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Abstract: Granite exhibits obvious meso-geometric heterogeneity. To study the influence of grain size
and preferred grain orientation on the damage evolution and mechanical properties of granite, as well
as to reveal the inner link between grain size‚ preferred orientation, uniaxial tensile strength (UTS)
and damage evolution, a series of Brazilian splitting tests were carried out based on the combined
finite-discrete element method (FDEM), grain-based model (GBM) and inverse Monte Carlo (IMC)
algorithm. The main conclusions are as follows: (1) Mineral grain significantly influences the crack
propagation paths, and the GBM can capture the location of fracture section more accurately than
the conventional model. (2) Shear cracks occur near the loading area, while tensile and tensile-shear
mixed cracks occur far from the loading area. The applied stress must overcome the tensile strength
of the grain interface contacts. (3) The UTS and the ratio of the number of intergrain tensile cracks
to the number of intragrain tensile cracks are negatively related to the grain size. (4) With the
increase of the preferred grain orientation, the UTS presents a “V-shaped” characteristic distribution.
(5) During the whole process of splitting simulation, shear microcracks play the dominant role in
energy release; particularly, they occur in later stage. This novel framework, which can reveal the
control mechanism of brittle rock heterogeneity on continuous-discontinuous trans-scale fracture
process and microscopic rock behaviour, provides an effective technology and numerical analysis
method for characterizing rock meso-structure. Accordingly, the research results can provide a useful
reference for the prediction of heterogeneous rock mechanical properties and the stability control of
engineering rock masses.

Keywords: combined finite-discrete element method; grain-based model; Beishan granite; grain
scale effect; grain orientation effect

1. Introduction

Natural granite is characterized by low permeability, good thermal conductivity, high
strength and little deformation. Therefore, granite is often used to create a good engineering
environment for tunnels, powerhouses or underground nuclear waste repositories, such as
the Bayu tunnel [1], Shuangjiangkou hydropower station [2], Beishan high-level radioactive
nuclear waste repository [3] and Mine-by URL [4]. Research on the mechanical properties
of granite and the propagation characteristics of microcracks therein is very important for
its engineering application. For instance, quantitative petrographic analysis showed that
crystalline rocks exhibit mineral aggregation at the grain scale, leading to complex internal
microstructures [5]. Accordingly, a thorough understanding of the effect of the meso-
structure on the mechanism responsible for the initiation, propagation and coalescence of
microcracks will facilitate research on the mesoscopic failure behavior of granite.
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Grain-scale heterogeneity is a combination of several types of heterogeneity, includ-
ing geometric heterogeneity resulting from grain shape, grain orientation and grain size;
material heterogeneity resulting from the mismatch of different grains; and contact het-
erogeneity resulting from grain boundary anisotropy. Among them, the grain size and
grain orientation, as intrinsic properties that control the heterogeneity of rock, have at-
tracted the attention of many scholars, and many experimental and numerical studies have
been carried out. Through experiments on granite and marble, Brace et al. [6] found that
fine-grained rocks display a high compressive strength. Onodera et al. [7] proposed a
linear relationship between the grain size and strength of igneous rock; that is, the uniaxial
compressive strength (UCS) increased as the grain size decreased. Ghazvinian et al. [8]
conducted experiments on the anisotropic mechanical behavior of granite and limestone,
and reported that the strength and failure mode changed with the preferred grain orienta-
tion. In addition to experimental research, numerical methods, such as particle flow code
(PFC) [9], universal discrete element code (UDEC) [10] and the combined finite-discrete
element method [11] (FDEM) have also been used to evaluate the influence of grain size on
rock strength. Wong et al. [12] proposed a method to reduce the strength parameters of
grain boundaries to simulate the mechanism of the grain size effect based on PFC. Using
the FDEM-GBM, Li et al. [13] found that the effect of grain size on the UCS was consistent
with the findings of experiments. In fact, recrystallized quartz, as the primary mineral
in granite, has the possibility to have an obviously preferred orientation in some cases.
Pan et al. [14] utilized an improved UDEC-GBM and discovered that with the increase of
preferred grain orientation, the UCS showed a “U-shaped” characteristic distribution.

Because the uniaxial tensile strength (UTS) determined by the Brazilian indirect tensile
test of brittle rocks is much lower than UCS, brittle rocks are much more sensitive to tensile
loads than to compressive loads. Thus, it is necessary to study the effect of the grain size and
grain orientation on the tensile strength and the evolution of fractures. As a complement to
laboratory testing, numerical simulation is also a feasible method. Therefore, this paper
used finite-discrete code [15] based on the FDEM to establish a meso-scale numerical model
of Beishan granite [16], and analyzed the influence of the grain size and preferred grain
orientation on the UTS and damage evolution process.

