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Abstract: In this article, we explore solitary wave structures in nonlinear negative-index materials
with beta and M-truncated fractional derivatives with the existence of a Bohm potential. The consid-
eration of Bohm potential produced quantum phase behavior in electromagnetic waves. The applied
technique is the New extended algebraic method. By use of this approach, acquired solutions convey
various types of new families containing dark, dark-singular, dark-bright, and singular solutions of
Type 1 and 2. Moreover, the constraint conditions for the presence of the obtained solutions are a
side-effect of this technique. Finally, graphical structures are depicted.

Keywords: optical solitons; new extended direct algebraic method; graphical structure; bohm
potential; negative-index materials

1. Introduction

The subject of fractional calculus (calculus of integrals and derivatives of any arbitrary
real or complex order) has attained great importance over the previous three decades or
so, due to it having major applications in science and engineering. In reality, it offers
many possibly valuable techniques for resolving differential and integral equations and
numerous other concerns that include particular equations, mathematical physics features,
as their augmentations and speculations in a single variable, and n is the limit from there.
A portion of the regions of current utilization of fractional calculus incorporates rheology,
electrical networks, probability and statistics, electrochemistry of corrosion, chemical
physics, control theory of dynamical systems, optics and signal processing, etc. As of late,
numerous attempts have been dedicated to this subject; a couple of them are accounted
for in [1–4]. The examination of evaluating fractional derivative operators is consistently
a hotly debated issue of research. Many attempts have been given lately, and numerous
revelations have been made in this course; some of them are recorded in [5–9].

The model which represents the motion of electromagnetic waves is termed the
perturbed nonlinear Schrodinger equation (NLSE). The new type of soliton solutions
of time-fractional perturbed NLSE with conformable derivative in nonlinear negative-
index materials with Bohm potential are discussed in [10]. The Perturbed NLSE with a
conformable space–time fractional model is studied in [11]. Now in the present work, we
employ the New extended algebraic method to find solitary wave solutions of fractional
Perturbed NLSE with beta and M-truncated derivatives. The results are new and not seen
in the literature.

The equation of consideration here depicts the elements of soliton propagation through
optical meta-materials with self-steepening (SS), interemodal dispersion (IMD), Bohm
potential and nonlinear dispersion (ND) and is of the type [12–14]
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iDµ
τ v + avξξ + (b|v|2)v =i

(
θ1

v
|v| |v|ξξ + θ2vξξ + θ3(|v|2v)ξ + θ4(|v|2)ξ v

)
+ c1(|v|2v)ξξ

c2|v|2(v)ξξ + c3v2(v?)ξξ .
(1)

The complex function v(ξ, τ) is the dependent variable which shows the wave pro-
file, µ is the fractional parameter with a value between zero and one, ξ indicates the
non-dimensional distance across the fiber and the temporal component is τ. Further-
more, coefficient parameter a is the group velocity dispersion while b describes the cubic
nonlinearity known as self-phase modulation.

The paper divided as follows. In Sections 1.1 and 1.2 main definitions for fractional
derivatives are reported. In Section 2, we present governing equations and mathematical
analysis of the given equation. In Section 3, we present the fundamentals of the new extended
direct algebraic method and use this algorithm to find the DE. In Section 4, we describe
necessary and sufficient conditions and physical features of some obtained solutions. The
conclusion is stated at the end.

1.1. Beta Derivative

Definition 1. The beta derivative is defined by [8]:

E
0 Dµ

ξ (G(ξ)) = lim
ε→0

G
(
ξ + ε

(
ξ + 1

Γ(α)

))
−G(ξ)

ε
, (2)

with a few properties as labeled below:

Theorem 1. Let 0 < µ ≤ 1, δ, λ ∈ R. f and g are µth order differentiable functions at τ > 0.
Then, we have:

1: E
0 Dµ

ξ

(
δ f (ξ) + λg(ξ)

)
= δE

0 Dµ
ξ

(
f (ξ)

)
+ λE

0 Dµ
ξ

(
g(ξ)

)
,

2: Dµ
ξ (c) = 0, here c is constant.

