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Abstract: Effective thermal conduction modification in asphalt binders is beneficial to reducing
pavement surface temperature and relieving the urban heat island (UHI) effect in the utilization
of solar harvesting and snow melting pavements. This study investigated the performance of two
nanometer-sized modifiers, graphene (Gr) and carbon nanotubes (CNTs), on enhancing the thermal,
physical and rheological properties of asphalt binders. Measurements depending on a transient
plant source method proved that both Gr and CNTs linearly increased the thermal conductivity and
thermal diffusivity of asphalt binders, and while 5% Gr by volume of matrix asphalt contributed
to 300% increments, 5% CNTs increased the two parameters of asphalt binders by nearly 72% at
20 ◦C. Meanwhile, a series of empirical and rheological properties experiments were conducted.
The results demonstrated the temperature susceptibility reduction and high-temperature properties
promotion of asphalt binders by adding Gr or CNTs. The variation trends in the anti-cracking
properties of asphalt binders modified by Gr and CNTs with the modifier content differed at low
temperatures, which may be due to the unique nature of Gr. In conclusion, Gr, whose optimal content
is 3% by volume of matrix asphalt, provides superior application potential for solar harvesting and
snow melting pavements in comparison to CNTs due to its comprehensive contributions to thermal
properties, construction feasibility, high-temperature performance and low-temperature performance
of asphalt binders.

Keywords: graphene; carbon nanotubes; asphalt binder; thermal conductivity; physical properties;
rheological properties

1. Introduction

Asphalt is a kind of viscoelastic material, which is widely applied in pavement
construction. It is compounded with heavy hydrocarbons and can be obtained by natural
deposition or as a by-product of the crude petroleum industry [1]. The most widespread
application of asphalt is as the binder material of the pavement surface [2]. However, the
black color of asphalt gives rise to high pavement surface temperatures due to the strong
absorption of solar radiation, especially during the summer, which plays a crucial role in
the urban heat island (UHI) effect and a number of pavement diseases including thermo-
oxidative aging and rutting under traffic loads [3,4]. Although several new concepts have
emerged in recent years, including reflective pavements, porous pavements, evaporative
pavements and water retentive pavements [5], mainly focusing on increasing the pavement
surface albedo or holding water for longer periods of time, their weaknesses in terms of
glare hazards, possible environment-unfriendly issues and less-durable structures have
prevented large-scale applications out of the laboratory [6]. Therefore, without changing the
aggregate gradation, optimizing the thermal parameters of asphalt concrete by substituting
thermal conductive or insulative materials for a portion of corresponding-sized mineral
powder, fine aggregates or even coarse aggregates has attracted the attention of researchers
to control the temperature of asphalt pavements.
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One method that follows this principle is reducing the thermal conductivity of asphalt
concrete. Du et al. [4] designed a gradient thermal conductivity system in layered asphalt
pavement by incorporating three dosages of floating beads with low thermal conductivity
into asphalt, proposing to reduce the pavement temperature during the day and cut down
the accumulated heat that would be released back to air at night. Feng et al. [7] substituted
crushed ceramic waste aggregates for a percentage of the coarse aggregates in asphalt
concrete and reported the reduction of thermal conductivity and the narrowing of the
pavement temperature gradient, resulting in the decrease of pavement temperature.

Another method is to employ asphalt pavement as a solar heat collector, which
harvests solar energy at sunny days and carries the heat away by circulating fluid through
deep embedded pipes to store for de-icing pavement or for heating inhabitant buildings
at cold days [3,8,9]. From this idea the concepts of solar harvesting and snow melting
pavements were derived, under a resource-economical and environment-friendly vision.
To increase the energy harvesting efficiency and accelerate the heat transfer between the
pavement surface and embedded pipes, researchers have been dedicated to enhancing the
thermal conductivity of asphalt concrete. Dawson et al. [8] replaced limestone aggregates
with quartzite in asphalt concrete, and the results showed that the full replacement could
increase the thermal conductivity of asphalt concrete by about 135%. Simulations proved
its potential to reduce pavement surface temperature while increasing the temperature
at a 50 mm depth in the pavement, which signified the capability of the pavement heat
collector system. Pan et al. [10,11] and Chen et al. [12] prepared thermal conductive asphalt
concretes by replacing part of the mineral filler with graphite powders, and testified
their advancements on solar harvesting efficiency as well as the feasibility of utilizing
the asphalt solar collector to melt snow. Vo, H.V. and Park [13], Tang et al. [14] found
that the cooperation of graphite and carbon fiber contributed to more remarkable thermal
conductivity increments compared to their individual properties, after partially substituting
mineral filler due to the formation of conductive networks in asphalt concrete. Furthermore,
the effectiveness of various combinations of graphite, carbon black and carbon fiber for
improving the thermal conductivity of solar harvesting and snow melting pavements was
validated in the study of Bai et al. [15].

It has been observed that carbon materials, especially graphite, are popular options as
thermal conductive additives in asphalt pavements. The reasons always concentrate on the
common traits of the “carbon family” including good thermal conductivity, strong corrosion
resistance, general chemical inertia, and close density with mineral filler of asphalt concrete.
In this case, two well-known advance carbon nanomaterials, graphene (Gr) and carbon
nanotubes (CNTs), deserve our anticipation for their application in solar harvesting and
snow melting pavements. Gr is a two-dimensional single layer of carbon atoms arranged
in a hexagonal lattice structure and strongly connected by sp2 hybridized orbitals C=C
double bonds [16]. CNTs can be described as rolling one or more graphene sheets to
form coaxial cylinders. Single-walled carbon nanotubes (SWCNTs) and multi-walled
carbon nanotubes (MWCNTs) correspond to one layer and more than one layers of rolled
graphene, respectively [17]. The synthesis methods of CNTs mainly focus on arc discharge,
laser ablation and chemical vapor deposition (CVD) [18]. Gr can be obtained through
two approaches. One is the exfoliation of graphite, which contain mechanical exfoliation
and chemical exfoliation, and the other is producing covalently linked two-dimensional
networks by chemical reaction, such as epitaxial growth, pyrolysis and CVD [19].

Compared with graphite, whose thermal conductivity is always lower than or just
around 100 W/m·K [9,11,12], the thermal conductivity of Gr can attain 5000 W/m·K that
is even higher than about 3500 W/m·K of SWCNTs and about 3000 W/m·K of MWCNTs
in the longitude direction [20,21]. This extraordinary superiority makes Gr and CNTs
become promising candidates of conductive additives in the field of energy despite the
high price. To promote the performance of thermosyphon devices or direct absorption
solar collectors, Das et al. [22] and Zhang et al. [23] increased the thermal conductivity of
nanofluids by incorporating Gr or CNTs. In the research presented by Amin et al. [24], Liu
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and Zhang [25], Karaipekli et al. [26] and Zhang et al. [27], the two carbon nanomaterials
enhanced the thermal conductivity of phase change materials, which were mainly used to
regulate temperature or reduce energy waste.