This framework enables the intergranular and transgranular contacts to be modeled
explicitly, while taking the actual grain morphology into consideration. Furthermore, the
mesoscopic contacts of the FDEM-GBM include intergrain contacts (including homophase
grain contacts and heterophase grain contacts) and intragrain contacts. Hence, this explicit
modeling approach allows grain contacts to be assigned different mechanical properties.
This paper is structured to initially introduce the meso-structure model, followed by
a validation of the simulation results against published experimental results [16]. The
FDEM-GBM can provide an efficient way to simulate grain breakage and insights into the
propagation of grain-scale microcracks, which can elucidate the relationship between the
evolution of the UTS and the failure mechanisms of crystalline rocks.

2. Basic Principles of FDEM

FDEM, proposed by Munjiza et al. [11], combines the advantages of the finite ele-
ment method (FEM) and the discrete element method (DEM), continuous mechanical
behaviors, such as the elastic deformation of brittle rocks, can be simulated by FEM, while
discontinuous deformation behaviors such as damage and fracturing in brittle rocks can
be simulated by the cohesive crack element (CCE) and the contact forces of blocks can be
calculated by DEM. FDEM simulates the rock fracture process by introducing a model of
the fracture process zone (FPZ) (Figure 1b) to simulate the initiation and propagation of
microcracks, where the FPZ model is characterized by CCEs. Therefore, this method can
capture the fracture evolution from continuity to discontinuity in brittle rocks, and any
fracture trajectory can develop freely under the constraints of the mesh topology based on
the stress and strain state.
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Figure 1. Failure models and failure criterion of CCEs in FDEM: (a) schematic of Fracture Process
Zone (FPZ) in brittle geomaterials; (b) numerical representation of theoretical FPZ model in Irazu;
(c) exaggerated view of 4-noded CCEs located along edges of all adjoining triangular finite elements;
(d) tensile failure mode (mode I); (e) shear failure mode (mode II); and (f) mixed tension-shear failure
criterion (mode III) (modified from Liu et al. [17]).

This paper uses the Irazu 2D finite-discrete code based on FDEM [15]. In the Irazu 2D
model, the domain is discretized with a topological mesh, which is composed of 3-noded
constant-strain triangular elements and 4-noded CCEs. Each adjacent pair of triangles is
connected with a CCE. Triangular elements represent rock blocks, and the elastic strain is
simulated by triangular elements based on linear elastic continuum theory. The repulsive
forces between contacting couples are calculated using a distributed contact force penalty
function method, and the frictional forces between contacting couples are calculated using
a Coulomb-type friction law. When the CCEs reach the critical condition of mode I (tensile
fracture), mode II (shear fracture) or mixed mode III (tensile–shear fracture), the failure
will occur. The connected triangular elements will be separated. After separation, they
evolve into discontinuous blocks, and as the simulation progresses, the discrete blocks can
undergo finite displacement and rotation, and new contacts can be created. The constitutive
behavior and failure modes of CCEs are shown in Figure 1.

Because this method adopts several definite mechanical constitutive models for the
initiation and coalescence of microcracks. Therefore, FDEM has been used to analyze and
simulate the progressive fracturing process of brittle rock. More detailed principles of
FDEM can be found in [15].
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3. FDEM Simulation of Acoustic Emission

In FDEM, the strain energy generated from brittle rocks is simulated via the energy
stored in triangular elements resulting from their elastic deformation. When the local
CCEs reach the critical stress condition, then the strain energy stored in the triangular
elements begins to release gradually via newly generated fractures. The released energy
includes three parts: fracturing energy dissipated in CCEs during the yield stage, friction
energy generated from the slipping of triangular elements, and kinetic energy of triangular
elements which can be regarded as acoustic emission (AE) event energy. AE events can
represent CCEs breakage. The energy of an AE event is equivalent to the maximum kinetic
energy change of the CCE from entering yield state to complete failure.

Since the brittle fracture in rocks occurs over a finite time interval, the initiation time
is calculated by the change of the kinetic energy of the CCE. The evolution of the kinetic
energy of the CCE nodes is correlated with the softening and rupture of a CCE (as shown
in Figure 2). The initiation time, Ti, is assumed to be the time at which the kinetic energy of
the CCE reaches a maximum.

Figure 2. The evolution of normal bonding stress and kinetic energy (AE energy) of CCE nodes, Ek,
as a function of time, T, for the tensile failing CCEs [17].