3: E
0 Dµ

ξ ( f (ξ) ∗ g(ξ)) = g(ξ)E
0 Dµ

ξ

(
f (ξ)

)
+ f (ξ)E

0 Dµ
ξ

(
g(ξ)

)
,

4: E
0 Dµ

ξ

( f (ξ)
g(ξ)

)
=

g(ξ)E
0 Dµ

ξ f (ξ)− f (ξ)E
0 Dµ

ξ g(ξ)
g2(ξ)

,

5: For ε =
(
ξ + 1

Γ(µ)

)1−µh, h→ 0 when ε→ 0; therefore, we have

E
0 Dµ

ξ f (ξ) =
(
ξ +

1
Γ(µ)

)1−µ d f (ξ)
dξ

with ξ = ν
µ

(
ξ + 1

Γ(µ)

)µ, where ν is a constant.

6: E
0 Dµ

ξ

( f (τ)
g(ξ)

)
= τ

d f (τ)
dτ .

1.2. Truncated M-Fractional Derivative

Definition 2. The truncated Mittag–Leffler function with one parameter is defined as:

iTΘ(y) =
i

∑
k=0

yk

Γ(Θk + 1)
, (3)

where Θ > 0 & y ∈ C. It is characterized by a non-fuzzy idea as illustrated below.

Definition 3. Assume G : [0, ∞)→ R, and µ ∈ (0, 1) the TMD of G of order µ is given by:

iD
µ,Θ
M G(τ) = lim

ε→0

G(τ + iTΘ(ετ−µ))− G(τ)

ε
, (4)
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for τ > 0 and iTΘ(.), Θ > 0 is defined in the above definition.

Theorem 2. Let µ ∈ (0, 1], Θ > 0. G and H are µth order differentiable functions at τ > 0. Then,
we have:

1- iD
µ,Θ
M (p1G + p2H) = p1iD

µ,Θ
M (G) + p2iD

µ,Θ
M (H), where p1, p2 ∈ R

2- iD
µ,Θ
M (τσ) = στσ−µ, σ ∈ R,

3- iD
µ,Θ
M (GH) = GiD

µ,Θ
M (H) + HiD

µ,Θ
M (G),

4- iD
µ,Θ
M ( G

H ) =
GiD

µ,Θ
M (H)−HiD

µ,Θ
M (G)

H2 ,

5- iD
µ,Θ
M (G)(τ) = τ1−µ

Γ(Θ+1)
dG
dτ ,

6- iD
µ,Θ
M (G ◦ H)(τ) = f ′(H(τ))iD

µ,Θ
M H(τ).

2. Governing Equations

By considering a beta derivative, the above equation can be composed as:

iE
0 Dµ

τ (v) + aE
0 D2µ

ξ (v) + (b|u|2v) = i
(
θ1

v
|v|

E
0 D2µ

ξ (|v|) + θ2
E
0 Dµ

ξ (v) + θ3
E
0 Dµ

ξ (|v|
2v) + θ4

E
0 Dµ

ξ (|v|
2)v
)

+ c1
E
0 D2µ

ξ (|v|2v) + c2|v|2E
0 D2µ

ξ (v) + c3v2E
0 D2µ

ξ (v?),
(5)

Meanwhile by taking the M-truncated derivative into account, the model under
investigation takes the structure as below:

iE
0 Dµ,Θ

M,τ(v) + aE
0 D2µ,Θ

M,ξ (v) + (b|u|2v) = i
(
θ1

v
|v|

E
0 D2µ,Θ

M,ξ (|v|) + θ2
E
0 Dµ,Θ

M,ξ(v) + θ3
E
0 Dµ,Θ

M,ξ(|v|
2v)

+ θ4
E
0 Dµ,Θ

M,ξ(|v|
2)v
)
+ c1

E
0 D2µ,Θ

M,ξ (|v|2v) + c2|v|2E
0 D2µ,Θ

M,ξ (v) + c3v2E
0 D2µ,Θ

M,ξ (v?),
(6)

in above E
0 Dµ,Θ

M,τ and E
0 Dµ,Θ

M,ξ are M-truncated derivatives with τ and ξ, respectively.