Some manifestations of Gr or CNTs in asphalt composites have been investigated
over the last decade. The mixing of the carbon materials and asphalt always achieved by
mechanical agitation, high-speed shearing and sonication depending on different demands.
Faramarzi et al. [28] prepared MWCNTs modified asphalt binders by shear mixing process
and wet process. The results showed that MWCNTs improved the rutting resistance as
well as thermal cracking resistance of asphalt binders. Santagata et al. [29] stated that
CNTs exhibited a positive influence on the fatigue properties of asphalt binders if a suitable
dispersion technique was adopted. Moreno-Navarro et al. [30] proved that Gr modified
asphalt binders could be heated more rapidly than matrix ones without weakening their
stability. Gr and CNTs modification were found to be encouraging in enhancing the high-
temperature properties, elastic recovery performance and pavement service life of asphalt
binders from the investigation carried out by Yang et al. [31]. Li et al. [32] chiefly utilized
the two carbon materials as promising microwave-absorbers to advance the self-healing
properties of asphalt relying on microwave heating. Shirakawa et al. [33] demonstrated
that CNTs increased stiffness along with the microwave absorption capability of asphalt
emulsions. With respect to SBS copolymer modified asphalt binders, Shu et al. [34] reported
their promotion in high-temperature anti-rutting properties and low-temperature anti-
cracking properties with MWCNTs addition, and Goli et al. [35] probed their enhancement
in storage stability. For application in asphalt concretes, Melo and Triches [36] carried out
four-point fatigue tests and wheel tracking tests with the aim of evaluating the permanent
deformation resistance of CNTs modified asphalt concretes, and the better mechanical
performance indicated the effectiveness of CNTs.

Based on above review, although both Gr and CNTs have been used to increase the
thermal properties of certain materials for down-to-earth energy applications, their actual
thermal behaves in asphalt remains rarely explored. Moreover, although their favorable
contribution to the promotion of some other properties of asphalt composites has been
demonstrated, few reports have emphasized a direct comparison of their effects on asphalt
composites and further analyzed the differences.

2. Scope of Work and Objectives

As essential thermal parameters of materials, thermal conductivity, thermal diffusivity
and volumetric specific heat capacity can influence various thermal performances of
functional asphalt pavements, including but not limited to solar harvesting efficiency,
snow melting time, heat transfer speed and perpendicular temperature gradient [2,8,10].
Therefore, this study conducted quantitative analysis for the effects of Gr and CNTs on the
three thermal parameters of asphalt binders. Gr and CNTs were used as thermal conductive
additives, which also can be referred to as “modifiers” considering their feasibly low
contents in asphalt binders. Meanwhile, the physical and rheological properties of the same
modified asphalt binders were evaluated. Furthermore, combing with the experiments of
modification mechanism, the influence factors resulting in different thermal conductive
effect of Gr and CNTs were analyzed.

This study does not attempt to seek a situation in which the thermal, physical, and
rheological performances are all optimized simultaneously, because the definition of the
best optimization is maybe controversial according to actual circumstances and purposes.
Instead, it aims to explore whether remarkable enhancement on thermal properties can be
achieved by Gr or CNTs modified binders under the premise of meeting the basic usability
of pavement construction, and hence judge their application prospects for solar harvesting
and snow melting pavements.
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3. Materials and Methods
3.1. Matrix Asphalt

Penetration grade matrix asphalt (90/100) was provided by Guochuang Co., Ltd.,
Wuhan, China. The measured values of the primary physical properties are listed in
Table 1.

Table 1. Properties of matrix asphalt.

Properties Values

Penetration (25 ◦C) 81.9 dmm

Softening point 43.8 ◦C

Ductility (15 ◦C) >1000 mm

Flashing point 345 ◦C

Solubility in trichloroethylene 99.8%

Relative density (15 ◦C, compared with water) 1.03

3.2. Graphene and Carbon Nanotubes
3.2.1. Physical Parameters

Graphene (Gr) produced by the mechanical exfoliation method and multiple-walled
carbon nanotubes (CNTs) produced by the CVD method were supplied by Tuling Co.,
Ltd., Shenzhen, China. The physical parameters of them are shown in Tables 2 and 3,
respectively. It is worth noting that, to establish the relationship with previous studies
applying carbon materials in thermal conductive asphalt concretes, this study followed
the practice of employing the volume fraction of matrix asphalt to determine the modifier
content, which was on the basis of the assumption that modifiers were used to substitute a
portion volume of mineral powders in asphalt concrete. The relative density of the matrix
asphalt compared with 15 ◦C water was already tested, and then the apparent relative
density of Gr and CNTs samples in the same condition should be acquired to calculate
the modifier weights corresponding to the targeted volume contents during preparing
modified asphalt binders. This study consulted the “volumetric flask method” which
is normally applied to measure the apparent relative density of fine aggregates in JTG
E42-2005 [37]. The main procedure is generalized in Figure 1.

Table 2. Physical parameters of Gr.

Properties Values

Color Dark grey

Layers 1–3

Single-layer rate (%) >80

Carbon content (%) 98

Water content (%) <2

Particle size distribution D50 (µm) 7–12

Particle size distribution D90 (µm) 11–15

Specific surface area (mm2/g) 50–200

Bulk Density (g/cm3) 0.06–0.09

Apparent relative density (15 ◦C, compared with water) 1.692
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Table 3. Physical parameters of CNTs.

Properties Values

Color Black

Purity (%) >97%

Ash content (%) <2.5%

Tube diameter (nm) 3–15

Tube length (µm) 15–30

Specific surface area (mm2/g) 250–270

Bulk density (g/cm3) 0.01–0.02

Apparent relative density (15 ◦C, compared with water) 1.870
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Figure 1. General view of measuring the apparent relative density of Gr and CNTs samples.

3.2.2. SEM and HRTEM Observations

Microscopic morphologies of Gr and CNTs were detected by scanning electron mi-
croscopy (SEM) tests and high-resolution transmission electron microscopy (HRTEM)
tests.

