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Abstract: To study the effect of the surface properties on the bending fatigue performance of heavy-
duty gear steel, the authors of this paper used the ultrasonic surface rolling process (USRP) to
strengthen 20Cr2Ni4A carburized gear steel. USRP is a novel technique in which the ultrasonic
technology is incorporated into the concept of conventional deep rolling. In this study, we illustrated
how the surface properties and cross-section mechanical property influence the three-point bend-
ing fatigue life of the samples before and after USRP treatment. At the same time, the predicted
failure probability-stress-number of cycles (P-S-N) curve was drawn, and the fatigue fracture was
analysed. The results show that the fatigue limit increased from 651.36 MPa to 918.88 MPa after
USRP treatment. The fatigue source is mainly from the sample interior or surface scratches, and
the fatigue performance is positively correlated with the results of the material surface roughness,
surface residual stress and surface hardness. At the same time, combined with the change in the
phase structure, dislocation structure, residual stress and hardness of the cross section of the material,
it is found that the USRP process turns the steel into a gradient material with five layers. Finally,
the coupling mechanism between the ultrasonic surface strengthening deformation layer and the
carburized layer of 20Cr2Ni4A carburized gear steel is presented, and the grain structure distribution
diagram of the section of the 20Cr2Ni4A model after surface strengthening treatment was simulated.
The mechanism that influenced the fatigue performance after USRP treatment is explained from the
perspectives of the surface and cross section of the samples.

Keywords: ultrasonic surface rolling treatment; 20Cr2Ni4A carburizing gear steel; three-point
bending fatigue test; microscopic mechanism

1. Introduction

The gear transmission system is a key component in the fields of aerospace, energy,
transportation, and large machinery transmission, and its reliability affects the safety of
the entire transmission system and even of the entire mechanical system [1]. After years of
research, there are still three outstanding problems of heavy-duty gear manufacturing. They
are short life, heavy structural load and poor reliability [2]. Therefore, the core problem of
manufacturing high-end heavy-duty gears is how to improve their fatigue performance
while ensuring reliability and light weight [3]. This requires a heavy-duty gear with a
high-strength surface and a high-toughness core. The key to this requirement is whether
the surface structure of the gear teeth can effectively improve the gear bearing capacity
and bending fatigue life. For the strengthening of the gear tooth surface, lots of surface
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treatments, such as plasma spraying [4], acid etching [5], sandblasting [6], high energy
shot peening [7], surface mechanical attrition treatment [8], ultrasonic shot peening [9,10],
ultrasonic surface rolling (USR) [11], surface ultrasonic impact [9], etc., were applied for
surface modification or strengthening to better suit some specific situations.

Among the many surface treatment processes, ultrasonic processing has been widely
used in the field of gear manufacturing due to its wide processing range, safety, reliability,
stability and high efficiency [12]. The ultrasonic surface rolling process (USRP) is the most
prominent method to treat the surface properties of aircraft landing gear steel; it combines
static rolling and ultrasonic impact on the surface of the material to improve its overall
performance. Based on the deformation strengthening theory [13], after ultrasonic surface
rolling treatment, the grains on the metal surface undergo elastoplastic deformation, and
the metal organization becomes denser, which improves the strength of the workpiece.
Dan Liu et al. [14] used USRP to treat martensitic precipitation hardened (17-4PH) stainless
steel and obtained a gradient nanocrystalline structure with a thickness of 650 µm. The
grain size showed regular large-small-large changes, while the high-low-high dislocation
density changed with increasing depth. Tolga Bozdana [15] used USRP for Ti-6Al-4V
samples and found that processing thin parts did not cause severe deformation of the
parts because the pressure applied on the surface of the parts was small. At the same
time, residual compressive stress of approximately −900 MPa was obtained at a depth
of 0.2 mm from the surface. QL Zhang et al. [16] used USRP to improve the surface
properties of 17-4PH stainless steel and carried out a detailed study of the microstructure
and mechanical properties of 17-4PH stainless steel after USRP treatment. The nanograin
layer significantly improved the surface properties (surface roughness, microhardness,
and residual compressive stress), and the abrasion resistance and corrosion resistance of
the samples after USRP treatment significantly improved. Sik Pyun et al. [17] compared
the stress and number of cycles (S-N) curves from a rotational bending test to determine
the optimal process parameters with the greatest fatigue strength. The surface roughness,
hardness and residual compressive stress of the three samples were analysed, and the
fracture surface was analysed by scanning electron microscopy (SEM). It was shown that
an ultrasonic nano surface modification (UNSM) treatment prevented the premature failure
of hot-rolled stainless steel shear pins, prolonged the service life and reduced replacements.
Based on this, it was found that the USRP method has the following advantages:

(1) It provides a reliable process and smooth surface. Once semi-finished samples are
processed, the surface roughness can be greatly reduced and the residual stress can
be introduced into the workpiece.

(2) It provides a low force on the workpiece. The acting force is elastic and has no adverse
effect on the machine tool.

(3) As there is no high-temperature process, the gear material hardly undergoes structural
transformation, and the original fine structure formed by heat treatment or forging
can be maintained.

(4) It provides uniform strengthening and stress control through the process parameters
(static pressure, amplitude, step and processing speed, for example) and can control
the strengthening layer depth. Moreover, there is a continuous transition between the
reinforced layer and the matrix without stripping.

Although domestic and foreign scholars have achieved results on the research of
USRP, the following problems still exist: (1) the mechanical dynamic response mechanism
of gear steel under USRP treatment has not yet been clarified; (2) the coupling mechanism
between the deformation strengthening layer and carburized layer remains to be studied;
and (3) from the perspective of the relationship between the microscale mechanism and
the macroscale performance, clarification of the influence of USRP on the bending fatigue
properties of carburized gear steel has rarely been reported. Based on these three points,
the mechanism that is operative during the USRP treatment of carburized gear steel is
studied in this paper.
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2. Materials and Methods
2.1. Materials

In this paper, 20Cr2Ni4A steel, which is commonly used in heavy-duty transmission
gears, was used as the research object. A TXC01 direct-reading spectrometer was used to
determine the composition of the steel, and the range of components is presented in Table 1.

Table 1. Chemical composition and content of the 20Cr2Ni4A steel (wt.%).