Hazzard et al. proposed the algorithm of AE calculation for PFC model [18]. The
detail calculation process in FDEM is as follows [19]:

(1) When the CCE reaches the peak strength, the kinetic energy of the CCE nodes is
stored in memory as Ek,y:

Ek,y =
4

∑
i=1

miv2
i,y (1)

where mi and vi, y are the nodal mass and nodal velocity at the time of yielding
T = Ty, respectively.

(2) The kinetic energy, Ek(t), of the CCE nodes is monitored until the CCE fails; the
change in kinetic energy is calculated at each time step as:

∆Ek(t) = Ek(t)− Ek,y (2)

(3) The maximum change of ∆Ek in the whole process of CCE failure from the yielding
moment Ty to the failing moment Tf can be regarded as the energy of AE event induced
by each CCE breakage. It is calculated as follows and the initiation time of AE event
corresponds to the moment Ti:

Ee = max
[Ty ,Tf ]

∆Ek(t) (3)
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(4) Finally, the event magnitude, Me, can be calculated according to Gutenberg [20]:

Me =
2
3
(lgEe − 4.8) (4)

4. Numerical Grain-Based Model

This paper establishes a heterogeneous numerical model of Beishan granite based on
the results of experimental research [15]. Beishan granite is a fine-grained granite composed
of quartz (Qtz), K-feldspar (Kfs), plagioclase (Pl), biotite (Bt) and muscovite (Ms), and
the grain size ranges from 0.25 to 4.4 mm. The microstructure of Beishan granite mineral
crystals is shown in Figure 3 [21]. This paper considers three mineral components, namely
feldspar (Fsp), quartz (Qz) and mica (Ma), with mineral contents of 47%, 38% and 15%,
respectively. The grain size of feldspar is largest, followed by quartz, and the size of mica
is smallest. The grain sizes of minerals in the GBM are shown in Figure 4.

Figure 3. Micro-structure of Beishan granite (modified from [21] with permission from Elsevier).

Figure 4. Grain size distribution of minerals in the grain-based model (PDF in the figure stands for
the probability density function).

Neper [22], an open-source software package for 2D and 3D polycrystal generation
and meshing, capable of generating multiscale tessellations, was utilized to generate the
initial Voronoi region (Figure 5a).
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Figure 5. (a) typical Voronoi diagram. The red dots indicate the centers of the Voronoi polygons
and the green dots indicate the seeds for generating Voronoi polygons; and (b) a combination of
multiscale grains.

Based on the Poisson point process of Neper, Voronoi polygons were randomly
generated locally (Figure 5b), and the radii of the equivalent area circles of the Voronoi
polygons were set to obey a normal distribution, as shown in Figure 4. Simultaneously, the
regularization process removes these small edges. Based on these Voronoi polygons, a meso-
structure characterization geometric model with different mineral grain morphologies was
constructed for Beishan granite, and the geometric model was imported into Gmsh [23]
via a C++ subroutine, and then converted into a numerical model compatible with Irazu
2D. The model was discretized using an unstructured 2D Delaunay mesh comprising
30,619 triangular elements with an average element size of 0.5 mm. A mesh sensitivity
analysis [24] exhibited that the element size represents an acceptable compromise between
the computational demand and numerical accuracy. The GBM is illustrated in Figure 6.

Figure 6. Schematic diagram of the grain-based model (GBM).

5. Mesoscopic Parameter Verification of Grain-based Model

The size of the heterogeneous numerical sample constructed for Beishan granite is
consistent with the laboratory sample size [16]. The sample is a disc with a diameter of
50 mm, and the upper and lower ends of the sample are equipped with loading platens.
The two loading platens were simulated as moving towards the sample at a constant
velocity of 0.05 m/s each. Although the simulated loading velocity is much greater than
the experimental loading velocity in the laboratory, it has been demonstrated that a quasi-
static condition is guaranteed at this loading velocity [25]. The numerical models were
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regarded as plane stress models, and a time step of 7 × 10−7 ms was adopted to ensure
the numerical stability of the model in Irazu. A schematic diagram of the model under
loading is presented in Figure 6. The force and displacement were obtained by monitoring
the nodes of the upper loading platen.

The uniaxial tensile strength (UTS) can be calculated as follows

UTS = Pmax/(πRt) (5)

where Pmax is the maximum radial load, R is the radius of the disc and t is the thickness of
the disc.