Figure 2a,b show the SEM images of Gr, that exhibited a two-dimensional and sheet-
like structure. The Gr sheets stacked together, although some of them bent slightly. When
the scanning angle switched from the top view as shown in (a) to the side view as shown
in (b), it was clear to see the interval space between each of the Gr sheets. This stacking
status with interval spaces indicated that van der Waals forces between molecules of layer
surfaces played the major role in Gr gathering. Figure 2c,d display SEM images of the
CNTs, that exhibited a one-dimensional and tubular structure. The tubes were disorderly
arranged and intertwined with each other. AN agglomeration phenomenon was obvious
among the CNTs. Under the same magnifications, Figure 2a–c display that the radial size
of the CNTs is at the nanometer scale and it looks much smaller than the micro-meter size
of the plane of Gr sheet.
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Figure 3 shows the HRTEM images of Gr and CNTs. The Gr presented a thin sheet-like
structure, and there were a number of irregularly shaped impurities on it. For the CNTs,
the opened tubes can be observed clearly.
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3.2.3. Raman Scattering

Raman spectroscopy was used to investigate the composition, crystalline quality and
defect level of Gr and CNTs samples. The characteristic peaks of their Raman spectra con-
firmed their identity of carbon, as illustrated in Figure 4. The strong peaks at 1567.82 cm−1

of Gr Raman spectrum and 1574.63 cm−1 of CNTs spectrum correspond to the typical “G”
band of carbon material, which marks the in-plane vibration of sp2 hybrid structures in the
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layer, and the other strong peaks at 1349.17 cm−1 of Gr Raman spectrum and 1340.79 cm−1

of CNTs spectrum correspond to the disorder-induced “D” band of carbon material [38,39].
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The intensity ratio of the “D” and “G” bands (ID/IG) calculated from the peak areas
can judge the defects of Gr and CNTs [39]. For Gr sample, the ID/IG ratio is equal to 0.18,
which testifies the good quality of Gr with very few defects. For CNTs sample, the ID/IG
ratio is equal to 1.52, which indicated an inferior graphitization of it with more disordered
carbon atoms than Gr.

3.3. Gr and CNTs Modified Asphalt Binders
3.3.1. Preparation Samples

Gr modified asphalt binders (Gr-MA) and CNTs modified asphalt binders (CNTs-
MA) were prepared via blending the modifiers and matrix asphalt at five percentages of
modifiers (1%, 2%, 3%, 4% and 5%) by volume of matrix asphalt. The procedure consisted of
three steps: First, 200 g of matrix asphalt was poured into an aluminum cup, then gradually
heated to 145 ◦C and maintained at this temperature. Second, Gr or CNTs powder was put
in and manually blended to asphalt. Third, the compound was stirred with a mechanical
agitator at a speed of 500 rpm for 60 min to ensure a homogeneous mix. Looking forward
to a well estimation on their application in the large-scale road construction, which should
consider practicality and cost, this study did not adopt high-speed shearing or sonication
in the mixing step. A contrast matrix asphalt binder was conducted with the same blend
process in order to establish a reasonable comparison.

3.3.2. HRTEM Observations

Figure 5 displays the HRTEM images of 3% Gr-MA and 3% CNTs-MA. Compared
with the images of raw Gr and CNTs in Figure 3, it can be observed that, overall, the color
of the solid regions is blacker, which indicates the existence of asphalt. The blacker color
presents the larger amount of asphalt covers Gr or CNTs. The CNTs agglomeration in
asphalt can be observed in Figure 5b obviously.
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3.4. Thermal Properties Tests

A thermal constants analyzer (Hot Disk TPS 2500S) was utilized to determine the
thermal conductivity and thermal diffusivity of asphalt binders depending on the transient
plant source (TPS) method. One binder was divided into two cuboid specimens in 50 mm
length, 50 mm width and at least 20 mm height. The TPS sensor, which functioned as
both the heating source and dynamic temperature probe [3], was sandwiched between
the specimens as shown in Figure 6. They were settled and the thermal insulation was
kept for at least 20 min to uniformize the temperature of the sensor and samples before
each measurement. The room temperature was controlled at 20 ◦C throughout the whole
process.
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To match the specimen size, the chosen TPS sensor type in this study was 4853, whose
dimeter is 9.868 mm, depending on adjustments in advance. The test parameters such as
electric power and measuring time also should be adjusted based on the thermal diffusivity
of sample in order to satisfy the assumption that the sensor is situated in an infinite
medium. For each of the two divided specimens, one measurement was recorded at one
contact surface, and the other measurement was recorded at the opposite contact surface,
respectively. The mean value of them was used as the result. It was infeasible to conduct
repeated tests at one surface of the two divided specimens because duplication heating
would soften the specimens seriously, especially for the same side, and made them fail to
maintain the practicable height matching the adjusted test parameters. Besides, to prevent
the sensor from breaking during rinsing off the adhesive asphalt, the contact surface of
each specimen with the sensor was covered with a commercially available plastic wrap
during the tests. It was reasonable because exploratory experiments found that there was
no distinct discrepancy between the resultant data of the covered cuboid specimens and
the uncovered ones.
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On the grounds of definition, the volumetric specific heat capacity of asphalt binders
could be calculated from Equation (1):

Cv =
λ

α
(1)

where Cv is the volumetric specific heat capacity; λ is the thermal conductivity; and α is
the thermal diffusivity [40].

3.5. Physical Properties Tests

Penetration tests at 15, 25 and 30 ◦C, ring-and-ball softening point tests and ductility
tests at 15 ◦C were carried out on asphalt binders in accordance with JTG E20-2011 [41].

Reflecting the temperature susceptibility of the asphalt binders, the penetration in-
dex (PI) was calculated through the penetration-temperature coefficient (AlgPen) obtained
from the logarithmic relationship between the penetration values and temperatures, as
Equations (2) and (3) noted.

lgP = K + AlgPen × T (2)

PI =
20 − 500AlgPen

1 + 50AlgPen
(3)

where P is the penetration; T is the test temperature; K and AlgPen are the constant term
and the coefficient term of linear regression equation, respectively.

T800, being named as the equivalent softening point, was computed as Equation (4).
It is a high-temperature property index which is deduced to be equal to the temperature
when penetration of asphalt binder reaches to 80 mm.

T800 =
lg800 − K

AlgPen
(4)

3.6. Rheological Properties Tests
3.6.1. Brookfield Viscosity Tests

A Brookfield rotational viscometer (THERMOSEL DV-II+Pro) was utilized to measure
the apparent viscosity of asphalt binders at 115, 135, 155 and 175 ◦C. Linear regression
analysis on the interrelation between apparent viscosity and temperature acted up to the
Saal equation as:

lglg
(

η × 103
)
= n − m × lg(T + 273.13) (5)

where η is the apparent viscosity; T is the temperature; n and m are the constant term and
coefficient term of equation, respectively. The slope of the regression line is defined as the
viscosity temperature susceptibility (VTS) of the asphalt binders.

3.6.2. Dynamic Shear Rheometer (DSR) Tests

A dynamic shear rheometer (ANTON PAAR MCR101) was utilized to assess the
rheological properties of asphalt binders according to AASHTO T315-09 [42].

High temperature sweep tests from 30 to 80 ◦C and low-to-intermediate temperature
sweep tests from −10 to 30 ◦C were conducted in a controlled-strain testing mode at a
frequency of 10 rad/s. Complex shear modulus (G*) and phase angle (δ) of asphalt binders
were recorded.

A set of frequency sweep tests from 400 to 0.1 rad/s was proceeded at 20, 25, 30, 40, 50
and 60 ◦C. Fitted the complex modulus master curves of asphalt binders via introducing
shift factors (αT) explained by Equation (6):

E(T, t) = E(T0, t/αT) (6)
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where T is the experiment temperature, T0 is the reference temperature, t is the objective
parameter to be analyzed, αT is the shift factor. In this study, t is the complex shear modulus
of asphalt binder, and T0 is 30 ◦C.