Element Cr Ni Mn Si Al S O

Percentage composition 1.25–1.65 3.25–3.65 0.30–0.60 0.15–0.35 ≤0.01 ≤0.005 ≤0.0012

After the drawing forming of 20Cr2Ni4A steel, the blank was finished and processed
into bone type standard tensile sample for tensile test. Standard tensile samples were car-
ried out on INSTRON5985 electronic universal material testing machine (INSTRON (Shang-
hai) Test Equipment Trading Co., Ltd., Shanghai, China) according to GB/T 228-2002 [18],
with a calibration distance of 20 mm and a strain rate of 10−2/s, to determine the tensile
properties of steel. The tensile strength σb of the 20Cr2Ni4A material is 1043 MPa, the yield
strength σ0.2 is 732 MPa, the elongation δ is 20%, the reduction in area ψ is 65%.

To simulate the actual use of heavy gears, we used the heat treatment process that
is the same as that used for heavy-duty gears to heat treat steel. The process involves
normalizing, carburizing, high-temperature tempering, quenching, and low-temperature
tempering, and the specific temperatures are presented in Table 2.

Table 2. Temperatures used for the heat treatment process of the 20Cr2Ni4 gear steel.

Heat Treatment Process

Normalizing
Temperature/◦C

Carburizing
Temperature/◦C

High-Temperature
Tempering/◦C

Quenching
Temperature/◦C

Low-Temperature
Tempering/◦C

950 920 640 800 150

Finally, the size of three point bending fatigue samples was as follows: height h = 15
mm, thickness b = 30 mm, sample length S = 210 mm, span L = 120 mm, diameter of roller
R = 30 mm, and the rounding radius set during processing was 3 mm. The detailed shape
and dimensions are shown in Figure 1.

Figure 1. Schematic diagram of the sample size.
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2.2. Experimental Procedures
2.2.1. Ultrasonic Surface Rolling Process

The USRP treatment was performed on a Hawken computer numerical control (CNC)
milling machine. The cutter head was a carbide ball (the schematic diagram is shown in
Figure 2) with a diameter of 8 mm. Before the USRP treatment, the carburized sample
was milled on a numerically controlled machine tool to remove the material surface oxide
caused by the carburizing heat treatment. Large surfaces were selected as the processing
surface; the length of the USRP threated surface was 100 mm, and the width was 30 mm.
The sample is fixed on the fixture, and the feed motion is on the tool. To ensure that
the direction of the shear force in the USRP area was consistent during processing, a
unidirectional repetitive processing path was used, as shown in Figure 2. To reduce the
influence of the adiabatic temperature rise during processing, a mixture of kerosene and
mechanical oil was used as the lubricating fluid. They were mixed in a ratio of 1:3, which
removed the heat and debris generated during processing.

Figure 2. USRP equipment schematic.

During the USRP treatment, parameters such as the static load, amplitude, line speed,
step length, and the number of processing times will affect the strengthening effect. In
general, the greater the static load and amplitude in the USRP process, the more obvious
the strengthening effect is, and the greater the surface residual compressive stress will be.
However, too much static load and amplitude can increase surface roughness. An exces-
sively large static load and amplitude will increase surface roughness. With the increase
in linear velocity, the processing efficiency will be improved, but too fast linear velocity
will also increase the surface roughness. Taking the above factors into consideration, the
process parameters were selected as presented in Table 3. Static load was provided by an
air compression device (with a bore diameter of 50 mm).

Table 3. Process parameters for the USRP treatment.

Sample Number Line Speed
m/min

Step
mm

Amplitude
µm

Static Load
N

0# 0 0 0 0
1# 2 0.08 20 785
2# 2 0.08 20 1374
3# 2 0.08 20 1963

2.2.2. Surface Roughness Test

The surface and cross-sectional microstructures of the four samples before and after
USRP treatment were observed with confocal laser scanning microscopy (LSCM) on a
LEXTOLS4000 instrument (Olympus Corporation, Shibuya-ku, Tokyo, Japan) and SEM
on a ZEISS Supra 55 field emission scanning electron microscope (Carl Zeiss AG, Jena,
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Germany). The three-dimensional morphologies of the 4 samples before and after the
USRP treatment are shown in Figure 3. The 0# sample shows the morphology of the sample
without USRP treatment. The 1#, 2# and 3# samples show the morphologies after the USRP
treatment. In comparison, it can be seen that the surface texture of the processed material
tends to be uniform due to the friction reduction in the USRP. At the same time, the surface
tool marks after milling are almost pressed due to the plastic flow of the metal. Moreover,
as the static load level increases, the surface texture tends to be smoother, but it can be seen
in Figure 3 that when the static load reaches 1963 N, the surface scratches become deep
because the plastic deformation of the surface is too large due to the excessive static load,
resulting in obvious machining cracks.

Figure 3. Three-dimensional topography before and after processing.

2.2.3. Surface Microhardness Test

The surfaces and section microhardness of the four types of samples were tested by a
Shimadzu HMV-2000 Vickers hardness tester (Shimadzu Enterprise Management (China)
Co., Ltd., Hong Kong, China) (the indenter of the durometer is a diamond cone indenter),
respectively. After many orthogonal tests, the optimal test parameters were as follows: the
pressure applied to the sample was 300 g, pressure holding time was 10 s, and point spacing
was 400 µm. Due to the difference in the structure of the sample at different positions,
25 points were randomly selected at different positions in the USRP treatment section to
ensure a thorough microhardness measurement, and the average value is reported as the
final microhardness of the samples.

2.2.4. Surface Residual Stress Test

An X-ray residual stress measuring device (TEC4000, Stresstech Oy, Helsinki, Finland)
was used to measure the size and distribution of the residual stress along the surface and
depth of the 20Cr2Ni4A sample. The parameters of the X-ray stress analyser are set as
follows: the target material is Cr target, the tube current is 6.7 mA and the tube voltage
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is 30 kV. ψ angle is −45◦–+45◦, spot is 3 mm, exposure is 5 s. When measuring along the
depth direction, the surface material was stripped layer by layer by electrolytic polishing
to avoid the impact of external forces [19]. The device can detect the residual compressive
and tensile stress at a depth of 20 µm. During the test, 25 points were evenly distributed on
the surface of the sample in the form of a matrix, and each point was tested three times
with an interval of 5 min.