In the Irazu-GBM, the triangular elements inside the grains are connected by CCEs
(shown as intra-CCEs in Figure 6), and the boundaries between adjacent grains are sepa-
rated into heterophase boundaries (green lines in Figure 6) and homophase boundaries
(black lines in Figure 6). Two types of boundaries are also simulated using CCEs (shown
as inter-CCEs in Figure 6), but the strength parameters of the intra-CCEs are higher than
those of homophase boundaries, and the strength parameters of homophase boundaries are
higher than those of heterophase boundaries. This condition conforms to the objective law
that the contact strength between mineral grains is lower than the strength of the mineral
grains themselves, and can reflect the differences in the micromechanical properties of
the boundaries between different grains. Therefore, this method can capture the spatial
heterogeneity of the development of fracture section caused by the heterogeneity of mineral
phases and grain sizes.

The reference values [24–26] of the relevant physical and mechanical properties of
common minerals in granite (Table 1) provide a reference basis for the calibration of
the mesoscopic parameters of mineral grains of the synthetic Beishan granite samples.
The mesoscopic parameters assigned to the intergrain boundaries (including both ho-
mophase and heterophase boundaries) of the model are obtained by an iterative calibration
procedure [27] until the macroscopic strength parameters emerging from the numerical
simulations closely match those obtained from laboratory testing. The mineral compo-
sition and the mesoscopic parameters of the mineral grains and contact boundaries of
the synthetic Beishan granite samples are shown in Table 2. The UTS obtained by the
numerical simulation is 8.2 MPa, as shown in Figure 7, with an error of 3.5% from the
laboratory testing result [16]. Moreover, the fractured section obtained by the laboratory
experiment [28] and the numerical simulation are in good agreement, as shown in Figure 8.

Table 1. Physical and mechanical parameters of the primary minerals in granite [24–26].

Mineral Density
(kg·m−3)

Tensile
Strength (MPa)

Young’s
Modulus (GPa)

Poisson’s Ratio
(-)

K-feldspar 2560 5–10 69.8 0.28
Plagioclase 2630 5–10 88.1 0.26

Quartz 2650 10–11 94.5 0.08
Biotite 3050 4–7 33.8 0.36

Table 2. Mesoscopic parameters of the grain-based model in Irazu 2D.

Property Qz Fsp Ma

Intragrain

Density
(kg·m−3) 2600 2600 3050

Young’s
modulus (GPa) 80 70 40

Poisson’s ratio
(-) 0.07 0.26 0.27

Friction
coefficient (-) 1.2 1.2 1.2
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Table 2. Cont.

Property Qz Fsp Ma

Cohesion (MPa) 25 25 25
Tensile strength

(MPa) 20 15 10

Mode I fracture
energy (J·m−2) 900 300 600

Mode II fracture
energy (J·m−2) 1800 600 1200

Fracture penalty
(GPa) 400 350 200

Normal penalty
(GPa·m) 80 70 40

Tangential
penalty

(GPa·m−1)
800 700 400

Qz-Qz Fsp-Fsp Ma-Ma

Homophase
boundary

Friction
coefficient (-) 1.1 1.1 1.1

Cohesion (MPa) 20 20 20
Tensile strength

(MPa) 15 10 10

Mode I fracture
energy (J·m−2) 700 250 450

Mode II fracture
energy (J·m−2) 1400 500 900

Fracture penalty
(GPa) 200 175 100

Normal penalty
(GPa·m) 40 35 20

Tangential
penalty

(GPa·m−1)
400 350 200

Qz-Fsp Qz-Ma Fsp-Ma

Heterophase
boundaries

Friction
coefficient (-) 0.9 0.9 0.9

Cohesion (MPa) 20 20 20
Tensile strength

(MPa) 10 6 6

Mode I fracture
energy (J·m−2) 50 20 20

Mode II fracture
energy (J·m−2) 500 200 200

Fracture penalty
(GPa) 350 200 275

Normal penalty
(GPa·m) 70 40 55

Tangential
penalty

(GPa·m−1)
700 400 550
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Figure 7. Tensile stress-strain curve of the calibration model.

Figure 8. Comparison of the failure phenomenon: (a) fractured section of laboratory test (modified
from [28] with permission from Elsevier); (b) acoustic emission (AE) evolution; (c) failure modes;
and (d) magnitudes of AEs, Me.

6. Analysis of the Effect of Meso-Heterogeneity on the Mechanical Properties

According to the meso-geometric heterogeneity of Beishan granite, this paper designs
two numerical simulation schemes of Brazilian splitting tests to analyze the influence of
meso-heterogeneity on the mechanical properties and failure laws from two perspectives,
namely the grain size and grain orientation, as shown in Table 3.

Table 3. Numerical test schemes.