Mathematical Survey

For the solution of Equation (1), Equations (5) and (6) the first step is follows:

v(ξ, τ) = u(η)eiψ(ξ,τ), (7)

where the v(ξ, τ) represents pulse shape of soliton. In sense of the beta derivative, we have

η =
1
µ

(
ξ +

1
Γ(µ)

)µ

− ν

µ

(
τ +

1
Γ(µ)

)µ

(8)

and

ψ(ξ, τ) = − k
µ

(
ξ +

1
Γ(µ)

)µ

+
ω

µ

(
τ +

1
Γ(µ)

)µ

+ θ0(η). (9)

By the virtue of M-truncated derivative, we have:

η =
Γ(Θ + 1)

µ
(ξµ − ντµ), (10)

ψ(ξ, τ) = −Γ(Θ + 1)
µ

(κξµ − νωτµ) + θ0(η), (11)

where ψ(ξ, τ), κ, ω, ν and θ0(η) are the phase component, frequency, wave number,
speed and phase function of soliton, respectively. Putting these values in Equation (1),
Equations (5) and (6), then the imaginary part results in:
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ν = θ1 − 2aκ (12)

and
3θ2 + 2θ4 − 2κ(3c1 + c2 − c3) = 0, (13)

while the real part implies

au′′ − (ω + aκ2 + κθ2)u + (b− κθ3 + κ2c1 + κ2c2 + κ2c3)u3 − (3c1 + c2 + c3)u2u′′ − 6c1u′
2
= 0. (14)

We apply the accompanying changes c1 = 0, and c2 = −c3 in Equation (14) for its
solution as

au′′ − (ω + aκ2 + θ2κ)u + (b− κθ3)u3 = 0, (15)

where
3θ2 + 2θ4 + 4κc3 = 0. (16)

3. Applications

This section is devoted to the application of the method with two different definitions
of the derivatives.

3.1. The New Extended Direct Algebraic Method

In this section, the general procedure of this method [15–17] is reported in two steps
as given below:

Step: 1 Suppose that the given nonlinear PDE is of the form:

G(v, vξ , vτ , vξξ , vττ , ...) = 0, (17)

where v represents the dependent variable and ξ, τ are the independent variables.
By using the wave transformation:

v(ξ, τ) = u(η), η = ξ − cτ.

Equation (17) can be transformed into nonlinear ODE:

J(u, u′, u′′, u′′′...) = 0. (18)

Step: 2 We assume the solution of the ODE (18) of the type:

u(η) =
m

∑
i=0

biZi(η), (19)

where bi (0 < i ≤ n) are the coefficients and Z(η) satisfies the ODE of the type:

Z′(η) = ln(B)
(

α + βZ(η) + γZ2(η)

)
, B 6= 0, 1, (20)

where α, β and γ are the constants. The Equation (20) has the solution written as:
1: When β2 − 4αγ < 0 and γ 6= 0,

Z1(η) = − β
2γ +

√
−(β2−4αγ)

2γ tanB

(√
−(β2−4αγ)

2 η

)
,

Z2(η) = − β
2γ −

√
−(β2−4αγ)

2γ cotB

(√
−(β2−4αγ)

2 η

)
,

Z3(η) = − β
2γ +

√
−(β2−4αγ)

2γ

(
tanB

(√
−(β2 − 4αγ) η

)
±
√

mn secB

(√
−(β2 − 4αγ) η

))
,
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Z4(η) = − β
2γ −

√
−(β2−4αγ)

2γ

(
cotB

(√
−(β2 − 4αγ) η

)
±
√

mn cscB

(√
−(β2 − 4αγ) η

))
,

Z5(η) = − β
2γ +

√
−(β2−4αγ)

4γ

(
tanB

(√
−(β2−4αγ)

4 η

)
− cotB

(√
−(β2−4αγ)

4 η

))
.