2.2.5. Crystal Structure Test

According to the data analysis in Section 2.1, it can be seen that among the four styles,
the 1# style was used as a control group, and the performance is compared for the 0# style
(without USRP treatment) and the 2# style (standard USRP treatment), and 3# belongs to the
USRP over processed group. From a macroscopic perspective, the style of the roughness,
surface hardness and residual stress on the fatigue is severe, but from a microscopic
perspective, is the same conclusion reached? Based on this question, this paper selects the
standard 0# sample (without USRP treatment) and 2# sample (standard USRP treatment)
to define the fatigue damage mechanism from a microscopic perspective. Transmission
electron microscopy (TEM) was conducted on a Tecnai F20 instrument (American FEI
Company, Hillsboro, OR, USA) and used to photograph the microscopic appearance of
the surface layer treated by USRP. The XRD samples at the fracture were obtained by an
MXP21VAHF X-ray diffractometer. The grain size and distribution of the sample were
probed by an FEI quanta 650FEG thermal field emission scanning electron microscope and
electron backscatter diffraction (EBSD).

2.2.6. Three-Point Bending Fatigue Behaviour Test

The bending fatigue test used a PLG-300C high-frequency fatigue tester, which is
shown in Figure 4a. The maximum average load of the device is ±300 kN, the maximum
alternating load is ±150 kN, and the frequency ranges from 70–250 Hz. The fatigue
behaviour of the 20Cr2Ni4A steel samples designed in this paper was tested by three-point
bending loading [20,21]. The representative 0#, 2#, and 3# samples were selected for fatigue
testing, and the corresponding S-N and P-S-N curves were obtained. Due to the large
discreteness of the fatigue test, 30 samples were taken for a three-point bending fatigue test
in each group to ensure the reliability of the data.

The fatigue test was studied by the group comparison test, and the fixture is shown
in Figure 4b. At least three stress levels were selected, and 5 valid test data points were
obtained at each stress level. Therefore, the 0#, 2# and 3# test groups prepared 18 samples for
the experiment, respectively (2# samples are shown in Figure 4c). The cyclic characteristic
coefficient is defined by the load ratio r = Fmin/Fmax = 0.5. The sinusoidal loading method
was adopted, and the frequency is 79 Hz. Since the stress in the middle of the sample (S/2)
is the greatest during the fatigue test, the surface treated by USRP is placed downward and
within the span range to ensure the accurate measurement of the strengthening effect of
USRP treatment.
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Figure 4. Three-point bending fatigue test device. (a) Testing machine, (b) three-point bending fixture, (c) samples treated
with URSP.

The average load and alternating load were adjusted to achieve different stress levels
to realize pulsating loading. According to the test machine fixture position and chuck size,
the bending stress loaded on the pattern was tested. The detailed data are presented in
Table 4.

Table 4. Three-point bending fatigue test plan.

Number Mean Load
(kN)

Alternating
Load (kN)

Test Frequency
(Hz)

Bending Stress
Value (MPa)

1 35 11.6 79 1656
2 30 10 79 1422
3 28 9.3 79 1326
4 26 8.6 79 1230

The fracture surface after the test was cleaned with alcohol and observed with a ZEISS
Supra 55 field emission scanning electron microscope. Finally, the surface of the sample
before the test was analysed to determine the relationship between the integrity and the
flexural fatigue performance of the 20Cr2Ni4A steel.
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3. Experimental Results
3.1. Results of the Three-Point Bending Fatigue Performance

Table 4 shows the three-point bending fatigue test data of the samples before and
after the USRP treatment. Due to many factors that affect the fatigue test results, such as
equipment errors, material nonuniformities, processing deviations, and the environment,
the fatigue test results are largely discrete, and the fatigue stress and fatigue life results do
not have a strict one-to-one correspondence but are closely related to the survival rate P.
The conventional S-N curve represents the median fatigue life curve that corresponds to a
50% survival rate. The method researched in this paper can cause large deviations in results
due to errors in performance improvement. Therefore, the P-S-N curve is used to test the
fatigue life and fatigue limit of the three sets of samples, which is the most consistent with
the design scheme of this article. At the same time, the P-S-N curve can comprehensively
express the relationship between fatigue stress and fatigue life at various reliability levels
and determine the degree of life dispersion of the three materials under different stresses. In
the calculation of the P-S-N curve, it is generally considered that when life is constant, the
material fatigue limit obeys a normal distribution and log-normal distribution. When the
stress is constant, the fatigue life obeys a logarithmic distribution and Weibull distribution
under low cycles (N < 106); when the life reaches high cycle fatigue (N > 106), it obeys the
Weibull distribution [22]. Therefore, assuming that the data at each group of stress levels
conform to the two-parameter Weibull distribution, the distribution function equation is:

P(N) = 1 − exp
[
−(N/Na)

β
]

(1)

where P (N) is the failure probability of the fatigue test, N is the fatigue life, β is the
shape parameter, and Na is the scale parameter, which is also the characteristic life of the
material. The key to drawing the Weibull distribution curve is to use appropriate methods
to estimate the values of the two Na and β parameters. The most widely used maximum
likelihood estimation method is used to estimate the parameters of the Weibull curve. The
two-parameter Na and β estimation equations are shown in Equations (2) and (3):

n
∑

i=1
Nβ

i ln Ni

n
∑

i=1
Nβ

i

− 1
n

n

∑
i=1

ln Ni −
1
β
= 0 (2)

Na =

(
1
n

n

∑
i=1

Nβ
i

) 1
β

(3)

Based on Equations (2) and (3) [23], the bending life data of the three samples tested in
Section 2.2 under four different bending stresses are calculated(the bending life test results
are in the Supplementary Materials), and the estimated values of the two parameters Na
and β presented in Table 5 are obtained.
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Table 5. Weibull distribution function before and after the USRP treatment under different stress levels.

σmax (MPa) β Na
Fatigue Life Equivalent Value (104 Cycle)

P1 = 10% P2 = 50% P3 = 90%

0#

1422 9.12 88,187 6.88 8.47 9.66
1326 2.54 312,447 12.87 27.04 43.41
1230 4.34 804,220 47.88 73.91 97.46
1073 3.07 1,764,083 84.82 156.57 231.41

2#

1656 7.01 78,900 5.79 7.57 8.99
1422 3.09 141,436 6.83 12.56 18.53
1326 3.15 581,996 28.45 51.80 75.87
1230 3.84 2,886,819 160.70 262.41 358.68

3#

1656 2.71 164,714 7.18 14.38 22.41
1422 1.75 469,887 13.02 38.12 75.61
1326 3.03 817,778 38.93 72.47 107.67
1230 2.50 1,311.653 53.28 113.26 183.16

The predicted failure probability and the number of cycles (P-N) curve of the material
drawn according to Table 5 is shown in Figure 5. From the data in the figure and the table, it
can be seen that the β value of the 0# sample is smaller than that of both 2# and 3#. Among
them, β is the slope of the Weibull curve, which is the shape parameter of the Weibull
distribution. The larger the β value, the smaller the Weibull dispersion. This indicates that
the data points of the 2# and 3# samples are more scattered, and the randomness of the
fatigue failure is also large. This is related to USRP treatment. Increasing the static load
reduces the surface roughness and increases the hardness and residual stress; however,
in addition to the roughness, the other two parameters are randomly increased on the
material surface, which causes the local stress state of the material to be unstable during
the fatigue process and in turn causes the fatigue life to be excessively dispersed.

