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Abstract: Theoretical or numerical progressive collapse analysis is necessary for important civil
structures in case of unforeseen accidents. However, currently, most analytical research is carried out
under the assumption of material elasticity for problem simplification, leading to the deviation of
analysis results from actual situations. On this account, a progressive collapse analysis procedure for
truss structures is proposed, based on the assumption of elastoplastic materials. A plastic importance
coefficient was defined to express the importance of truss members in the entire system. The plastic
deformations of members were involved in the construction of local and global stiffness matrices.
The conceptual removal of a member was adopted, and the impact of the member loss on the truss
system was quantified by bearing capacity coefficients, which were subsequently used to calculate
the plastic importance coefficients. The member failure occurred when its bearing capacity arrived at
the ultimate value, instead of the elastic limit. The extra bearing capacity was embodied by additional
virtual loads. The progressive collapse analysis was performed by iterations until the truss became
a geometrically unstable system. After that, the critical progressive collapse path inside the truss
system was found according to the failure sequence of the members. Lastly, the proposed method
was verified against both analytical and experimental truss structures. The critical progressive
collapse path of the experimental truss was found by the failure sequence of damaged members.
The experimental observation agreed well with the corresponding analytical scenario, proving the
method feasibility.

Keywords: truss structures; progressive collapse analysis; plastic importance coefficients; bearing
capacity coefficients; material plasticity

1. Introduction

In the real world, civil infrastructures might face progressive collapse risks due to
design errors, construction bias and unpredictable events [1]. Unexpected factors such as
seismic loads [2] and corrosion [3] may lead to a collapse accident. The progressive collapse
of a structure often starts from the failure of components within a local region. Such
failure might overspread the whole structure, eventually leading to the collapse event [4].
Therefore, how to avoid progressive collapse is an important issue in structural design,
construction and operation. Some effective measures have been proposed in the relevant
design codes [5,6]. The basic idea focuses on the effect of local failure on the whole structure,
which forms the realm of progressive collapse analysis for checking the vulnerability or
robustness of a structure [7,8]. Progressive collapse analysis can be performed within
a qualitative or quantitative framework. A qualitative procedure highly relies on an
engineers’ experience, and thus, it is not suitable for complex structures. A quantitative
method attempts to find alternative load paths after one or some components fail [9],
which is implemented in a numerical or analytical way [10]. The failure patterns and paths
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are of primary concern, and the importance of all components are calculated and ranked
to seek the critical failure paths [11,12]. Then, structural optimization and component
strengthening can be carried out to prevent the potential progressive collapse [13].

The importance of a component in a structure system can be represented by a quan-
titative coefficient [14], whose value embodies the risk of losing the component to the
entire structure. The negative effect of the missing component is simulated by the so-called
conceptual removal method. A component is removed from the structure every time, and
the mechanical behavior of the residual structure is analyzed to evaluate any negative
effect [15]. A greater importance coefficient implies a higher possibility of collapse risk,
meaning the damage or failure of this component is more likely to cause a progressive
collapse of the structure. In other words, this coefficient is directly related to structural
vulnerability [16], or its antonym structural robustness [17]. However, the expression of
importance coefficient is more intuitive than a vulnerability or robustness index at the
component level [18]. The progressive collapse paths can be initially sought based on the
sequence of importance coefficients of all components.

As is known, truss structures have been widely used in civil construction, e.g., cold-
formed steel trusses are popularly adopted as the fundamental structure of portal frame
structures for constructing light-weight buildings [18,19]. To date, the importance coeffi-
cient analysis of truss structures is usually established on the assumption of elastic materials
for simplicity [20–22]. A modified elastic compensation approach can be used to determine
the ultimate plastic load capacity of a collapsed structure [22]. For truss string structures,
the numerical simulation results under certain elastic support stiffness might be close to the
experimental collapse observations [23]. However, in actual collapse events some structural
components will experience their plasticity states under large internal forces. On the other
hand, plastic behaviors are very difficult to take into account in theoretical deduction due
to the involvement of material nonlinearity. The analysis procedures are always performed
with the help of finite element computation, which gives a solution with great convenience
but cannot express the quantitative causality inside a progressive collapse process.