3.7. Modification Mechanism Tests
3.7.1. Fourier Transform Infrared Spectroscopy (FTIR) Characterizations

A Fourier transform infrared spectrometer (Nicolet 6700) and a customized KBr crystal
plate were adopted to explore the functional groups variation of asphalt binders after
modification. Asphalt binder was dissolved in carbon disulfide to obtain a 5 wt. % solution.
Two drops of solution were dripped onto the KBr crystal plate. The plate was exposed
under a high-pressure mercury lamp for about 2 min until a thin film of asphalt remained.
Then, the plate was inserted into the spectrometer and scanned at the wavelengths ranging
from 4000 cm−1 to 500 cm−1, a resolution of 4 cm−1 and a scan number of 64. The original
KBr crystal plate was scanned in advance at the same test parameters.

3.7.2. SARA Fraction Tests

A thin layer of chromatography with flame ionization detection (TLC-FID) (IATRON
MK-6) was utilized to analyze the effect of modification on SARA fraction (saturates,
aromatics, resins and asphaltenes) of the asphalt binders. A solution prepared by dissolving
80 mg asphalt binder in 4 mL dichloromethane. In total, 1 µL of solution was dotted by glass
point capillary onto the original point of a chromatographic rod covered with silica gel. A
set of ten rods for each binder was immersed in three developing tanks which respectively
combine n-heptane, methylbenzene-n-heptane (volume ratio 4:1) and methylbenzene-
absolute ethyl alcohol (volume ratio 9:11) in a sequence of ascending polarity [43,44].
The separating situation of the SARA components was judged through observation of
the developing heights (100, 50 and 25 mm) of solution on the chromatographic rods.
Consequently, quantitative analysis was processed via a flame ionization detector at a
hydrogen flow of 160 mL/min, an air flow of at least 1.5 L/min and a scan speed of
30 s/column.

Presenting the sol-gel type of the asphalt binder, the collide instability index (CII), was
defined by Equation (7) to evaluate the stability of the collide structure [45]:

CII =
Asp + S
R + A

(7)

where Asp, S, R and A are the weight percentage of asphaltenes, saturates, resins and
aromatics in asphalt binder.

4. Results and Discussion
4.1. Thermal Properties of Asphalt Binders
4.1.1. Thermal Conductivity

Figure 7 illustrates the influence of Gr and CNTs on the thermal conductivity of asphalt
binders at 20 ◦C. The interrelations between thermal conductivity and modifier content
were analyzed by linear regressions. For both Gr-MA and CNTs-MA, thermal conductivity
increased with increasing modifier content in a favorable linear relationship, with a cor-
relation coefficient (R2) of 0.9948 for Gr-MA and 0.9955 for CNTs-MA. In comparison, it
was found that the effect of Gr was greatly superior to CNTs. When the modifier content
increased from 0% to 5%, the thermal conductivity of Gr-MA was enhanced from 0.1465
to 0.6051 W/(mK) by 313.04%, while that of CNTs-MA increased to 0.2513 W/(mK) by
71.54%. The transportation of thermal properties in nanoscale carbon materials is primarily
governed by phonons behavior [46,47]. Although both Gr and CNTs have high intrinsic
thermal conductivity, the big gap between the thermal conductivities of asphalt binders
modified by them mainly attribute to their specific surface area. Enlarging the interface
between modifier and matrix asphalt, CNTs with larger specific surface area in this study
enhanced the interface thermal resistance and strengthened the phonon scattering [48,49].
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Figure 7. Thermal conductivity of asphalt binders modified by Gr and CNTs.

A higher thermal conductivity means that more heat can transfer across a unit distance
through a unit sectional area inside the asphalt binder per unit time. Therefore, as solar
heat collector, asphalt pavement adopting Gr-MA or CNTs-MA, especially Gr-MA, can
harvest more solar energy from pavement surface and deliver more of it to heat the deep
embedded pipes.

4.1.2. Thermal Diffusivity

Figure 8 shows the linear regression analysis for the thermal diffusivity of modified
asphalt binders with varying modifier content at 20 ◦C. Being analogous with the variation
tendency of thermal conductivity, the thermal diffusivity of both Gr-MA and CNTs-MA
linearly increased with the increase of modifier content, and the correlation coefficients (R2)
were 0.9956 and 0.9846, respectively. Incorporating 5% Gr in asphalt binder contributed to a
significant thermal diffusivity gain by 350.84%, whereas the thermal diffusivity of 5% CNTs-
MA reached 0.1424 mm2/s with a 71.57% increment. A higher thermal diffusivity, which
is a more visualized thermal parameter compared with thermal conductivity, signifies a
faster temperature transfer in asphalt binders.
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4.1.3. Volumetric Specific Heat Capacity

Owing to the satisfactory consequence of linear regression on thermal conductivity
and thermal diffusivity, this study calculated the volumetric specific heat capacity (Cv) of
Gr-MA and CNTs-MA according to Equation (1) through dividing the linear regression
equation of thermal conductivity by that of thermal diffusivity as Equations (8) and (9),
instead of directly recording the values measured by HOT DISK thermal constants analyzer.

(Cv)Gr−MA =
9.266x + 0.1373
6.0284x + 0.0724

(8)

(Cv)CNTs−MA =
2.1697x + 0.143
1.2665x + 0.082

(9)

where (Cv)Gr−MA and (Cv)CNTs−MA are the volumetric heat capacity of Gr-MA and
CNTs-MA.

As shown in Figure 9, (Cv)Gr−MA and (Cv)CNTs−MA experienced varying degrees
of decline as the modifier content increased. 5% modification decreased (Cv)Gr−MA to
1.6067 MJ/m3 K and decreased (Cv)CNTs−MA to 1.7305 MJ/m3 K. According to the defini-
tion of Cv which indicates the requisite heat absorbs by a unit volume of objective material
for supporting 1 K rise of temperature, Gr-MA will consume less heat than CNTs-MA to
ascend to an identical temperature. In other words, for Gr-MA, because 1 K warming
up absorbs less heat, more remnant heat continues to be transported inward the binder
to even-up the temperature at every point of binder eventually faster, compared with
CNTs-MA. Interrelated with each other, volumetric specific heat capacity and thermal
diffusivity determine the temperature propagation velocity inside asphalt binder.
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Figure 9. Volumetric specific heat capacity of asphalt binders modified by Gr and CNTs.

To sum up, the quantitative analysis on the three important thermal parameters
revealed that the 5% Gr and 5% CNTs modifications resulted in more than 3 times and about
0.72 times increase respectively in both thermal conductivity (λ) and thermal diffusivity (α)
of asphalt binders at 20 ◦C. Furthermore, combined with the decreasing trend of volumetric
specific heat capacity (Cv), for solar-harvesting pavements, the two modifiers can not only
assist the asphalt concrete in gaining more solar energy from the pavement surface, but also
accelerate the pace of absorbed heat as well as temperature transferring from pavement
surface to the embedded pipes. Therefore, the solar harvesting efficiency can be improved
and the UHI effect will be mitigated consequently. In turn, emphasizing on the process of
heat transport from embedded pipes to pavement surface, the snow melting pavements
also need these two thermal conductive modifiers to reduce the snow melting time and
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thus achieve efficiency progress. By comparison, Gr exhibited better modification effects
on thermal properties of asphalt binder.