Figure 5. P-N curves of the three-point bending fatigue tests before and after USRP treatment. (a) Sample 0#, (b) sample 2#,
and (c) sample 3#.

When comparing the characteristic life Na (as shown in Figure 5a–c), it is found that
the life sequentially increases in the order of 0#, 2#, and then 3#. This is consistent with
the expected effect. As the static load increases (the S value in Figure 5 corresponds to
the stress value in GPa), the fatigue life increases. However, when the static load is too
large, the surface properties of the material decrease. In contrast, a variety of fatigue crack
sources are formed that are likely to cause fatigue cracking.

Subsequently, based on the bending fatigue life test data which were taken in Section 2.2
for large sample 20Cr2Ni4A, a more accurate life prediction curve, the P-S-N curve, is
established to compensate for the limitations of the P-N curve. The relationship between
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bending stress S and fatigue life N, as shown in Equation (4), is used to establish the P-S-N
life prediction curve of 20Cr2Ni4A material:

NSm = C (4)

where N is the bending fatigue life, S is the bending stress, and m and C are the parameters
to be solved. Take the logarithm on both sides of Equation (4) to obtain Equation (5):

ln S = − 1
m

ln N +
ln C
m

(5)

The least squares method is used to fit the regression equation to determine the values
of the parameters m and C to be sought. The specific formulas are shown in Equations (6)
and (7):

− 1
m

=

n
n
∑

i=1
ln Ni × ln Si −

n
∑

i=1
ln Ni ×

n
∑

i=1
ln Si

n
n
∑

i=1
(ln Ni)

2 −
(

n
∑

i=1
ln Ni

)2 (6)

ln C
m

=

n
∑

i=1
(ln Ni)

2 × ln Si −
n
∑

i=1
ln Ni ×

n
∑

i=1
ln Si × ln Ni

n
n
∑

i=1
(ln Ni)

2 −
(

n
∑

i=1
ln Ni

)2 (7)

If the values of m and C are required, the contact stress Si and fatigue life Ni corre-
sponding to different failure probabilities P need to be determined in conjunction with the
Weibull distribution function. Based on the two-parameter Weibull distribution function,
the bending fatigue life of the two process materials is calculated at three typical failure
probabilities P (P1 = 10%, P2 = 50%, and P3 = 90%). The calculation results are substituted
into Equations (6) and (7), and the test results of the three models are presented in Table 6:

Table 6. Parameter m and C values of the P-S-N curve under different failure probabilities.

Sample Failure Probability (%) m C

0#
10 9.99 0.0296
50 10.87 0.3323
90 11.72 0.0643

2#
10 13.92 0.0096
50 13.69 0.1989
90 13.69 0.7301

3#
10 7.69 0.0006
50 7.08 0.2241
90 7.06 1.4039

The parameters m and C of the P-S-N curve in Table 6 are substituted into Equation (4),
and the bending fatigue life P-S-N curves of the two process materials are obtained (as
shown in Figure 6). According to the P-S-N curve, the bending fatigue life of the 20Cr2Ni4A
material at different stress levels and the fatigue limit at any cycle can be obtained, and
the reliability of the data can be improved according to the failure probability. From the
perspective of reliable data, the bending fatigue limit of 20Cr2Ni4A steel at three million
cycles under the lowest probability of failure (P1 = 10%) is also the highest probability of
survival. The bending fatigue limits of the 0#, 2# and 3# samples are 651.36, 918.88, and
904.21 MPa, respectively.
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1 
 

 
Figure 6. P-S-N life curves from the three-point bending fatigue tests for (a) sample 0#, (b) sample 2#, and (c) sample 3#.

3.2. Results of the Fatigue Fracture Morphologies

The fracture morphologies of the samples are shown in Figure 7. Figure 7a,b are the
results for the sample 0# after 50 and 500 magnification times. It can be seen that crack
initiation mainly occurs in the surface defects, and there are obvious inclusions on the
surface. It shows that the 0# surface without USRP treatment has poor performance, and it
is easy to form a fatigue crack source on the surface, which eventually leads to bending
fatigue failure, and there is no obvious strengthening layer in Figure 7b. Figure 7c,d
show the results of the fatigue fracture of sample 2# after 50 and 500 times. The shape
of the fatigue fracture surface on sample 2# can be clearly divided. Moreover, the crack
initiation site is not on the surface of the material but inside the material, and the final
failure is caused by internal defects [24]. This is mainly because the surface properties of
the 2# sample are optimized by the USRP. The surface properties have been significantly
improved. Therefore, it is difficult to give priority to the formation of crack sources on
the surface under the same stress loading, but at the secondary surface or the internal
defects of the material. The fatigue performance of sample 2# is also better than that of
sample 0#. Figure 7d shows that the strengthening layer is obvious, and its thickness is
uniform. These USRP parameter settings are good, and its surface properties are the best.
Figure 7e,f are the fatigue fractures of sample 3#. There are two crack initiation areas on the
fracture for sample 3#, which are on the surface and inside of the material. This is related
to the excessive static load parameter in the USRP, which leads to an uneven reinforcement
layer, as shown in Figure 7f. The strengthening layer exists from 7.51 µm to 28.18 µm, the
inclusion defects of the surface layer are also incorporated into the reinforcement layer,
and then a large residual stress is introduced. The fatigue performance is relatively better
than that for sample 0# without treatment.