In view of this drawback, this work attempts to improve the existing method by
fully considering the elastoplasticity properties of materials [20]. A plastic importance
coefficient is proposed for truss members under axial internal forces. The material plasticity
is embodied in local and global stiffness matrices, and the bearing capacity of a truss
after removing a member is first deduced, for the subsequent calculation of the plastic
importance coefficient. The progressive collapse path of the truss structure can be defined
according to the failure sequence of the members.

2. Theoretical Assumptions and Failure Criterion

The proposed method focuses on truss structures. The scheme of ‘conceptual removal’
in the design code [5,6] is adopted for evaluating the importance of a removed truss
member. External loads are applied to truss joints, and all members only undergo axial
forces. Moreover, a truss structure with its members is assumed to meet the design of
the elastic ultimate bearing capacity. In addition, instability effects are not considered for
compressive members, whose failure is caused by the loss of material strengths. Lastly, the
directions and distributions of external loads remain stable until the truss totally fails.

Material plasticity is involved in establishing both local and global stiffness matrices
of a truss structure. A bilinear elastoplastic constitutive model (Figure 1) is adopted to
represent the material properties of truss members. The elastic moduli corresponding to
the elastic and plastic stages are marked as E and Ep = αE respectively, where α gives the
ratio of the tangent to elastic moduli. In the elastic deformation stage, the internal force of
a member equals to its elastic stiffness k multiplying the elastic deformation ∆e. After that,
the plastic deformation ∆p—which indicates when the damage happens—occurs when
axial stress (strains) exceeds the elastic limit. When truss members enter their plastic stage,
the axial stiffness decreases to kp = αk. The corresponding internal force is the elastic
ultimate bearing capacity plus kp · ∆p. The member failure occurs when its internal stress
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reaches the strength limit. At that moment, the member stiffness decreases to zero with its
internal force.
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As to the failure (collapse) of a truss system, the static analysis terminates when the
system becomes geometrically unstable. Under such a circumstance, the global stiffness
matrix turns into a singular matrix.

3. Progressive Collapse Path of Truss Structures

Finding critical progressive collapse paths is the key for evaluating the anti-collapse per-
formance of a structure. Numerical simulation is mostly employed for path searching [3,4,10].
However, it requires adequate modeling experience of engineers. On the other hand,
analytical solutions are sometimes preferred by structural designers, who highly rely on
design codes. After knowing the progressive collapse paths, engineers may set some alter-
native paths for load transferring during the design. Unfortunately, analytical methods are
difficult to perform for real-world structures.

For practical usage, this study defines a new index of plastic importance coefficient to
embody the importance of a member in a truss system under specific loading combinations.
By adopting the conceptual removal approach [5,6], the effect of losing a member can be
analyzed considering material plasticity, and the successive failures of the other members
can be found by forming the critical collapse path.

3.1. Plastic Importance Coefficients

In [18], the importance coefficient ηi of member i is defined as:

ηi =
λ0 − λi

λ0
(1)

where λ denotes the ultimate bearing capacity coefficient of a truss structure at the elastic
state; λ0 denotes the coefficient of the undamaged structure; and λi refers to the coefficient
after removing member i.

It can be seen that λ gives the ratio of the ultimate bearing capacity of the current
structure to its original load bearing capacity, and the solution of λ is the precondition for
ηi. λ reflects the change in the load carrying performance of the structure before and after
removing the member. Meanwhile, although ηi corresponds to a member, its calculation
is established on the mechanical capacity of the entire structure. Therefore, ηi rationally
reflects the contribution of a member to the bearing capacity of the truss system.

The original definition of ηi has a clear physical meaning but cannot consider the
plastic deformation of members, which departs from the actual situation in a collapse event.
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Hence, this study further proposes a plastic importance coefficient, η
p
i , that involves the

plasticity properties of materials.

η
p
i =

γλ0 − λi
γλ0

(2)

where λ0 is redefined as the initial ultimate elastic bearing capacity coefficient of the
undamaged structure; γ is an amplification factor to consider the effect of material plasticity
on λ0.