4.2. Physical Properties of Asphalt Binders
4.2.1. Penetration and Temperature Susceptibility

Figure 10 presents the penetration change of Gr-MA and CNTs-MA at three moderate
temperature including 15 ◦C, 25 ◦C and 30 ◦C, along with increasing the modifier content
from 0 to 5%. The penetration test is always used as a measurement of consistency. A
higher penetration degree indicates softer consistency of asphalt binder [50]. As illustrated,
the addition of Gr or CNTs resulted in a harder consistency of binder. This attributed to the
dispersion of modifiers with greater density in asphalt binder [51].
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Unlike Gr-MA whose penetration degree decreased steadily with the increase of Gr
content, for CNTs-MA, the penetration degrees of 2% CNTs-MA and 3% CNTs-MA were
close, and the value suddenly decreased remarkably after the modifier content surpassed
3%. This trend owed to two reasons. For one thing, agglomeration of CNTs in 3% CNTs-MA
reduced the modification effect. For another, because of the large specific surface area of
CNTs, the great surface energy resulted in strong interfacial interaction between CNTs and
asphalt, which made the consistency of binder become harder [52,53]. When CNTs content
increased to 4% and 5%, compared with agglomeration, the interfacial interaction played a
more influential role in the modification effect on penetration. Then, the penetration degree
of CNTs dropped sharply.

The penetration index (PI) is a commonly adopted index to represent the temperature
susceptibility (TS) of asphalt binders. Greater PI signifies that the binder is less sensitive to
temperature and performs better high-temperature properties. The binder whose PI < −2
approaches to the Newtonian fluids and manifests the sol-type characteristic with quite
high TS. It cannot be used for pavement. The binder whose PI > 2 manifests the gel-
type characteristic. It deviates from Newtonian fluids in a large extent and owns good
high-temperature properties but terrible cracking resistance at low temperatures.

Figure 11 illustrates the PI results of Gr-MA and CNTs-MA. The PI values all located
between −2 and 2 where corresponded to the sol-gel type of asphalt binders. The TS
was moderate for pavement application [53]. With the addition of Gr or CNTs, asphalt
binders became less sensible to elevating temperature and obtained better high-temperature
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properties. Moreover, except 5% dosage, PI values of Gr-MA were all greater than that of
CNTs-MA. For CNTs-MA, the marginally PI change between 1 to 3% dosage also pointed
out the existence of agglomeration phenomena among CNTs at moderate temperature
range.
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4.2.2. Softening Point and Equivalent Softening Point

The softening point (TR&B) and equivalent soft point (T800) are both indexes to char-
acterize the high-temperature stability of asphalt binders. Both Gr and CNTs contributed
to enhancing the high-temperature stability of asphalt binders, as shown in Figure 12.
Since the layer structure of Gr or the intertwined tubular structure of CNTs obstructed the
movement of asphalt molecular chains at high temperature, the binders’ stability against
flowing was promoted.
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Figure 12. Softening point and equivalent soft point of asphalt binders modified by GR and CNTs.

Additionally, because the thermal motion of asphalt molecular chains is more active
with an increase of temperature, the impaction of obstructed molecular movement after
incorporating modifiers on binders’ stability would manifest more obviously at higher
temperatures. As a result, for the majority of Gr-MA and CNTs-MA samples, TR&B which
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was tested through elevating temperature to more than 40 ◦C was higher than T800 which
was calculated from the penetration of samples at moderate temperature no more than
30 ◦C.

For 1% CNTs-MA, its TR&B was lower than T800. This phenomenon could be explained
by the experiment circumstance. While a penetration test was proceeded at a constant
temperature involving no thermal properties of CNTs, the ring-ball softening point test was
conducted in distilled water whose temperature raised persistently in a constant velocity.
CNTs with high thermal conductivity accelerated the warming up process insider binder.
Then, neglecting the obstructed molecular movement on account of low modifier content,
asphalt binder could be soft enough to allow the test ball falling at a temperature before
the penetration degree was supposed to be 800.

4.2.3. Ductility of Modified Asphalt Binders

Asphalt binder with greater ductility value shows better adherence, which is bene-
ficial to coating aggregates, and is more resistant to cracking at low temperatures conse-
quently [54]. As illustrated in Figure 13, incorporating Gr or CNTs dramatically reduced the
15 ◦C ductility of binder by 71.8 or 78.7%, respectively. This was mainly because hardening
consistency accelerated the fracture process of asphalt binders when it countered tensile
stress [52]. The fact that the relationship between ductility values of Gr-MA and CNTs-MA
at the same dosage was completely on the contrary of their 15 ◦C penetration degree
also certified the influence of consistency on ductility. Besides, except for at 5% dosage,
CNTs-MA were more ductile than Gr-MA, probably attributing to the “pull-out” behavior
of CNTs which strengthened the adhesion of their interphase to a certain extent [55]. Gen-
erally, both Gr and CNTs reduced the low-temperature anti-cracking property of asphalt
binders.
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Figure 13. Ductility (15 ◦C) of asphalt binders modified by Gr and CNTs.

4.3. Rheological Properties of Asphalt Binders
4.3.1. Brookfield Viscosity and Viscosity Temperature Susceptibility

Figure 14 synthesizes the influence of Gr and CNTs on the apparent viscosity of
asphalt binders, which is the ratio of shear stress to shear rate for a Newtonian liquid or
a non-Newtonian liquid [56]. Apparent viscosity is also deemed as an indicator of the
high-temperature properties of asphalt binders. As displayed, the increase in Gr and CNTs
content increased the apparent viscosity of asphalt binders, that was because the movement
restriction of asphalt molecular chains and strong interfacial interaction between modifiers
and asphalt [57,58] enhanced binder’s resistance to flow during the temperature elevation.
Besides, CNTs-MA accomplished 1–260 times higher apparent viscosity than Gr-MA at the
experimental temperatures when the modifier content was increased from 2% to 5%. This
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was ascribed to the larger specific surface area of CNTs, which led to a stronger interfacial
interaction with asphalt.
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Figure 14. Apparent viscosity of asphalt binders modified by Gr and CNTs at different temperatures.

The apparent viscosity at 135 ◦C is a significant index which should not be above 3 Pa·s
on the basis of the SHRP (Strategic Highway Research Program) criteria for guaranteeing
the work ability of asphalt binder during pavement construction [59]. With the addition of
modifier, the dosage which originally generated an apparent viscosity exceeding 3 Pa·s
was between 3% and 4% for Gr-MA, and it was between 2% and 3% for CNTs-MA. Thereby,
in this study, 4–5% Gr-MA and 3–5% CNTs-MA cannot be applied for solar harvesting and
snow melting pavements.