Figure 8 shows the internal results of the fatigue fractures of the three types of samples.
As the internal structures of the three materials are consistent, they are introduced together.
Figure 8a shows an intergranular fracture surface mainly composed of brittle fractures in
the centre of the sprouting area. This area is repeatedly loaded during fatigue, resulting in
the continuous crushing of both fracture sides. Figure 8b shows dimples, and there is a
small section of the extrusion surface around the dimples, which is due to an excessive load
during the fatigue process. The structure of the partial section is still in service because the
overall structure does not fail after the fracture. Figure 8c shows an interface between the
brittle fracture regions and dimples. The red marks in the figure indicate the direction of
fracture propagation. Due to the difference in the two morphologies, a large crack is finally
formed at the junction, which is consistent with the characteristics of structural parts in
service conditions. Figure 8d shows typical fatigue striations distributed throughout the
fracture, which reflects the process of fatigue loading.
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Figure 7. SEM images of fatigue fractures for sample (a) 0# at 50× magnification, (b) 0# at 500×
magnification, (c) 2# at 50× magnification, (d) 2# at 500× magnification, (e) 3# at 50× magnification,
(f) 3# at 500× magnification.

Figure 8. SEM images of fatigue fractures after USRP: (a) river pattern, (b) extrusion surface, (c) crack morphology, and
(d) fatigue pattern.
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4. Discussion
4.1. Mechanism of the Surface Properties on the Fatigue Performance

The concept of surface properties includes two aspects. Firstly, the surface quality of
materials is usually characterized by surface roughness and surface microstructure. Sec-
ondly, there is the plastic deformation of the workpiece surface, residual stress and surface
hardness. For different static load parameters, the surface integrity of the samples is differ-
ent, and the influence on the bending fatigue performance is also different. On this basis,
the influence of the surface properties of 20Cr2Ni4A steel on the fatigue performance was
summarized from two aspects of surface morphology and surface mechanical properties.

4.1.1. Effects of the Surface Mechanical Properties on the Fatigue Performance

In this section, surface hardness and surface residual stress are discussed. First,
the surface microhardness of the samples under four static loads was measured by a
microhardness tester. To ensure the accuracy of the test results, 15 test points were obtained
for each group of static load parameters, and then the average values were taken. The
results are shown in Figure 9.

Figure 9. Microhardness value of the sample: (a) box pattern, (b) mean values of the microhardness.

Figure 9 shows that after the USRP treatment, the surface microhardness of the sample
increases significantly. The surface microhardness of the sample before strengthening is
652 HV, and as the static load increases, the surface microhardness first increases and
then decreases. When the peak occurs at 1374 N, the maximum average microhardness
of the surface is 828 HV, which is 27% higher than that of the original sample. This is
because with an increase in the static load, the plastic deformation causes the grains to
slip and the grain boundary area to increase after the grains are refined. Additionally,
the resistance of dislocation movement increases, and the dislocation density between
grains increases. Thus, a work hardened layer is produced. The appearance of the work
hardened layer increases the hardness of the sample surface. When the static load is too
large, the resistance of the tool head also increases, which further increases the friction
between the tool head and the surface of the test piece. The effect of frictional heat may
be greater than that of cold plastic deformation. The material surface is softened and cold.
The reduced hardness effect decreases the microhardness; at the same time, it affects the
stability of the processing, resulting in non-uniform processing and flow of the material
surface layer. Plastic deformation occurs and the local stress exceeds the tensile strength
(such as deformation convexity). The grains at the beginning are not tightly arranged,
which causes plastic deformation of the surface structure, and the dislocation structure is
redistributed, leading to a decrease in the hardness. The bending fatigue performance is
closely related to the surface hardness, and the fatigue limit is positively correlated with
the change in hardness.
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Then, the surface residual stress is introduced. During the USRP, the surface residual
stress distribution obtained by different static load values is different. The residual stress
results corresponding to the four types of static load values are shown in Figure 10.

Figure 10. Effect of static load on the surface residual stress.

Figure 10 shows that there is tensile stress on the sample surface under the USRP. This
is because the tensile stress caused by the cutting force partially or completely offsets the
residual compressive stress on the surface that is introduced by the carburizing process
before the USRP. As a result, the residual compressive stress of the initial sample decreases
or becomes tensile. After the USRP treatment, a large residual compressive stress is
introduced on the sample surface. Under the same static load, the residual compressive
stress on the sample surface is not much different. When the static load before the USRP
treatment is 0, the average surface residual compressive stress is the smallest and is
−29 MPa. As the static load increases, the residual stress tends to increase first and then
decrease. When the static load is 1374 N, the average surface residual compressive stress is
the largest and reaches −612 MPa.

The essence of residual stress is that a material undergoes lattice distortion under the
action of an external force, and the crystal does not have the time to recover quickly and
needs to maintain a microscopic force balance formed by the normal structure. Therefore,
during material processing, residual compressive stress is often introduced on the struc-
tural parts to ensure that they remain stable during service, suppress the initiation and
development of cracks, and improve the fatigue strength and corrosion resistance of the
parts. This phenomenon can also be found by comparing the test results in Section 3.1.
With the increase in static load pressure, the surface of the sample will produce more
plastic deformation and introduce additional residual stress, which effectively improves
the fatigue performance. However, when the static load pressure continues to increase,
the local structure will undergo frictional heat and plastic deformation, which will lead
to the release of local residual stress and a reduction in residual stress, and the fatigue
performance will also decrease.

4.1.2. Effects of the Surface Morphology on the Fatigue Performance

The relationship between surface states and fatigue performance is further analysed
according to the test results in Figure 3, the surface roughness curves of the samples under
four static loads are extracted, and three curves at equal intervals under each static load
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parameter are measured. The value is taken as the average surface roughness under this
parameter, and the results are presented in Table 7.

Table 7. Surface roughness measured under different static loads.

Sample
Surface Roughness Ra/µm

Average/µm
Area 1 Area 2 Area 3

0# 0.626 0.686 0.602 0.638
1# 0.118 0.115 0.130 0.121
2# 0.107 0.146 0.090 0.114
3# 0.185 0.233 0.173 0.197

Table 7 shows that the average surface roughness of sample 0# is the largest, and that
for sample 2# is the smallest. As the static load increases, the average surface roughness
decreases first and then increases. When the static load is 1374 N, the minimum average
surface roughness is 0.114 µm, which is approximately five times lower than that before
strengthening, indicating a substantial reduction in the roughness of the material surface.
When the static load is 1963 N, the static load is very large, which causes the surface plastic
deformation to be too large, the surface roughness to increase, and the average surface
roughness to slightly increase to 0.197 µm.