3.2. Bearing Capacity Coefficients

Suppose a load vector F is applied to a truss structure, the ultimate elastic deformations
of all the members are given as follows:

∆ = AK−1
0 F (3)

where A is the transformation matrix on the global displacement vector to members’
deformations; K0 denotes the original stiffness matrix with its inverse K−1

0 .
After a truss member is removed from the original structure, the remaining members

will gradually enter their plastic states until failure with the increase of external loads.
Suppose at the jth load step, a number x of members (i = 1, 2, . . . , x) sequentially enter
their plastic states. Among these members, non-failed members are marked as i = y, . . . , x
(y ≥ 1). The global stiffness loss δK of the truss structure is expressed by:

δK = K0 −Kj = AT(K̃0 − K̃j)A = ATδK̃A (4)

where Kj denote the stiffness matrix at the jth load step. The member-level matrices are
similarly marked as K̃0 and K̃j (δK̃ = K̃0 − K̃j). Meanwhile, there is a relationship of
K = ATK̃A among A, K and K̃. The corresponding deformation turns into:

∆(1,2,··· ,x)
j = AD(1,2,··· ,x) = AKj

−1(λj−1F + δF) (5)

where D(1,2,··· ,x) is the global displacement vector at the jth load step; δF is the additional
load caused by the members having the plastic deformations; and λj−1 is the ratio of the
maximum element in F to the ultimate elastic bearing capacity at the j-1th load step. For
the initial loading condition, λ0 = λ0 = 1.

The ultimate bearing capacity coefficient after removing one or some members at
each load step can be calculated using Equation (5). However, the solution process is very
complex, and thus, Equation (5) is not suitable for practical applications. Due to this, this
study develops a more efficient algorithm by transforming Equation (5) into:

KjD(1,2,··· ,x) = (K0 − δK)D(1,2,··· ,x)

= λj−1F + δF

= λj−1F−AT
(

K̃
(y,··· ,x)
0 − K̃

(y,··· ,x)
j

)
∆

(6)

where K̃
(y,··· ,x)
0 equals to the operation on K̃0 by defining all the elements (except i = y, . . . , x)

as zero; K̃
(y,··· ,x)
j comes from the same operation on Kj. Meanwhile, matrix B is defined

as the transformation matrix between the constrained and unconstrained deformations of
the members:

B = A(ATK̃A)
−1

ATK̃ = AK−1ATK̃ (7)

After applying AK−1
0 to both sides of Equation (6), one has:

AK−1
0 (K0 − δK)D(1,2,··· ,x) = AK−1

0

(
λj−1F−AT

(
K̃
(y,··· ,x)
0 − K̃

(y,··· ,x)
j

)
∆
)

(8)
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Introducing Equations (3), (4), and (7) into (8), one has:

AK−1
0 (K0 − δK)D(1,2,··· ,x) = AD(1,2,··· ,x) −AK−1

0 δKD(1,2,··· ,x)

= ∆(1,2,··· ,x) −AK−1
0 ATδK̃AD(1,2,··· ,x)

=
(

I−AK−1
0 ATK̃0 + AK−1

0 ATK̃j

)
∆(1,2,··· ,x)

(9)

Since B0 = A(ATK̃0A)
−1

ATK̃0 = AK−1
0 ATK̃0 andBj = A(ATK̃jA)

−1
ATK̃j = AK−1

j ATK̃j,
the expression of Equation (9) can be simplified as:

AK−1
0 (K0 − δK)D(1,2,··· ,x) =

(
I− B0 + Bj

)
∆(1,2,··· ,x) (10)

Considering the non-failed members (i = y, . . . , x), the left side of Equation (8) is
further deduced as follows:

AK−1
0

(
λj−1F−AT

(
K̃
(y,··· ,x)
0 − K̃

(y,··· ,x)
j

)
∆
)
= λj−1∆−

(
AK−1

0 ATK̃
(y,··· ,x)
0 −AK−1

0 ATK̃
(y,··· ,x)
j

)
∆ (11)

