersed graphite particles and
other aggregates [73]. Due to exfoliation, the centrifuged GNP is relatively thin compared to GCF, and
CCF and has a lower quantity of edges of graphene sheets, as shown by a narrower FWHM of D1 band
and lower ID1/ITotal. The defect content of GNP is higher than most graphene reported in the literature,
e.g., ID1/IG < 0.18 [72,73] and 0.2–0.4 in [74], but lower than graphene oxide and reduced graphene
oxide, where ID1/IG > 1 [71,73]. Meanwhile, the high ID1/IG of GCF, as well as the narrower FWHM
of the G band and higher IG/ITotal, compared to CCF, can be attributed to the defects brought by the
growth of graphitic tubules on the surface of CCF.

4. Conclusions

GNP can be produced from WCF by the following procedure: (1) carbonize WCF to produce CCF;
(2) graphitize CCF at low temperature and acidic conditions, using an iron catalyst to generate GCF;
(3) homogenize and sonicate GCF, to exfoliate the graphitic carbon; and (4) separate the exfoliated
graphite from non-exfoliated carbon by centrifugation to yield GNP. The obtained GNPs are 2D
nanomaterials of varied particle size and thickness. The GNP has carbonyl groups attached at the
edges of the stacked graphene sheets. Defects in GNP are higher than in graphene prepared from
direct exfoliation of natural graphite but lower than in graphene oxide and reduced graphene oxide.
To consider WCF as a sustainable source of graphite for high-quality GNP, further research is needed
to lessen restacking of graphene sheets, lower the concentration of carbonyl groups, and reduce the
defects in the GNP.
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55. Ţucureanu, V.; Matei, A.; Avram, A.M. FTIR spectroscopy for carbon family study. Crit. Rev. Anal. Chem.
2016, 46, 502–520. [CrossRef]

56. Tesfaye, T.; Sithole, B.; Ramjugernath, D.; Chunilall, V. Valorisation of chicken feathers: Characterisation of
chemical properties. Waste Manag. 2017, 68, 626–635. [CrossRef]

57. Ma, B.; Qiao, X.; Hou, X.; Yang, Y. Pure keratin membrane and fibers from chicken feather. Int. J. Biol.
Macromol. 2016, 89, 614–621. [CrossRef]
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