In summary, the milling marks on the front surface after the USRP treatment are very
obvious, and the “peaks and valleys” are staggered. After the USRP, there is no obvious
difference between the peaks and valleys, and the surface roughness is reduced. This is
because the punch presses the “peak” into the “trough”, the “trough” is filled with the
material from the “peak”, and the difference between the peaks and valleys is reduced. As
the static load increases, the surface roughness of the sample further decreases. With an
increase in the static load and due to the effect of the cooling liquid, the surface temperature
rapidly drops, and the work hardening effect becomes very obvious. The friction force
generated by the USRP is 10–30% that of the traditional rolling process, and the friction is
relatively small, so the surface roughness of the material is reduced, which can improve the
surface quality. However, if the static load is too high, the anti-wear effect of the ultrasonic
tool head will be weakened, causing new surface roughness, destroying surface roughness,
increasing surface roughness, and reducing surface quality. Compared with the results
of fatigue limit, it is found that the fatigue performance is positively correlated with the
surface roughness.

Subsequently, the morphology of the samples before and after USRP treatment was
observed by TEM, and the results are shown in Figure 11. Figure 11a shows sample 0#,
and Figure 11b–d show the results for sample 2#. It can be seen from the figure that after
the USRP treatment, the grain refinement and grain boundaries in the material increase
due to the slippage, proliferation and entangling of the dislocations, which are caused by
plastic deformation.
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Figure 11. TEM images before and after USRP: (a) 0# sample surface micromorphology, (b) 2# sample surface micromor-
phology, (c) 2# sample intercrystalline dislocations, (d) 2# intercrystalline dislocations.

As shown in Figure 11a, the surface layer before USRP treatment is mainly composed
of high-carbon martensite, and its substructure contains martensite twins. There are no
obvious dislocations and large-angle cross-entanglement, and no obvious dislocation ac-
cumulation. Figure 11b shows that the dislocation density increases significantly after
USRP treatment, and a large number of dislocations exist in some grains. It can be seen in
Figure 11c,d that after USRP treatment, dislocation slip on the surface is obvious, and the
dislocations continue to move inside the crystal grains, resulting in dislocation segment
plugging. The dislocation movement must overcome point defects, foreign body atoms,
defect groups, and stress fields. If these obstacles are not passed, the dislocations stop
moving and eventually form a dislocation plug [25]. Fine-grain strengthening during USRP
treatment occurs because of an increase in the number of dislocations. The microscopic
mechanism is that the material surface undergoes strong plastic deformation, causing
dislocations to slip, multiply and accumulate as entanglements, forming dislocation walls.
With a further increase in the strain and strain rate, the dislocation wall gradually trans-
forms into a sub-grain structure, and the sub-grain structure eventually transforms into a
high-angle grain boundary, thereby causing grain refinement and improving the fatigue
strength of the material.

XRD spectra are then obtained to analyse the dislocation density of the samples before
and after USRP treatment, and the results are shown in Figure 12. The XRD diffraction
peak positions do not change significantly before and after the treatment, indicating that
no new phase was formed. The main reason for the broadening of the diffraction peak full
width at half maximum (FWHM) is the refinement of grains and the existence of residual
stress. Residual stress is caused by an uneven volume change and plastic deformation
of the metal internal structure, which is essentially a lattice distortion. However, lattice
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distortion and grain refinement are mainly caused by dislocations, so the root cause is
the change in dislocation density. To characterize the change in the dislocation density of
20Cr2Ni4A carburized steel before and after USRP treatment, the FWHM of the diffraction
peaks corresponding to the (110), (200), and (211) crystal planes is used for calculation.

Figure 12. XRD spectra before and after the USRP treatment.

The dislocation density can be determined by the Dunn [26] formula, as shown in
Equation (8):

D =
β2

2 ln 2π × b2 =
β2

4.35b2 (8)

where D represents the dislocation density, b represents the Burgers vector, and β represents
the FWHM. The integral method can be used to make the tangent line L at the bottom of
the peak.

As all samples are made of the same material, the Burgers vector b can be regarded as
a constant, and the dislocation density D is proportional to the half-maximum width β/2.
Therefore, the dislocation density on the sample surface can be analysed by XRD.

It can be seen that with an increase in the β value of the X-ray diffraction peaks, the
dislocation density in the materials treated with the USRP increases. The FWHM of the
diffraction peaks corresponding to the three crystal planes in Figure 12 is measured and
compared using Equation (8). The diffraction peak FWHM before and after the treatment
is presented in Table 8.
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Table 8. FWHM of diffraction peaks before and after USRP.

Incident Angle (2θ/◦)
a b c

44.780 65.226 82.400

0# β1 0.458 0.554 0.599
β1

2 0.210 0.307 0.359

2# β2 0.460 0.769 0.786
β2

2 0.212 0.591 0.618
Relative variation ratio ∆ = 100% × (β2

2 − β1
2)/β1

2 7.62% 92.51% 72.14%

In Table 8 and Figure 12, it can be seen that the dislocation density increased signifi-
cantly after the USRP treatment. The relative change rate of the dislocation density based
on the (200) diffraction peak was 92.51% at the maximum and 7.62% at the minimum.
The dislocation density represented by the diffraction peaks increases to varying degrees,
and the relative change rates of the dislocation densities corresponding to the b and c
diffraction peaks are significantly different, indicating that the dislocations mainly slip
along the (200) and (211) crystal planes, and the direction change along (110) is not obvious.
The final result shows that the dislocation density of the samples treated with the USRP
has significantly increased, and it is further verified from the microstructure that the USRP
treatment changes the material at the microscopic level, which increases the dislocation
density of the material and further increases the residual stress on the material surface.
Microhardness and grain refinement ultimately improve the bending fatigue properties of
the material.

4.2. Mechanism of the Cross-Sectional Structure on Fatigue Performance

This section analyses the mechanism of the change in the cross-sectional structure
of the samples. First, based on the gradient change of the residual stresses and micro-
hardness values of the sample cross-sections, the fatigue performance improvement after
USRP treatment in different procedures is analysed. Based on the EBSD test results and
metallographic structure test results, the phase structure of the samples treated with the
USRP is analysed, and the bending fatigue test data in Section 3.1 are used to analyse the
mechanism of the phase structure in the fatigue process.