2: When β2 − 4αγ > 0 and γ 6= 0,

Z6(η) = − β
2γ −

√
β2−4αγ

2γ tanB

(√
β2−4αγ

2 η

)
,

Z7(η) = − β
2γ −

√
β2−4αγ

2γ cotB

(√
β2−4αγ

2 η

)
,

Z8(η) = − β
2γ −

√
β2−4αγ

2γ

(
tanhB

(√
β2 − 4αγ η

)
± ι
√

mnsech B

(√
β2 − 4αγ η

))
,

Z9(η) = − β
2γ −

√
β2−4αγ

2γ

(
cothB

(√
β2 − 4αγ η

)
±
√

mncsch B

(√
β2 − 4αγ η

))
,

Z10(η) = − β
2γ −

√
β2−4αγ

4γ

(
tanhB

(√
β2−4αγ

4 η

)
+ cothB

(√
β2−4αγ

4 η

))
.

3: When αγ > 0 and β = 0,

Z11(η) =
√

α
γ tanB(

√
αγ η),

Z12(η) = −
√

α
γ cotB(

√
αγ η),

Z13(η) =
√

α
γ (tanB(2

√
αγ η)±

√
mn secB(2

√
αγ η)),

Z14(η) = −
(√

α
γ (cotB(2

√
αγ η)±

√
mn cscB(2

√
αγ η)

)
,

Z15(η) =
1
2

√
α
γ

(
tanB

(√
αγ
2 η

)
− cotB

(√
αγ
2 η

))
.

4: When αγ < 0 and β = 0,

Z16(η) = −
√
− α

γ tanhB(
√
−αγ η),

Z17(η) = −
√
− α

γ cothB(−
√

αγ η),

Z18(η) = −
√
−α
γ (tanhB(2

√
−αγ η)± ι

√
mnsech B(2

√
−αγ η)),

Z19(η) = −
√
− α

γ

(
cothB(2

√
−αγ η)±

√
mncsch B(2

√
−αγ η)

)
,

Z20(η) = − 1
2

√
−α
γ

(
tanhB

(√
−αγ
2 η

)
+ cothB

(√
−αγ
2 η

))
.

5: When β = 0 and γ = α,

Z21(η) = tanB(αη),
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Z22(η) = − cotB(αη),

Z23(η) = tanB(2αη)±
√

mn secB(2αη),

Z24(η) = − cotB(2αη)±
√

mn cscB(2αη),

Z25(η) =
1
2

(
tanB

(
α
2 η

)
− cotB

(
α
2 η

))
.

6: When β = 0 and γ = −α,

Z26(η) = − tanhB(αη),

Z27(η) = − cothB(αη),

Z28(η) = − tanhB(2αη)± ι
√

mnsech B(2αη),

Z29(η) = − cothB(2αη)±
√

mncsch B(2αη),

Z30(η) = − 1
2

(
tanhB

(
α
2 η

)
+ cothB

(
α
2 η

))
.

7: When β2 = 4αγ,

Z31(η) =
−2α(βη ln(B)+2)

β2η ln(B) .

8: When β = ρ , α = qρ(q 6= 0) and γ = 0,

Z32(η) = Bρη − q.

9: When β = γ = 0,

Z33(η) = αη ln(B).

10: When β = α = 0,

Z34(η) =
−1

γη ln(B) .

11: When α = 0 and β 6= 0,

Z35(η) = − sβ
γ(coshB(βη)−sinhB(βη)+s) ,

Z36(η) = − β(sinhB(βη)+coshB(βη))
γ(sinhB(βη)+coshB(βη)+r) .

12: When β = ρ, γ = mρ(m 6= 0) and α = 0,

Z37(η) =
sBρη

r−msBρη .

Now, the hyperbolic and trigonometric functions are given as follows:

sinhB(η) =
qBη−sB−η

2 , coshB(η) =
rBη+sB−η

2 ,
tanhB(η) =

rBη−sB−η

rBη+sB−η , cothB(η) =
rBη+sB−η

rBη−sB−η ,

csch B(η) =
2

rBη−sB−η , sech B(η) =
2

rBη+sB−η ,

sinB(η) =
rBιη−sB−ιη

2ι , cosB(η) =
rBιη+sB−ιη

2 ,

tanB(η) = −i rBιη−sB−ιη

rBιη+sB−ιη , cotB(η) = i rBιη+sB−ιη

rBιη−sB−ιη ,

cscB(η) =
2ι

rBιη−sB−ιη , sech B(η) =
2

rBιη+sB−ιη ,

where r and s are constants which are known as the deformation parameters.
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3.2. Application to the NLS Equation