Since B(y,··· ,x)
0 = AK−1

0 ATK̃
(y,··· ,x)
0 and B(y,··· ,x)

j = AK−1
j ATK̃

(y,··· ,x)
j , the expression of

Equation (11) can also be simplified as

AK−1
0

(
λj−1F−ATK̃

(y,··· ,x)
0 ∆

)
=
(

λj−1I− B(y,··· ,x)
0 + B(y,··· ,x)

j

)
∆ (12)

Combining Equation (10) with (12), the axial deformation of each member is given
as follows:

∆(1,2,··· ,x) =
(
I− B0 + Bj

)−1
(

λj−1I− B(y,··· ,x)
0 + B(y,··· ,x)

j

)
∆ (13)

Based on Equation (13), the member deformations can be calculated under the
conditions of λj−1 and some plastic/failed members. Further, their proportion to the
ultimate elastic limit deformation, ∆(1,2,··· ,x)/∆, can be obtained for estimating the
importance coefficients.

3.3. Solution Procedure of Bearing Capacity Coefficient

Given an initial external load set of F1 = {1} is applied to a truss structure with n
members, one has λe

0 = 1. Meanwhile, the ratio of the ultimate plastic to elastic strain of
member i is defined as βi. If member 1 (i =1) first fails under F1, this member is removed
from the truss and its axial stiffness k1 is modified to zero in the global stiffness matrix.
The remaining members constitute a new truss structure, and the progressive collapse
analysis continues until the truss becomes a geometrically unstable system. The following
paragraph demonstrates how to obtain λ1 after removing member 1.

Suppose member 1 has been removed, the deformation ∆
→
1
i of each member in the

newly formed truss is first calculated under the initial load set of F1. The superscript
→
1

means the removal of member 1. Then, the ratios of ∆
→
1
i /∆i (i 6= 1) are calculated and

arranged by sequence according to their absolute values, from large to small. The sequence
of all the remaining members is numbered as 2, 3, . . . , n, indicating that member 2 will enter

its plastic state first. The critical load set for the newly formed truss is F2 (F2 = ∆2/∆
→
1
2 · F1),

implying that when the external load increases from 0 to F2, the plastic deformation will
occur in member 2 with the axial stiffness of kp,2 = αk2. The next step is to judge whether

member 2 fails based on the discriminant of ∆
→
1
2 /∆2 < β2. Once ∆

→
1
2 /∆2 ≥ β2, member 2

fails. Simultaneously, the same judgment procedure is performed on the other members

(i = 3, . . . , n). ∆
→
1
i /∆i < 1 indicates a member stays at the elastic state, while ∆

→
1
i /∆i ≥ 1

implies the plastic state.
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In the next iteration, member x2 is removed on the condition of F2. The ratio of

∆
→
1 ,
→
2

i /∆i (i = 3, 4, . . . , n) is recalculated, and the current states of all the remaining members
are determined. In the new global stiffness matrix, k1 = k2 = 0 and kp,3 = αk3. Then, the
state judgment for all the remaining members is carried out again. The analytical iterations
continue until the truss finally becomes a geometrically unstable system. At that moment,
the ratio of the last to the initial external load is defined as λ1.

It can be seen that during the solution process, some members are removed one by
one until the truss fails. The removal sequence comprises a critical collapse path of the
truss structure. Then, the identical solution procedure is repeated for λi(i = 2, 3, . . . , n) to
find other potential collapse paths. For example, when member 2 is removed from the
truss structure, the solution iterations start looking for λ2.

3.4. Features of Plastic Importance Coefficient

With λi of all the members known, their η
p
i can be calculated using Equation (2).

The solution procedure of λi shows that η
p
i takes into account both elastic and plastic

properties of materials. The state transformation of a member from elasticity to plasticity
is reflected by the variation of external loads. Meanwhile, the structural topology is also
under consideration because the geometrical stability of the truss structure determines its
failure modes. By these means, the progressive collapse analysis is practically close to the
real situation.

It is noted that if the instability effects caused by the initial imperfection of compressed
members are considered in the analysis, the potential solution is to adjust the relevant
parameters in the geometric stiffness matrices.