4.2.1. Effects of the Residual Stress on the Fatigue Performance

During the USRP treatment, the sample surface is extruded by the high-frequency
impact. The sample surface undergoes large-scale plastic deformation, which leads to lattice
distortion and increases the number of dislocations. The material surface mainly undergoes
plastic deformation, while the second surface mainly undergoes elastic deformation. When
unloading, the secondary surface rebounds and cannot be recovered due to the obstacle of
permanent plastic deformation of the surface. The surface becomes compressed, and the
second surface is in a state of stress, which results in a residual stress over a certain depth
range. The peeling method [27] is used to measure the residual stress value of the sample
in the depth direction before and after the USRP treatment, and the measurement results
are shown in Figure 13.
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Figure 13. Residual stress along with the depth of the layer before and after the USRP treatment.

It can be seen in Figure 13 that the residual compressive stress layer on the surface
layer of the carburized original sample has a certain depth. This is because the carbon
content of the carburized layer gradually decreases from the outside to the inside. The
higher the carbon content, the larger the martensite transformation. When the temperature
is low, the martensitic phase transition first occurs at the junction between the cementation
layer and the matrix and then changes in both directions, with the high-carbon surface
finally changing. The martensitic transformation is accompanied by an increase in volume.
The surface layer of the last transformation is constrained by the heat that completed
the first transformation and is subject to expansion to form a residual compressive stress
layer [28]. After the USRP treatment, a high value residual compressive stress layer is
introduced into the sample surface. The thickness of the layer exceeds 1200 µm. The
generated residual compressive stress is distributed along with the depth of the layer, and
as the depth increases, the residual compressive stress first increases and then decreases.
The final stress level is similar to that of the untreated sample. The maximum residual
compressive stress value reaches 1359 MPa, which is located 350 µm from the surface and
even exceeds the yield strength of the 20Cr2Ni4A carburized steel. This is because the
USRP treatment strengthens the material, and its yield strength also increases. The reason
for the peak value of the residual compressive stress at 0.3–0.4mm from the surface is
that the surface is cut during the samples test. The material undergoes yield deformation
from the surface and inside. Part of the residual stress is released during the deformation
process. However, with an accumulation of energy and the layer-by-layer transfer, the
residual stress continues to increase, which represents a change in the internal residual
stress caused by the USRP treatment. Comparing the test results in Section 3.2, the bending
fatigue limits of the 0#, 2# and 3# samples are 996.34, 1085.51 and 1073.19 MPa, respectively.
It can be seen that the USRP treatment increases the material residual stress, and the
existence of compressive stress and gradient in the residual compressive stress hinders the
propagation of fatigue cracks and improves the fatigue strength of the material. However,
excessive USRP treatment causes surface defects, a residual stress release, and an uneven
distribution in the USRP treatment layer. This easily causes stress concentrations when
subjected to bending loads that eventually form a fatigue source and decrease the fatigue
life of the material.
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4.2.2. Effects of the Microhardness on the Fatigue Performance

While introducing a layer of residual compressive stress, the USRP also increases the
hardness of the material surface layer to a certain extent, which can be attributed to the
combined effect of grain refinement and work hardening. The distribution of microhardness
values along the depth direction of samples before and after USRP treatment is measured,
and the results are shown in Figure 14.

Figure 14. Microhardness along the depth direction before and after the USRP treatment.

It can be seen in Figure 14 that the microhardness of the three samples before and
after USRP treatment has a gradient. As the layer depth increases, the microhardness
value increases first and then decreases and finally gradually decreases to the matrix
material hardness. After treatment, the microhardness values of the 2# and 3# materials
increase significantly within a certain range. The thickness of the layer with an increased
microhardness can reach more than 1000 µm and then reach the microhardness level before
treatment. The reason is that with increasing depth, the plastic deformation degree is
smaller, the grain size is larger and the residual austenite content is larger; that is, the effect
of work hardening, fine grain strengthening and phase structure strengthening decreases
layer by layer. The area closest to the surface is closer to the boundary, which is less
constrained and more prone to deformation. At the same time, after the treatment, the
surface of the sample recovers elastically, the density between the grains is reduced, and
the maximum microhardness value never occurs. On the subsurface, this is consistent with
the measured residual compressive stress distribution. The maximum microhardness value
of sample 3# is 802 HV at a distance of 150 µm from the surface. This is because sample 3#

undergoes an excessive USRP treatment, and the hardness increase is very obvious. The 2#

sample is significantly improved, but it is 35 HV smaller than that of sample 3#.
At the same time, along with the residual compressive stress affecting the layer, it can

be seen that the thickness of the layer affected by the mechanical properties of USRP is
larger than that of the grain refined layer, which shows that the area affected by the USRP
is not limited to the grain refinement layer. After blocking layer by layer, the energy is
attenuated to the subsurface. Significant changes have occurred in the microstructure, but
the crystal grains in this area still have a certain lattice distortion, but the surface has been
strengthened. The microhardness changes along the depth of the layer inhibit fatigue crack
growth. The results of the microhardness and the grain size and residual compressive



Materials 2021, 14, 2516 21 of 25

stress also explain the reason for the narrowing of the fatigue striations gap after treatment
from a micro perspective.

4.2.3. Effects of the Phase Structure on the Fatigue Performance

The changes in both the residual stress and microhardness have a significant effect on
the fatigue performance, but the mechanism of these two parameters is related to the phase
structure in the sample. Therefore, if we want to analyse the mechanism that controls the
fatigue performance of materials that undergo the USRP, the phase structure before and
after the USRP treatment must be observed. As the USRP parameters for sample 3# are too
large, to accurately analyse the impact of the USRP treatment on fatigue performance, only
samples 0# and 2# are selected for EBSD (Electron Backscattered Diffraction) analysis. The
results are shown in Figure 15.

Figure 15. EBSD graphical results before and after the USRP treatment: (a) EBSD tissue orientation of sample 0#, (b) EBSD
tissue orientation of sample 2#, (c) grain orientation distribution of sample 0#, (d) grain orientation distribution of sample
2#, (e) surface retained austenite distribution of sample 0#, (f) surface retained austenite distribution of sample 2#.

It can be seen in Figure 15 that the USRP significantly reduces the grain size on the
sample surface. The average grain size on the surface before treatment is 2.130 µm (as
shown in Figure 15a), and it decreases to 0.674 µm (as shown in Figure 15b) after USRP
treatment. The surface grain orientation distribution before and after USRP treatment
is shown in Figure 15c,d. The black lines in the figure indicate the high-angle grain
boundaries with orientation differences greater than 15◦, the red lines represent low-angle
grain boundaries with orientation differences less than 15◦, and the white part is the
matrix structure. The difference in orientation between adjacent grains also affects crack
propagation and material fracture to an extent. As the grain orientation difference increases,
the interfacial energy increases, and the grain boundary energy barrier rises, which hinders
crack growth. At the same time, the high-angle grain boundaries have a greater impact on
the crack propagation path. As the number of high-angle grain boundaries increases, the
effect of suppressing crack growth is enhanced [29].