Let us take the transformation of the form:

v(ξ, τ) = u(η)eiψ(ξ,τ), (21)

by using the balancing scheme on these terms u3 and u′′ of Equation (15), assigns m = 1 to
Equation (19). We obtain the following transformation:

u(η) = b0 + b1Z(η), (22)

putting Equation (22) into (15), then collecting the coefficients of different powers of Z(η),
we obtain a system of the following algebraic equations:

Z3(η) : 2ab1γ2 ln(B)2 − b3
1κθ3 + b3

1b = 0,

Z2(η) : 3ab1β ln(B)2γ− 3b0b2
1κθ3 + 3b0b2

1b = 0,

Z1(η) : ab1β2 ln(B)2 + 2ab1γ ln(B)2α− b1aκ2 − b1θ2κ − b1ω− 3b2
0b1κθ3 + 3b2

0b1b = 0,

Z0(η) : ab1β ln(B)2α− b0aκ2 − b0θ2κ − b0ω− b3
0κθ3 + b3

0b = 0.

(23)

The solution of the system of Equation (23) by use of Maple for b0, b1 and ω, we obtain
the following values:

b0 = ± γaβ ln(B)√
− 2γ2a

b−κθ3
(b− κθ3)

, b1 = ±

√
− 2γ2a

b− κθ3
ln(B),

ω = 2γ ln(B)2aα− 1
2

ln(B)2aβ2 − aκ2 − κθ2.

(24)

Let us consider
∆ = β2 − 4αγ and Π = γ

√
− 2a

b−κθ3
.

Then
b0 = ± aβ ln(B)

Π(b−κθ3)
and b1 = ±Π ln(B).

From Equations (21), (22) and (24) and the different cases of solutions of Equation (20),
we obtain the solutions which come after:

Case 1. When ∆ < 0 and γ 6= 0,

v1(ξ, τ) = ± a ln(B)
Π(b−κθ3)

(√
−∆ tanB(

√
−∆
2 η)

)
eiψ(ξ,τ),

v2(ξ, τ) = ± a ln(B)
Π(b−κθ3)

(√
−∆ cotB(

√
−∆
2 η)

)
eiψ(ξ,τ),

v3(ξ, τ) = ± a ln(B)
Π(b−κθ3)

(
2β−

√
−∆
(

tanB(
√
−∆η)±

√
mn secB(

√
−∆η)

))
eiψ(ξ,τ),

v4(ξ, τ) = ± a ln(B)
Π(b−κθ3)

(
2β−

√
−∆
(
− cotB(

√
−∆η)±

√
mn cscB(

√
−∆η)

))
eiψ(ξ,τ),

v5(ξ, τ) = ± a ln(B)
Π(b−κθ3)

(
2β−

√
−∆(tanB

(√−∆
4 η

)
± cotB

(√−∆
4 η

)))
eiψ(ξ,τ).

Case 2. When ∆ > 0 and γ 6= 0,

v6(ξ, τ) = ± a ln(B)
Π(b−κθ3)

(√
∆ tanhB(

√
∆

2 η)
)
eiψ(ξ,τ),

v7(ξ, τ) = ± a ln(B)
Π(b−κθ3)

(√
∆ cothB(

√
∆

2 η)
)
eiψ(ξ,τ),

v8(ξ, τ) = ± a ln(B)
Π(b−κθ3)

(
2β−

√
∆
(
− tanhB(

√
∆η)± i

√
mn sech B(

√
∆η)

))
eiψ(ξ,τ),
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v9(ξ, τ) = ± a ln(B)
Π(b−κθ3)

(
2β−

√
∆
(
− cothB(

√
∆η)±

√
mn csch B(

√
∆η)

))
eiψ(ξ,τ),

v10(ξ, τ) = ± a ln(B)
Π(b−κθ3)

(
2β−

√
∆(− tanhB

(√∆
4 η
)
± cothB

(√∆
4 η
)))

eiψ(ξ,τ).