For 3% Gr-MA and 2% CNTs-MA, first, their apparent viscosities were quite close.
Second, for thermal parameters, the thermal conductivity and thermal diffusivity of 3% Gr-
MA at 20 ◦C were 0.4153 W/Mk and 0.2533 mm2/s derived from the fitting out equations
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of linear regression, respectively, which were both higher than that of 2% CNTs-MA, and
the volumetric specific heat capacity of 3% Gr-MA at 20 ◦C was 1.6398 MJ/m3 K calculated
from Equation (8), which was lower than that of 2% CNTs-MA. These were all beneficial
to the work efficiency of solar harvesting and snow melting pavements. Third, in terms
of physical properties, compared with 2% CNTs-MA, 3% Gr-MA had lower penetration
degree, higher penetration index and higher softening point, demonstrating superior high-
temperature properties. However, 3% Gr-MA was less ductile than 2% CNTs-MA, which
signified inferior low-temperature properties. Further comparisons will be proceeded in
the following analysis concentrating on other experiments.

A general overview of viscosity-temperature equations and viscosity temperature
susceptibility (VTS) of Gr-MA and CNTs-MA is provided in Figure 15. VTS itself is a
negative. The lower the absolute value of VTS means that asphalt binder is less sensitive to
temperature, or rather owns lower temperature susceptibility (TS). Figure 16 intuitively
reflects the comparison on the TS changes of Gr-MA and CNTs-MA. As shown, incorpo-
rating CNTs caused a remarkable descent of the TS of asphalt binder by 88.28% and the
descend rate did not fluctuate too much during the modifier content increase. However,
for Gr-MA, although the overall trend of TS change was reduction, the change rate was
smaller than the CNTs one. Especially when Gr content increased above 3%, the variation
turned to be marginal. Then, keeping the continued incorporation of Gr would not be quite
significant to the TS reduction and high-temperature properties improvement of asphalt
binders. This reinforces the notion that 3% is a good dosage for Gr-MA. Besides, compared
with 3% Gr-MA, 2% CNTs-MA manifested lower TS.

Compared with PI, which is another TS indicator discussed above, the TS altering
trends were not always the same. First, while for PI, TS of Gr-MA was lower than CNTs-MA
at the modifier contents from 1 to 4%, TS derived from VTS manifested that Gr-MA was
always more sensitive to temperature than CNTs-MA. Second, for Gr-MA, PI demonstrated
a prominent TS decrease in a sustainable pace, but VTS showed a fast TS reduction at
lower dosages initially and slowing down obviously at higher dosages. The discrepancy
could be explained by the difference in temperature range. It was deducible that, from the
perspective of reducing TS, CNTs performed better than Gr in high temperature range, and
Gr was more effective in moderate temperature range.
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Figure 15. Lg-Lg Viscosity versus Lg Temperature with different content of Gr and CNTs modified asphalt binders: (a) Gr
as modifier; (b) CNTs as modifier.
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Figure 16. Viscosity temperature susceptibility (VTS) of asphalt binders modified by Gr and CNTs.

4.3.2. Viscoelastic Properties in the High Temperature Range

Viscoelastic behavior of asphalt directly influences the pavement service property
of asphalt concrete. During summer, asphalt performs more viscous feature which is
the major cause of rutting at high temperatures. During winter, it performs more elastic
features but may lead to cracking at low temperatures.

The complex shear modulus (G*) represents the binder’s resistance to shear defor-
mation under oscillatory load. It reflects the stiffness of asphalt binder [42]. Figure 17
illustrates the temperature dependence of G* of Gr-MA and CNTs-MA within the high
temperature range from 30 to 80 ◦C. Originally, experimental results demonstrated that
both two modifiers did not change the variation trend of G* from persistently deceasing
with elevating temperature like the matrix binder behaved. Meanwhile, at an identical tem-
perature, both Gr-MA and CNTs-MA turned to be stiffer, gaining better high-temperature
properties with the increase of modifier content.
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Figure 17. Complex modulus (G*) of asphalt binders modified by Gr and CNTs at high temperature range: (a) Gr as
modifier; (b) CNTs as modifier.

When the modifier content reached 3%, CNTs-MA became stiffer than Gr-MA. Espe-
cially when temperature raised more closely to 80 ◦C, the gap enlarged even bigger. This
was consistent with the consequence obtained from the softening point test which was an-
other characterization of high-temperature properties operated in the similar temperature
range. Data comparison also drove to a find that, except 1% dosage, G* of CNTs-MA were
all greater than that of Gr-MA at 80 ◦C, in agreement with the predicted behavior from
the Brookfield viscosity tests at 115 ◦C. Combining the consistency of these two, it was
concluded that CNTs-MA performed stronger resistance to shear deformation than Gr-MA
either at high temperature or with high incorporating content.

Defined as the angle in radians between imposed stress and resulting strain, phase
angle (δ) reflects the viscoelastic state of asphalt binders [42]. The smaller the δ is, the
more elastic features are performed by the binder. The larger the δ is, the more viscous
features are embodied, on the contrary. In Figure 18a, it was shown that δ of matrix
binder and Gr-MA increased as temperature elevated. And the augment of Gr content
led to a decrease of δ at an identical temperature, which indicated the elastic proportion
enhancement of asphalt binder. In Figure 18b, although the variation tendencies of 1%
CNTs-MA and 2% CNTs-MA were similar with that of matrix binder as well as Gr-MA
with increasing temperature, once the dosage increased to 3% and more, δ of CNTs-MA
increased momently and converted to decrease drastically. This phenomenon is analogous
to the δ change of SBS modified asphalt binders. Therefore, it was reasonable to presume
that an ample amount of CNTs built a network of nanotubes, which contribute to significant
elasticity promotion at a comparatively high temperature [60].

Rutting factor (|G*|/sinδ) is a performance-related parameter of asphalt binder,
which indicates the capability to resist permanent deformation at high temperatures. The
higher the |G*|/sinδ is, the smaller amount of energy dissipates during each load cycle,
and the more high-temperature stiffness is gained [42]. The graphs in Figure 19 display the
influence of Gr and CNTs on rutting factor of asphalt binders. For both of them, with the
increase of dosage, binder’s potential on withstanding permanent deformation advanced.
Thus, it was more difficult for rutting to appear on pavement under traffic load. In addition,
the huge raise on |G*|/sinδ of 3–5% CNTs-MA at 80 ◦C also supported the judgement
that a network of nanotubes was formed.
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Figure 18. Phase angle (δ) of asphalt binders modified by Gr and CNTs in the high temperature range: (a) Gr as modifier;
(b) CNTs as modifier.
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Figure 19. Rutting factor (|G*|/sinδ) of asphalt binders modified by Gr and CNTs at high temperature range: (a) Gr as
modifier; (b) CNTs as modifier.