Scheme Grain Size (mm) Grain Orientation (º)

1 1.5, 2.0, 2.5, 3.0 -
2 - 0, 30, 45, 60, 90
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6.1. Effect of the Grain Size

The grain size has a significant effect on the strength of brittle rock. The uniaxial
compressive strength of rocks decreases with the increase of the grain size, which has
been widely confirmed by laboratory experiments [7,29–31]. Specifically, Deng et al. [32]
found that the peak load larger decreased as the grain size increased. Cowie et al. [33]
analyzed laboratory experiments and found that the UTS of granite decreased with the
increase of grain size. Nevertheless, in the conventional UDEC-GBM and PFC-GBM, the
UCS and UTS of rock increase with the increase of grain size [34,35], which is contrary to
these experimental findings. Therefore, the numerical analysis technology is in urgent need
of improvement. Based on the PFC-GBM, Wong et al. [12] reduced the grain boundary
strength to simulate the mechanism of the grain size effect. The FDEM-GBM has also been
shown to be capable of simulating the grain size effect [13]. Hence, the effect of the grain
size on the UTS and fracture evolution of granite can be studied in depth based on FDEM.

In this chapter, Neper is used to generate four Brazilian disc models with different
grain sizes (equivalent area circle diameters). The average grain sizes are approximately
1.5 mm, 2.0 mm, 2.5 mm and 3.0 mm, and the numbers of grains are 1016, 675, 418 and 301,
respectively. The relationships between the tensile stress and displacement under different
grain size conditions are shown in Figure 9, and the relationship between the grain size
and UTS are shown in Figure 10, which shows that as the grain size increases, the UTS
decreases, and the UTS ranges from 9.1 to 11.5 MPa.

Figure 9. The tensile stress-displacement curves under different grain size conditions.

The four numerical samples are shown in Figure 11a. The microcrack modes after the
failure of the rock sample are shown in Figure 11b. The red, blue and yellow lines represent
shear cracks, tensile cracks and mixed cracks, respectively, including intergranular and
transgranular cracks. The statistical results of these microcracks are listed in Table 4. Most
of the microcracks were intergranular tensile cracks, followed by transgranular mixed
cracks. The total number of cracks and the number of transgranular cracks increased with
the increase of the grain size, while the number of intergranular cracks decreased. This
outcome indicates that if the grain size rises, more transgranular cracks will form. When
the average grain size of the numerical model increased from 1.5 mm to 3.0 mm, the ratio
of the number of intergranular tensile cracks to transgranular tensile cracks decreased from
29.8 to 6.8.
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Figure 10. Relationship between the grain size and UTS.

Figure 11. Characteristics of the samples and microcracks under different grain size conditions:
(a) the four numerical samples; (b) the fracture paths (green, red and yellow segments represent
tensile, shear and tensile-shear mixed cracks, respectively); and (c) the crack angle distributions.

Table 4. Summary of microcrack types after Brazilian splitting tests.

Sample

Number of Different Types of Microcracks

Intergranular Cracks Transgranular Cracks

Mode I Mode III Mode II Mode I Mode III Mode II

A-1 119 23 2 4 68 1
A-2 121 43 2 7 48 3
A-3 150 56 3 10 50 6
A-4 130 70 3 19 52 10
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The paths of the microcracks after the failure of the four samples with different
grain sizes are shown in Figure 11b. The cracks tended to pass through the intergrain
boundaries, as the stiffness mismatch caused uncoordinated deformation. In addition, the
main macroscopic fractures were formed by the expansion and coalescence of microcracks.
With the existence of larger mineral grains, the shape of the main fracture changed from a
straight line to a more complex multisegment curve or several curves. Therefore, the failure
of heterogeneous rock includes the initiation, propagation and coalescence of microcracks,
and microcracks are significantly controlled by the grain size.

The distributions of the crack inclination angles in the rock samples with different grain
sizes are shown in Figure 11c. The crack inclination angle is defined as the angle between
the microcrack direction and the horizontal direction measured positively anticlockwise.
To plot Figure 11c, the inclination angle was divided into 12 groups with an interval of
15◦. When the average grain size of the numerical model increased from 1.5 mm to 3.0 mm,
the crack inclination angle changed from 75◦ ~ 105◦ to 30◦ ~ 165◦, indicating that the
grain size distribution has an important effect on the crack inclination angle. When the
grain size decreased, the failure section became increasingly straight – the main reason
for this phenomenon is that the heterogeneity of mineral grains will cause uncoordinated
deformation, which will cause the tensile cracks to deviate from the center of the disc and
produce off-center cracks. Therefore, the failure mode of granite is complicated.