4. An Analytical Truss Structure

An analytical truss structure (Figure 2) under an initial external load F1 = 1 kN
was first adopted for validation. All the members had a length of 0.03 m and a sec-
tional area of 9.2 mm2. Their elastic and tangent moduli were given as E = 190 GPa,
and Ep = αE = 0.0494× 190 = 9.4 GPa. The yield and ultimate strengths were assumed
to be 360 MPa and 530 MPa, respectively. Thus, the elastic ultimate axial deformation
was 0.057 mm, and the ratio of the plastic to elastic ultimate strain was βi = 9.526 for
all members.
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Figure 2. A plane truss structure (unit: m).

4.1. Plastic Importance Coefficient of Members

The amplification factor of the undamaged truss was first calculated with γ = 5.5385,
indicating that the original truss would fail under a load of γF1 = 5.5385 kN. Then,
λi (i = 1, 2, . . . , 7) was analyzed by removing the members one by one. The solution
process for λ1 is given here as an example.



Materials 2021, 14, 5135 7 of 10

Step 1: After member 1 was removed, the deformation ratio of the new truss structure
under F1 = 1 kN was:

∆
→
1
i /∆i =

{
0.3475 0.1272 0.1272 0.1737 0 0

}T
(i = 2, 3, . . . , 7)

The elements in the vector ∆
→
1
i /∆i corresponded to the remaining members. For

instance, 0.3475 belonged to member 2, and 0.1272 referred to member 3. Therefore, when
the critical load factor was 1/0.3475 = 2.8778, member 2 was about to enter its plastic state.

Step 2: The global stiffness matrix of the new truss with six members was reconstructed,
and the deformation ratio was recalculated under the load of F2 = 2.8788× F1 = 2.8788 kN
to become:

∆
→
1
i /∆i =

{
1.000 0.3660 0.3660 0.5000 0 0

}T

Therefore, once the external load increased up to F2/0.5000 = 2.8778/0.5000 = 5.7556 kN,
member 5 was about to enter its plastic state. At that moment, the plastic deformation

had already occurred in member 2. It was further observed that ∆
→
1
2 /∆2 ≥ β2 = 9.526

when F reached 4.0899 kN, indicating the failure of member 2. Unfortunately, the truss
structure became geometrically unstable, which meant the collapse of the truss system was
caused by the combined effects of the conceptual removal of member 1 and the failure of
member 2. Hence, λ1 = 4.0899.

Step 3: The plastic importance coefficient of member 1 was calculated as follows:

η
p
1 =

γλ0 − λ1

γλ0
=

5.5385× 1− 4.0899
5.5385× 1

= 0.2616

By removing the next member and repeating the previous steps, η
p
i of the other six

members were also obtained and are listed in Table 1. It is observed that the three diagonal
members (i = 2, 3, 4) have identical importance for the truss structures under the external
loads shown in Figure 2. The loss of each of them will lead to a higher safety risk for
the other four members. This is because the original truss was a statically indeterminate
structure, which became statically determinate after removing any load-carrying member
(i = 1, 2, 3, 4, 5). For a statically determinate structure, the internal force of a member only
relies on the structural geometrical topology. Changes in member stiffness only affect the
amounts of axial deformations. Hence, if one of members 2, 3 and 4 is removed, the failure
load coefficient of the newly formed statically determinate truss is consistent. Therefore,
members 2, 3 and 4 had the same importance in the truss system.

Table 1. Plastic importance coefficients of truss members.

Member 1 2 3 4 5 6 7

λi 4.0899 2.9441 2.9441 2.9441 4.7227 5.5385 5.5385
η

p
i 0.2616 0.4594 0.4594 0.4594 0.1473 0 0

On the contrary, η6 = η7 = 0 implies the unimportant roles of members 6 and 7 inside
the system, which accords with the true situation because they are zero members.

4.2. Progressive Collapse Process of the Truss

As is aforementioned, the failure sequence of the truss members can be sought under
the precondition of removing a specific member. If member 1 is removed, member 2 will
enter its plastic state and then fail. After that, the truss structure becomes a geometrically
unstable system, resulting in its collapse. The progressive collapse process is marked as
→
1 → 2̃ →

→
2 → system failure, where 2̃ and

→
2 represent the plastic and failure states of

member 2. Furthermore, the collapse analysis results of removing the seven members are
given in Table 2.
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Table 2. Progressive collapse paths of the truss structure.