Case 3. When γα > 0 and β = 0,

v11(ξ, τ) = ±Π ln(B)
√

αγ tanB(
√

αγη)eiψ(ξ,τ),

v12(ξ, τ) = ±Π ln(B)
√

αγ cotB(
√

αγη)eiψ(ξ,τ),

v13(ξ, τ) = ±Π ln(B)
√

αγ

(
tanB(2

√
αγη)±

√
mn secB(2

√
αγη)

)
eiψ(ξ,τ),

v14(ξ, τ) = ±Π ln(B)
√

αγ

(
− cotB(2

√
αγη)±

√
mn cscB(2

√
αγη)

)
eiψ(ξ,τ),

v15(ξ, τ) = ± 1
2 Π ln(B)

√
αγ
(

tanB
(√αγ

2 η
)
± cotB

(√αγ
2 η

))
eiψ(ξ,τ).

Case 4. When γα < 0 and β = 0,

v16(ξ, τ) = ±Π ln(B)
√
−αγ tanhB(

√
−αγη)eiψ(ξ,τ),

v17(ξ, τ) = ±Π ln(B)
√
−αγ cothB(

√
−αγη)eiψ(ξ,τ),

v18(ξ, τ) = ±Π ln(B)
√
−αγ

(
− tanhB(2

√
−αγη)± i

√
mn sech B(2

√
−αγη)

)
eiψ(ξ,τ),

v19(ξ, τ) = ±Π ln(B)
√
−αγ

(
− cothB(2

√
−αγη)±

√
mn csch B(2

√
−αγη)

)
eiψ(ξ,τ),

v20(ξ, τ) = ± 1
2 Π ln(B)

√
−αγ

(
− tanhB

(√−αγ
2 η

)
± cothB

(√−αγ
2 η

))
eiψ(ξ,τ).

Case 5. When β = 0 and γ = α,

v21(ξ, τ) = ±Π ln(B)α tanB(αη)eiψ(ξ,τ),

v22(ξτ) = ±Π ln(B)α cotB(αη)eiψ(ξ,τ),

v23(ξ, τ) = ±Π ln(B)α(tanB(2αη)±
√

mn secB(2αη))eiψ(ξ,τ),

v24(ξ, τ) = ±Π ln(B)α
(
− cotB(2αη)±

√
mn cscB(2αη)

)
eiψ(ξ,τ),

v25(ξ, τ) = ± 1
2 Π ln(B)α

(
tanB(

α
2 η)± cotB(

α
2 η)
)
eiψ(ξ,τ).

Case 6. When β = 0 and γ = −α,

v26(ξ, τ) = ±Π ln(B)α tanhB(αη)eiψ(ξ,τ),

v27(ξτ) = ±Π ln(B)α cothB(αη)eiψ(ξ,τ),

v28(ξ, τ) = ±Π ln(B)α(− tanhB(2αη)± i
√

mnsech B(2αη)eiψ(ξ,τ),

v29(ξ, τ) = ±Π ln(B)α
(
− cothB(2αη)±

√
mncsch B(2αη)

)
eiψ(ξ,τ),

v30(ξ, τ) = ± 1
2 Π ln(B)α

(
− tanhB(

α
2 η)± cothB(

α
2 η)
)
eiψ(ξ,τ).
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Case 7. When β2 = 4αγ,

v31(ξ, τ) = ±
(

α
√

4αγ ln(B)
Π(b−κθ3)

+ Π
2αγη (1 +

√
αγ ln(B)η)

)
eiψ(ξ,τ),

Case 8. When β = ρ , α = qρ(q 6= 0) and γ = 0,

v32(ξ, τ) = 0.

Case 9. When β = γ = 0,

v33(ξ, τ) = 0.

Case 10. When β = α = 0,

v34(ξ, τ) = ± Π
γη .

Case 11. When α = 0 and β 6= 0,

v35(ξ, τ) = ±Π ln(B) sβ

γ
(

coshB(βη)−sinhB(βη)+s
) eiψ(ξ,τ),

v36(ξ, τ) = ±Π ln(B)
β
(

sinhB(βη)+coshB(βη)
)

γ
(

sinhB(βη)+coshB(βη)+r
) eiψ(ξ,τ).