In SHRP criteria, characterizing the high-temperature performance of asphalt binders
directly, the performance grade (PG) relates to the temperature in which the |G*|/sinδ
value of asphalt binder is greater than or equal to 1 KPa at an experimental frequency of
10 rad/s [59]. As listed in Table 4, 4 and 5% Gr addition elevated the PG from 64 to 70,
whereas CNTs-MA experienced a more prominent PG enhancement up to 82 which was
logically estimated with the variation tendency of rutting factor, in the situation where the
upper limit temperature of the DSR tests in this study was 80 ◦C.

Finally, for 3% Gr-MA and 2% CNTs-MA, according to the detailed data, G* and
|G*|/sinδ of 3% Gr-MA were always greater than those of 2% Gr-MA. When temperature
was between 30 ◦C and 54.1 ◦C, δ of 3% Gr-MA was larger than that of CNTs-MA. When
temperature was between 54.1 ◦C and 80 ◦C, CNTs-MA owns the larger δ. The high-
temperature PG of them were both 64. Comprehensive analysis drew a conclusion that 3%
Gr-MA owned better high-temperature rutting resistance at least between 30 ◦C and 80 ◦C.
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Table 4. The performance grade (PG) of Gr-MA and CNTs-MA.

Modifier Content (%)
PG (High Temperature Part)

Gr-MA CNTs-MA

0 64 64
1 64 64
2 64 64
3 64 70
4 70 82 1

5 70 82 2

1,2 Estimated by the variation tendency of rutting factor.

4.3.3. Viscoelastic Properties of Modified Asphalt Binders in the Low-to-Intermediate
Temperature Range

Figure 20 provides an overview of the temperature dependence of Gr-MA and CNTs-
MA within the temperature range from −10 ◦C to 30 ◦C. As the graphic represents, with
their effects resembling in the high temperature range, both Gr and CNTs resulted in the G*
increase and the δ decrease of asphalt binders. However, as the temperature increased, the δ
of both Gr-MA and CNTs-MA increased persistently even after the CNTs content surpassed
2%, which indicated that the CNTs network had not be formed in this temperature range.
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Figure 20. Complex shear modulus (G*) and phase angle (δ) of asphalt binders modified by Gr and
CNTs in the low to intermediate temperature range: (a) G* of Gr-MA (b) G* of CNTs-MA; (c) δ of
Gr-MA; (d) δ of CNTs-MA.

According to detailed analysis on Figure 20, at 30 ◦C, G* of CNTs-MA was greater
than that of Gr-MA at 1, 4 and 5% dosage, whereas 3% and 4% dosage offered the reverse.
The relationships are accordant with their consistency correlation obtained from 30 ◦C
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penetration tests. Therefore, it is rational to deduce that the change of stiffness (a rheological
property) and consistency (a physical property) are synchronous during modification. At
−10 ◦C, except 1% dosage, δ of Gr-MA were all smaller than that of CNTs-MA. The more
elastic binder at the edge of low temperature performed the poorer anti-cracking potential.
In general, Gr contributed to more adverse reduction on the low-temperature performance
of asphalt binders at a temperature around −10 ◦C. The comparison between effects of 3%
Gr and 2% CNTs arrived at a conclusion that 3% Gr-MA had weaker cracking resistance
than 2% CNTs-MA.

4.3.4. Complex Shear Modulus Master Curves

In terms of the time-temperature superposition principle, mechanical response of
viscoelastic materials can be observed or estimated on condition of at lower temperature
sustaining longer time or at higher temperature sustaining shorter time [61]. Figure 21
presents the complex shear modulus master curves of Gr-MA and CNTs-MA, which expand
the frequency scope from 0.1–400 to 10−5–104 rad/s according to Equation (6).
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Figure 21. Complex modulus master curves of asphalt binders modified by Gr and CNTs. (a) Gr as
modifier; (b) CNTs as modifier.
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As illustrated, at extremely high temperature, both Gr and CNTs performed good
continuity of enhancing the high-temperature performance of asphalt binders. CNTs also
manifested better modification efficiency at higher temperatures and higher dosages.

At extremely low temperature, while the stiffness of CNTs-MA increased with the
increase of modifier content, that of Gr-MA presented in a different way. Originally, 1%
and 2% Gr addition decreased the G* of asphalt binder from 12,100 kPa to 11,600 kPa
and 6490 kPa, respectively. Subsequently, although G* converted to increase when Gr
content reached 3%, it just increased to 8030 kPa of 5% Gr-MA at the final which was still
smaller than the original 12,100 kPa. This phenomenon was probably due to the unique
two-dimensional structure of Gr with strong hexagon lattice, resulting in quite weak
binding force between the layers of stack, quite strong bearing capability perpendicular to
the layers, and extraordinary smooth surfaces with low surface energy [62]. This crystal
structure made Gr have excellent tribological potential [63], which reduced the cohesion
among components of asphalt binder and accordingly gave rise to the stiffness reduction.
Because the stiffness of the asphalt itself was great at extremely low temperature, it was
detectable for G* reduction after dispersing a small amount of lubricative Gr into asphalt.
Accompanied with the increasing Gr volume in the asphalt, the high Young’s modulus and
great stiffness of Gr led to a modest recovery of binder’ G*.

Moreover, it is crucial to compare the contribution of 3% Gr and 2% CNTs on asphalt
binders in the broadest temperature range. The results displayed in Figure 22 show that
3% Gr-MA was stiffer at the extremely high temperature, and was softer at the extremely
low temperature, which were both superior properties for the sake of impressive pavement
performance no matter in high-temperature or low-temperature surroundings.
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Figure 22. Complex modulus master curves of 3% Gr and 2% CNTs modified asphalt binders.

4.4. Modification Mechanism of Gr and CNTs Modified Asphalt Binders
4.4.1. Chemical Structure

FTIR tests were conducted to explore the functional groups variation of asphalt binders
after modification. The characterization can judge whether chemical reactions have oc-
curred. Figure 23 shows the FTIR spectra of matrix asphalt, Gr-MA and CNTs-MA. As
shown, the absorption peaks at 2924 cm−1 and 2855 cm−1 marks the CH2 stretching vibra-
tion, attributing to the existence of long chain alkyl. The absorption peaks at 1460 cm−1 and
1376 cm−1 marks the CH3 bending vibration because of the existence of CH3 functional
group. The four intensive absorption peaks all correspond to the typical asphalt consti-
tutions including alkanes and cycloparaffin. It is more essential that the positions of all
distinct absorption peaks are coincident, and no other new peak appears in the spectrum of
Gr-MA and CNTs-MA samples. Consequently, both two modifiers were physically blended
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with matrix asphalt and no detectable chemical reaction occurred during modification.
That also reinforced the notion that the interface thermal resistance between the modifier
and asphalt was probably a crucial factor which caused the wide gap between the thermal
parameters of Gr-MA and CNTs-MA.
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Figure 23. FTIR spectra of matrix asphalt binder and modified asphalt binders.