Removed Member Failure Sequence

1 1̃→ 2̃→
→
2 → system failure

2
→
2 → 3̃, 4̃→

→
3 ,
→
4 → system failure

3
→
3 → 2̃→

→
2 → system failure

4
→
4 → 2̃→

→
2 → system failure

5
→
5 → 3̃, 4̃→

→
3 ,
→
4 → system failure

6
→
6 → 2̃→ 3̃, 4̃→

→
2 →

→
3 ,
→
4 → system failure

7
→
7 → 2̃→ 3̃, 4̃→

→
2 →

→
3 ,
→
4 → system failure

5. An Experimental Truss Structure

The progressive collapse experiment was performed on a steel truss structure shown
in Figure 3. The truss was welded on an I-shape steel base. All the members were fabricated
using the circular steel pipes with the nominal inner and outer diameters of 4 and 6 mm,
respectively. The material properties of the steel were the same as those of the analytical
truss in Section 4. The middle segments of the steel pipes were weakened with a thickness
of 0.5 mm. The segment lengths were 30 mm where the strain gauges were mounted. The
external forces were offered by two jacks and applied to two joints at the upper chords.
The load increment was 0.2 kN in each setup, and the loads were held for 3 min until the
strain measurements were stable. Therefore, the calculation schematic diagram of this truss
was identical to that in Figure 2.
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Meanwhile, to prevent the occurrence of buckling phenomenon, two steel sleeves
were mounted on members 2 and 4 under compression. It is noted that for the experimental
truss, the conceptual removal of members was replaced by direct loading on the structure
in order to find the first damaged member, which also failed first as the jack load increased.
This scheme did not violate the theoretical assumptions because the failed member no
longer participated in the load carrying process, which could be regarded as performing
“conceptual removal” on the truss system.

It was observed that the strain magnitudes of all the members did not exceed 2000 µε
until the jack loads reached 3.4 kN. All members stayed at the elastic state, and the measured
strains of the zero members (6 and 7) were very small, indicating the rationality of the
loading scheme. After that, member 2 first entered its plastic state, and then members 3 and
4 had plastic deformations. When the loads arrived at 4.0 kN, member 2 failed and a new
truss was formed by the remaining six members (Figure 4a). When the loads increased up
to 4.6 kN, member 3 broke under its ultimate internal tensile forces (Figure 4b). The newly
formed truss with only five members became a geometrically unstable system resulting in
the failure of the truss system. The strains inside members 2 and 3 both exceeded 20,000 µε,
and that of member 4 was greater than 14,000 µε. At that moment, the magnitude of the
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strains of members 6 and 7 remained small. Hence, the experimental progressive collapse

process of the truss structure was described as 2̃ → 3̃, 4̃ →
→
2 →

→
3 , 4̃ → system failure.

The second half of the process (
→
2 →

→
3 , 4̃→ system failure) agreed well with the analytical

observation (see scenario #2 in Table 2). Member 4 did not fail because the experimental
truss could not have a “perfect” condition such as in the analytical model. However, this
member was close to its failure state at that moment.
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failure of member 3.

In conclusion, the experimental validation proved the feasibility of the proposed
method in the progressive collapse analysis of a truss structure.

6. Conclusions

To investigate the progressive collapse performance of truss structures facing potential
safety risks, this study proposed an analytical solution strategy based on the importance
evaluation of members in a truss system, under the assumption of elastoplastic materials.
The elastoplastic constitutive model, instead of the commonly used elastic model, was
adopted in the analysis. The global stiffness loss due to the plastic deformations of the
truss members was embodied in the structural stiffness matrices, and additional loads
were employed to consider the load bearing capacity improvement of the truss in its plastic
stage. Subsequently, the importance of each member was expressed by the proposed plastic
importance coefficient, which was derived from the bearing capacity coefficients of the
truss structure, before and after losing the corresponding member. The solution process
was performed by iterations, until the truss became a geometrically unstable system. The
experimental validation showed that the proposed method could well predict the collapse
sequence of the truss members.
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