The variations of the fracture process under different grain size conditions are shown
in Figure 12. The microcracks were firstly initiated in the center of the disc at the primary
loading stage. Then, with increasing loading the tensile stress at the center of disk reaches
the maximum value. Some visible macrocracks can be observed in the central region of
disk, but not exactly the geometrical center. Reaching the peak, the main macro-fracture
(brittle failure) is formed, which split the disk into two parts. Some sub-fractures are
continuously formed. During the fracture developing process, orientation and shape of
cracks are strongly influenced by the grain size. Most cracks are initiated at the boundaries
between mineral grain develop mainly along weak paths characterized by contacts with
low strength. We can observe intergranular cracks along boundary between mica and
quartz grains and the transgranular cracks penetrating the mica grain.

In the numerical models, in terms of the mechanical properties of heterogeneous grain
boundaries, the mechanical properties of grain boundaries between quartz and mica are
the weakest, so the grain boundaries between quartz and mica are generally the zone
where the intergranular cracks initiate. The mechanical properties of the heterogeneous
grain boundaries are weaker than those of the homophase grain boundaries, and thus
the heterogeneous grain boundaries are the main crack growth paths. The mechanical
properties of intragain are relatively better than those of homophase and heterophase grain
boundaries, so transgranular cracks do not easily occur. Simultaneously, the mechanical
properties of mica are weaker than those of quartz and feldspar, so mica grains are the
main zone where transgranular cracks occur.

Figure 13a shows the AE evolution and Figure 13b the magnitudes of AEs under
different grain sizes conditions corresponding to the different feature loading points. The
AE events almost locate at the center of the disc in the former loading stage, and AE events
are mainly at low-energy level. With rising axial stress, cracks gradually increase and
locate discretely. Meanwhile, some discrete high-energy AE events occur in the rock model.
During the whole process of splitting simulation, shear microcracks play the dominant
role in energy release – particularly, they occur in later stage. Under different grain size
conditions, the crack growth paths are significantly different. Finally, the oblique fracture
belt rapidly extends and coalesces, and is characterized by the tensile failure mode. The
larger the grain size is, the more complicated the crack propagation path and the greater
the energy level differences. When the grain sizes are 1.5 and 2 mm, the fracture sections
are smoother and straighter.
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Figure 12. The variations of the fracture process under different grain size conditions: (a) size =
1.5 mm; (b) size = 2 mm; (c) size = 2.5 mm; (d) size = 3 mm (A represent the model; B, C and D
represent the fracture process).

Figure 13. AE evolution and magnitudes of AEs under four different grain sizes conditions. (a) the
AE evolution, (b) the magnitudes of AEs, Me, calculated from the kinetic energy of the sources using
the technique illustrated in Section 3.

In order to consider the influence of mineral distribution under each grain size condi-
tion, we generated three samples for each grain size. We obtain different tensile strengths
when we choose different mineral distributions (as shown in Figure 14). We could find
that with the increase of the grain size, the fluctuations of UTS were reduced. The possible
reason for this is that there are fewer heterophase boundaries when the grain size is smaller.
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Figure 14. Relationship between the grain size and UTS.

6.2. Effect of the Preferred Grain Orientation

Recrystallized quartz, as the primary mineral in granite, can exhibit obviously pre-
ferred orientation in some cases, as illustrated in Figure 15 [14]. However, existing GBMs
cannot control the grain size distribution and preferred grain orientation at the same
time. To resolve this problem, in this paper, the inverse Monte Carlo (IMC) algorithm
is used to generate Voronoi polygons with specified grain size and grain orientation
distribution characteristics.

Figure 15. Microstructure of the quartz in granite [14] with permission from Elsevier.

The IMC algorithm assumes that the grain area follows a lognormal distribution,
and the characteristics depend on the mean µ(s) and standard deviation σ(s). Given the
area of the model and the number of grains, the grain size distribution depends only on
the coefficient of variation COV(s), which is equal to the ratio of the standard deviation
σ(s) to the mean µ(s). The smaller the COV(s) is, the more homogeneous the grain size
distribution. At the same time, the angle between the maximum Feret diameter and the
horizontal direction is defined as the grain orientation (ϕ), and its distribution takes the
form of a normalized cosine function. More details regarding the IMC algorithm can be
found in [36]. The formulas used to calculate the mean µ(s) and standard deviation σ(s) are

µ(s) = NP/SD (6)
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σ(s) = COV(s) · (NP/SD) (7)

where NP is the number of grains and SD is the area of the rock sample.
Using this method, a series of models with similar grain size distributions and dif-

ferent preferred orientations were generated, as shown in Table 5. The numerical models
generated by the IMC method successfully present the expected statistical distributions of
the grain size and preferred orientation. The grain size coefficient (So) was used to measure
the heterogeneity of the numerical model, where the higher the value of So is, the more
heterogeneous the model. The models were generated in MATLAB and transferred to
Gmsh via a C++ subroutine. The formula used to calculate the values of So [34] shown in
the table is expressed as

So =
√

Q25%/Q75% (8)

where Q25% and Q75% correspond to the diameters smaller than 25% and 75%, respectively,
of the grains on the grain size cumulative frequency diagram.