4.4.2. SARA Fraction

Asphalt owns a colloidal attribute and is considered as a peptization of asphaltenes
micelles by resins in an oily medium in which aromatics and saturates act as continuous
phase in a continuous matrix. Saturates are mainly comprised by aliphatic chain com-
pounds. Aromatics, resins and asphaltenes have progressive polarity and molecular mass,
containing aromatic compounds with various heteroatoms [43,45]. SARA fraction impacts
the stability of asphalt colloidal system and ulteriorly impact the performance of asphalt
binders ulteriorly, according to the modern colloid theory.

Tables 5 and 6 list the SARA fraction and collide instability index (CII) of Gr-MA and
CNTs-MA. The greater the CII ratio, the more the asphalt is of sol type, and the higher
the stability of asphaltenes is in the colloidal system [45,64]. As listed, CII was increased
by 9.90% and 32.85% with the use of 5% Gr and 5% CNTs, respectively. As an inorganic
substance, Gr or CNTs could not dissolve in the organic developers, and hence stayed at
the original point of the chromatography rods instead of being developed to target heights.
In the subsequent flame ionization process, they were detected as “asphaltene”. Gr and
CNTs could not well peptized by the resins in the oily medium. Additionally, the strong
interfacial interaction between asphalt and modifiers ascribed to the large specific surface
area of modifiers disequilibrated the asphalt colloidal system which was organized and
stabilized via continuous polarity of SARA components, forming non-covalent functional
groups by absorbing molecules with aromatic structures onto the surface of modifier
through π–π conjugation. Hence, no matter for Gr-MA and CNTs-MA, a portion of resin
stayed with modifier at the original points of chromatography rods during the experiments.
That is another reason why the weight fraction of resin showed a downward trend with
augment of asphaltenes. In summary, Gr and CNTs modification weakened the stability of
asphalt binders, promoted their gelation, and improved their elasticity. CNTs-MA suffered
from more seriously gelation than Gr-MA owing to both the greater apparent relative
density and the larger specific surface area of CNTs.
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Table 5. SARA fraction of Gr-MA.

Gr Content (%)
The Percentage of Components/%

Collide Instability Index CII
Saturate Aromatic Resin Asphaltene

0 24.5133 35.9618 32.2616 7.2632 0.4658

1 24.7825 36.0740 32.0190 7.1246 0.4686

2 24.7520 36.6307 31.3259 7.2914 0.4715

3 25.3036 35.7349 31.7220 7.2395 0.4824

4 25.6996 36.6717 30.2614 7.3674 0.4940

5 25.5832 35.9562 30.1862 8.2743 0.5119

Table 6. SARA fraction of CNTs-MA.

CNTs Content (%)
The Percentage of Components/%

Collide Instability Index CII
Saturate Aromatic Resin Asphaltene

0 24.5133 35.9618 32.2616 7.2632 0.4658

1 24.4804 36.0184 32.1995 7.3018 0.4659

2 24.4294 36.0929 32.1173 7.3603 0.4661

3 24.8536 35.7316 29.2486 10.1663 0.5389

4 25.7042 36.0467 26.6996 11.5494 0.5937

5 25.6311 37.4823 24.2933 12.5934 0.6188

Being different from the stable modification effect of Gr, at relatively low CNTs
dosages, CII of CNTs-MA underwent marginal increment, which also attributed to the
CNTs agglomeration. Nevertheless, the thermal conductivity and the thermal diffusivity
of CNTs-MA followed favorable linear relationships with CNTs content, even though there
was comparatively smaller area of contact surface between CNTs and asphalt that would
attenuate the thermal conduction. This phenomenon indicated that the contact resistance
between modifier particles also restrained the enhancement on thermal properties of
asphalt binders.

5. Conclusions

This experimental study analyzed the influence of Gr and CNTs on the thermal,
physical and rheological properties of asphalt binders to comprehensively evaluate their
utilization potentials as thermal conductive modifiers in solar harvesting and snow melting
pavements. Thermal parameters tests, penetration tests, softening point tests, ductility
tests, Brookfield viscosity tests and dynamic shear rheometer tests were applied to Gr-MA
and CNTs-MA, in which the modifier contents were chosen as 1%, 2%, 3%, 4% and 5% by
volume of matrix asphalt. FTIR characterizations and TLC-FID tests were carried out to
seek the modification mechanism and explore the influence factors on the modification
effects. The following conclusions were drawn.

Gr and CNTs linearly increased the thermal conductivity and thermal diffusivity of
asphalt binders with the increase of modifier content. Gr was more effective than CNTs.
5% Gr resulted in over 300% (3 times) increments in the thermal conductivity and thermal
diffusivity of asphalt binders at 20 ◦C, and 5% CNTs only gave rise to approximately 72%
(0.7 times) increments in the two parameters. Meanwhile, Gr and CNTs decreased the
volumetric specific heat capacity of asphalt binders at 20 ◦C. The use of Gr resulted in
a greater reduction. Increasing the interface thermal resistance between modifiers and
asphalt as well as the contact resistance between modifier particles, the larger specific
surface area of CNTs, compared with Gr, mitigated the real effects of thermal conduction
modification.
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Gr and CNTs promoted the consistency, high-temperature stability, apparent viscosity,
stiffness, elasticity, and rutting resistance of asphalt binders, and reduced their temperature
susceptibility (TS). All these features were conductive to enhancing the high-temperature
properties of asphalt binders. In comparison, CNTs-MA gained more significant enhance-
ment than Gr-MA on situation of high temperatures and high modifier contents. Addition-
ally, regarding TS reduction, whereas CNTs was more effective at high temperatures, Gr
performed better at moderate temperatures.

CNTs reduced the low-temperature performance of asphalt binders, including crack-
ing resistance and ductility, as modifier content increased in a broad temperature range.
However, although Gr weakened asphalt binder’ resistance to cracking at the tempera-
tures between −10 ◦C and 30 ◦C based on the results of ductility tests and the low-to-
intermediate temperature sweeping of DSR tests, it could eventually reduce the stiffness
of asphalt binders at extremely low temperature according to the complex shear modulus
master curves, possibly due to its unique crystal structure.

In this study, 3% Gr by volume of matrix asphalt performed with the best potential
for the application of solar harvesting and snow melting pavements. Being calculated
from the results of the linear regressions, the thermal conductivity, thermal diffusivity, and
volumetric specific heat capacity of 3% Gr-MA could reach 0.4153 W/mK, 0.2533 mm2/s
and 1.6398 MJ/m3 K at 20 ◦C, respectively. The enhancement of thermal properties can
increase the work efficiency of solar harvesting and snow melting pavements, decrease the
pavement surface temperature and further alleviate the urban heat island (UHI) effect.

This article opens up new opportunities and possibilities for the use of Gr as a promis-
ing thermal conductive modifier in asphalt pavements. The conclusions were obtained from
the samples with a particular type and size. Further research on Gr and CNTs with other
types and sizes is also necessary for consolidating or even generalizing the conclusions of
this study.
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