It can be seen that after the USRP treatment, in addition to the obvious changes in the
grain size and orientation of the tested sample surface, the residual austenite content on
the surface is significantly reduced. The results are shown in Figure 15e,f. The blue regions
indicate the presence of austenite. Upon comparing Figure 15e,f, it is clear that after the
USRP treatment, the number and area of the blue regions in the figure are significantly
reduced. The relative content is 0.56%, which is calculated based on the area occupied by
the blue parts.

In summary, the surface undergoes severe plastic deformation after surface strength-
ening, which significantly refines the original martensitic grains, reduces the retained
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austenite, breaks the grains, and increases the number of grain boundaries, which can hin-
der fatigue crack growth. Since plastic deformation is a process of energy accumulation and
layer-by-layer transfer, the grain size gradually increases from the surface layer to the inte-
rior of the material. According to this situation, the grain structure of the section position
of the sample treated by USRP was analysed, and the results are shown in Figure 16, where
Figure 16a is the surface location of the sample, and Figure 16b–d are 10 µm, 500 µm and
10,000 µm from the surface, respectively. Based on the analysis of the EBSD phase structure
and the changes in the gradient in the residual stress and microhardness, a cross-sectional
microstructure schematic diagram of the 20Cr2Ni4A carburized steel sample subjected
to the USRP standard treatment process is shown in Figure 16. The grain diagram refers
to the research results of Zhao [30], and there are five layers from the surface to the core,
which are symmetrically distributed.

Figure 16. Schematic diagram of the microstructure of the carburized steel after USRP treatment: (a) EBSD tissue orientation
of the surface, (b) 10 microns from the surface, (c) 500 microns from the surface, (d) 10,000 microns from the surface.

The first layer is a USRP-reinforced layer (0–8 µm), which shows that the grains are
sufficiently refined and distributed much more evenly. The residual compressive stress
is released due to the cross-section incision, and it occurs from small to large. This layer
belongs to the surface layer, its performance is the best, and the anti-fatigue performance is
mostly related to the performance of this layer.
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The second layer is a USRP-treated hardness release layer. The hardness of this layer
decreases from large to small due to the USRP-treated surface, and it is finally released.
It is worth noting that the layer has a lamellar phase structure in the initial stage. This
structure is severely stretched due to internal compression after USRP treatment.

The third layer is a carburized layer. This layer is an edge position that can be achieved
by carburizing. The phase structure of the material gradually approaches the core structure.
However, due to the influence of the carburizing process, fine carbon particles exist in this
layer, causing an increase in the hardness.

The fourth layer is the residual stress release layer caused by the USRP treatment. The
reason a large amount of residual stress is released after cutting the material cross section is
that there is a gradual reduction in the residual stress of the first three layers. In the fourth
layer, the residual stress increased by the USRP treatment is also gradually released, and
the grains continue to the core.

The last layer is the core of the material. This layer acts as a control layer and is not
subjected to surface treatment. The phase structure, microhardness and residual stress of
this layer do not change.

5. Conclusions

This paper focuses on the effect of USRP treatment on the bending fatigue properties of
materials. Based on four sets of increasing static load control experiments, the mechanism
of the USRP treatment on the materials is studied. The main research conclusions are
as follows:

(1) The 20Cr2Ni4A carburized gear steel herein has a high strain rate behaviour under
the action of USRP. This behaviour significantly improves the bending fatigue perfor-
mance of the steel. When the static load is 1374 N, the minimum surface roughness is
0.114 µm, and the maximum microhardness value and residual compressive stress
value are 828 HV and 612 MPa, respectively. Compared with the samples without
the USRP treatment, the surface roughness decreases by approximately 5 times, the
surface microhardness increases by 27%, and the residual compressive stress on the
surface increases by approximately 20 times. The fatigue strength of the material in-
creases with decreasing surface roughness and increasing microhardness and residual
compressive stress, and the optimal static load value is 1374 N.

(2) The bending fatigue life of 20Cr2Ni4A carburized gear steel at 0, 1374, and 1963 N
static load was tested, and the bending fatigue limit of the three samples was calcu-
lated by P-S-N curve fitting. The bending fatigue limits of samples 0#, 2#, and 3# are
651.36, 918.88, and 904.21 MPa, respectively. The fatigue fracture was analysed using
SEM. It was found that the fatigue source in sample 0# without the USRP treatment
is on the sample surface; the fatigue source in sample 2# after the standard USRP
treatment is mostly on the subsurface or inside the sample during the fatigue process,
and the gap between the fatigue stripes decreases. The fatigue source in sample 3#

with a large static load is generated unevenly on the surface, and the crack source is
not singular in nature.

(3) According to the sample surface structure analysis of the influence of USRP treat-
ment on the fatigue performance, USRP treatment significantly improved the surface
roughness, increased surface hardness, introduced a lot of residual compressive stress,
introduced a large number of dislocation multiplications, and further improved the
fatigue performance. It was also found that excessive USRP treatment would lead to
increased surface roughness. Although a large amount of residual compressive stress
was introduced and surface hardness was improved, the fatigue performance was
still reduced.

(4) Combined with EBSD phase structure analysis and the change in gradient residual
stress and microhardness, the section microstructure diagram of 20Cr2Ni4A steel
after the USRP standard treatment process is drawn. The grain diagram is divided
into five layers from the surface layer to the core, showing a symmetrical distribution.
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The grain size, residual stress and hardness of the gradient distribution inhibit the
initiation and propagation of fatigue cracks, which is also the reason why the crack
source takes place on the subsurface and the fatigue striation spacing decreases.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ma14102516/s1, Table S1: Three-point bending fatigue test data of samples before and
after USRP.
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Nomenclature

USRP Ultrasonic surface rolling process
EBSD Electron Backscatter Diffraction
TEM Transmission Electron Microscopy
PH Precipitation hardened
SEM Scanning electron microscopy
UNSM Ultrasonic Nano Surface Modification
LSCM Confocal laser scanning microscopy
XRD X-ray diffraction
P-N Predicted failure probability and Number of cycles
P-S-N Predicted failure probability and Stress and Number of cycles
FWHM Full width at half maximum
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