Table 5. Characteristics of the numerical samples with different preferred grain orientations.

Sample Grain Number, NP
Grain Size

Coefficient, So

Preferred
Orientation, ϕ (◦)

B-1 303 1.06 0
B-2 319 1.07 30
B-3 329 1.06 45
B-4 328 1.07 60
B-5 321 1.06 90

The tensile stress-displacement curves under different grain orientations are shown
in Figure 16, and the relationship between the UTS and the grain orientation is shown in
Figure 17. As the grain orientation increased, the UTS presented a “V-shaped” distribution
characteristic; the UTS between 45◦ and 90◦ were lower than those between 0◦ and 30◦,
and the UTS were between 6.7 and 8.7 MPa. Indeed, Ghazvinian et al. [8] conducted an
experiment on the anisotropic mechanical behavior of Cobourg limestone, and found that
the strength and failure mode of the rock changed with the preferred grain orientation.
Hence, as the UTS at 0◦ loading angle increased with the decrease of preferred grain
orientation, the simulation results in this paper are basically consistent with the conclusions
of previous experiments.

Figure 16. The tensile stress-displacement curves under different preferred grain
orientation conditions.
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Figure 17. Relationship between the tensile strength and the grain orientation.

Tavallali et al. [37] proposed a method for calculating the mechanical energy applied
by calculating the area under the force-displacement curve, which can be expressed as

W =
1
2

Pmax · ∆S (9)

where W is the mechanical energy exerted by the testing machine on the rock sample,
Pmax is the ultimate load during the loading process and∆S is the axial displacement
corresponding to the ultimate load.

From an energy perspective, Beishan granite is extremely brittle; the stress linearly
increases to the peak before falling, and it does not show an obvious yielding stage. Almost
all the external energy absorbed by the rock is converted into elastic strain energy, which is
stored inside the sample. Thus, the mechanical energy (W) input by the testing machine can
be used to measure the energy storage capacity of the rock in the Brazilian splitting test. The
grain orientation exerted a considerable influence on the energy storage capacity of granite.
With the increase of grain orientation, the energy storage capacity decreased significantly.
As shown in Figure 16, the greater the UTS is, the stronger the energy storage capacity.
As revealed by the Brazilian splitting test, the energy storage capacity of the granite was
negatively correlated with the grain orientation. From the perspective of engineering
rock breaking, understanding the energy storage capacity of rocks and improving energy
utilization are of great significance for maintaining the integrity of the rock masses.

The numerical samples are shown in Figure 18a, and the grains with the preferred
orientations are shown in Figure 18b. Figure 18c shows the crack paths and crack failure
modes under different grain orientation conditions. The red, blue and yellow lines repre-
sent shear cracks, tensile cracks and tensile-shear mixed cracks, including intergranular
and transgranular cracks. The shapes of the fracture sections for the five different grain
orientation models are quite different. Nevertheless, the preferred grain orientation pro-
vides a preferential path for the growth of microcracks, and thus the failure mode of the
rock changes with the preferred grain orientation. Tensile cracks are dominant among the
samples with preferred orientations of 0◦, 30◦ and 45◦, while for samples with 60◦ and 90◦,
tensile-shear mixed cracks are observed to increase.
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Figure 18. Characteristics of the sample and crack with five different preferred grain orientations: (a) the numerical samples;
(b) the models with the preferred grain orientations (highlight grains represent grains with preferred orientations); (c) the
fracture paths (green red and yellow segments represent tensile, shear and tensile-shear mixed cracks, respectively); and
(d) the crack angle distributions.

Figure 18d shows the distributions of the crack inclination angles under different
grain orientation conditions. When the grain orientation is 0◦, the crack inclination angles
are distributed mainly between 45◦ and 135◦; when the grain orientation is 30◦, the crack
inclination angles are distributed mainly between 90◦ and 130◦; when the grain orientation
is 45◦, the crack inclination angles are distributed mainly between 90◦ and 100◦, and
between 130◦ and 140◦; when the grain orientation is 60◦, the crack inclination angles are
mainly distributed between 50◦ and 120◦; and finally, when the grain orientation is 90◦,
the crack inclination angles are distributed mainly between 70◦ and 110◦. The preferred
grain orientation clearly has a significant impact on crack propagation. The reason for
this is that the damage of the sample is divided into two main processes: the sample is
firstly damaged locally along the grain boundaries parallel to the loading direction, and the
grain boundaries are always in weak contact; then, these local cracks provide a dominant
direction for further damage, which propagates from the crack tip before expanding and
penetrating the sample. Finally, these cracks coalescence and cause the sample to fail.

The variations of the fracture process under different preferred grain orientation
conditions are shown in Figure 19. During the fracture developing process, orientation and
shape of cracks are strongly influenced by the grain orientation. Most cracks are initiated at
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the boundaries between mineral grain, developing mainly along weak paths characterized
by contacts with low strength, and the fracture paths become more complicated during the
later stage of loading.

Figure 19. The variation of the fracture process under different preferred grain orientation conditions: (a) orientation = 0◦;
(b) orientation = 30◦; (c) orientation = 45◦; (d) orientation = 60◦; and (e) orientation = 90◦ (A represents the model; B, C and
D represent the fracture process).

Figure 20a shows the AE evolution and Figure 20b shows the magnitudes of AEs
under different grain orientation conditions corresponding to the different feature loading
points. The AE events almost locate at the center of the disc in the former loading stage,
and AE events are mainly at low-energy level. With rising axial stress, cracks gradually
increase and locate discretely. Meanwhile, some discrete high-energy AE events occur in the
rock model. During the whole process of splitting simulation, shear microcracks play the
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dominant role in energy release – particularly, they occur in the later stage. Under different
preferred grain orientation conditions, the crack growth paths are significantly different.
Finally, the oblique fracture belt rapidly extends and coalesces, and is characterized by the
tensile failure mode. When the preferred orientations are 30◦, 45◦ and 60◦, the fracture
sections are more complicated.

Figure 20. AE evolution and magnitudes of AEs under different grain orientation conditions: (a) the AE evolution; and (b)
the magnitudes of AEs, Me, calculated from the kinetic energy of the sources using the technique illustrated in Section 3.

7. Conclusions

On the basis of the Voronoi grain-based modeling method, this paper reproduced the
continuous-discontinuous fracture process of heterogeneous rock under the framework of
the combined finite-discrete element method (FDEM). Considering the mechanical strength
and elastic deformation properties of Beishan granite, the grain-based model (GBM) was
introduced into the meso-mechanical analysis of granite samples and a series of numerical
Brazilian splitting numerical tests were carried out to analyze the effect of the grain size
and preferred orientation. The main results are summarized as follows:

1. The FDEM-GBM considers the complexity of the contacts between different mineral
grains in the rock and the physical and mechanical properties of different mineral
phases; therefore, the FDEM-GBM has the ability to simulate the effect of the grain
size in heterogeneous rocks.

2. Because the mineral grain has significant influence on the crack propagation paths,
the FDEM-GBM can capture the location of fractures more accurately than the conven-
tional models. Shear cracks occur near the loading area, while tensile and tensile-shear
mixed cracks occur far from the loading area. The applied stress must overcome the
tensile strength of the intergrain contact.

3. The UTS and the ratio of the number of intergrain tensile cracks to the number of
intragrain tensile cracks are negatively correlated with the grain size. During the
whole process of splitting simulation, shear microcracks play the dominant role in
energy release; particularly, they occur in later stage. Under different grain sizes
conditions, the crack growth paths are significantly different. The larger the grain size
is, the more complicated the crack propagation path. When the grain sizes are 1.5 and
2 mm, the fracture sections are smoother and straighter.

4. With the increase of preferred grain orientation, the UTS presents a “V-shaped”
characteristic distribution. During the whole process of splitting simulation, shear
microcracks play the dominant role in energy release; particularly, they occur in later
stage. Under different preferred grain orientation conditions, the crack growth paths
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are significantly different, especially 30◦, 45◦ and 60◦. When the preferred orientations
are 30◦, 45◦ and 60◦, the fracture sections are more complicated.

5. The preferred grain orientation considerably influences the energy storage capacity of
Beishan granite. With the increase of grain orientation, the energy storage capacity
decreases significantly. The greater the UTS is, the higher the energy storage capacity.

Since the mesoscopic simulations of heterogeneous rock conducted herein are imple-
mented under the framework of the combined finite-discrete element method (FDEM),
the model has many mesoscopic parameters, which require much “trial and error” work.
Consequently, further work is needed to reduce the difficulty of encountering too many
mesoscopic parameters in the calibration process.
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