Case 12. When β = ρ, γ = mρ(m 6= 0) and α = 0,

v37(ξ, τ) = ±Π ln(B) sBρη

r−msBρη eiψ(ξ,τ),

where η and ψ are given by Equations (8) and (9) for the beta derivative and Equations (10)
and (11) for M-truncated derivative.

4. Comparison and Discussion

Remark: The constraint conditions for the presence of the acquired solutions are given
in type as below.

Proposition: If v(ξ, τ) is the solitary wave solution of the considered Equation (1),
then the conditions for the presence of its solutions are a > 0 and b− κθ3 < 0.

Remark: It is essential to mention that the acquired structures of the model under
study (Equation (1)) speak to the various sorts of soliton solutions. As v6, v16, and v26
represent dark soliton solutions, v8, v18, and v28 are the dark–bright soliton solutions, v10,
v20, and v30 show the dark–singular solutions, v9, v19, and v29 represent a family of singular
solutions of type 1 and 2, while v7, v17, and v27 are reported as a singular solution of type 2.

Comparison: Now, different solutions are taken into account in the sense of beta and
M-truncated derivatives and are depicted in Figures 1–6 with various µ’s values.

Figure 1: Figure 1a shows 3D-graph with beta derivative definition, the second
indicates a 2D-structure of v3(ξ, τ) when τ = 1 by applying two various definitions. It is
noted that when τ = 1 both definitions show various graphs and overlapping exits in the
definite range of the values of the independent variable ξ.

Figure 2: In this figure, the first graph represents its 3D graph for the M-truncated
derivative, while Figure 2b shows its structures with the same definition of the derivative
but for various values of the fractional parameter µ and τ = 1. Here, it is intriguing to take
note that the curves have the same structure, and overlapping exists in the definite range
of the values of the independent variable ξ similar to the case forgiven in Figure 1b.

Figure 3: In Figure 3a there is 3D graph for the beta derivative for v1(ξ, τ) and Figure 3b
shows its structure with the beta definition at τ = 1; a 2D structure is seen by utilizing
two definitions. It is intriguing to take note that now curves have the same shape and
overlapping also exists. In Figure 4, both 3D and 2D structures show the same behavior as
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in Figure 3. In Figure 5, Figure 5a indicates 3D and Figure 5b shows 2D structures for the
beta derivative. What is mentioning here is that the soliton’s amplitude increases for an
increase in the value of µ. In Figure 6, represents 3D and 2D graphs, respectively, for the
M-truncated derivative. What is also worth mentioning here is that the soliton’s amplitude
decreases for an increase in the value of µ.

μ=0.9

μ=0.5

-10 -5 0 5 10
0

5000

10000

15000

ξ


v
(ξ
)

(a) (b)

Figure 1. (a) 3D-plot with parameter values B = e, a = 2.5, µ = 0.9, ω = 1, b = 1, κ = 2.3, α = 1.2, β = 6, γ = 2.9, θ3 = 2.7,
ν = 4, m = 1, n = 1 (b) 2D-plot for different values of µ of v3(ξ, τ) with beta-derivative.

μ=0.9

μ=0.5

-10 -5 0 5 10
0

500

1000

1500

ξ


v
(ξ
)

(a) (b)

Figure 2. (a) 3D and (b) 2D plots with the same parameter values as above µ = 0.9 and Θ = 1.1 of v3(ξ, τ) with the
M-truncated derivative.
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μ=0.9

μ=0.5

-10 -5 0 5 10
0

20000
40000
60000
80000
100000

ξ


v
(ξ
)

(a) (b)

Figure 3. (a) 3D and (b) 2D plots with same parameter values as above µ = 0.9 and Θ = 1.1 of v1(ξ, τ) with the beta-derivative.

μ=0.9

μ=0.5

-10 -5 0 5 10
0

500
1000
1500
2000
2500

ξ


v
(ξ
)

(a) (b)

Figure 4. (a) 3D and (b) 2D plots with same parameter values as above µ = 0.9 and Θ = 1.1 of v1(ξ, τ) with the
M-truncated derivative.

μ=0.9

μ=0.5

-10 -5 0 5 10
0

5

10

15

20

25

ξ


v(
ξ)


(a) (b)

Figure 5. (a) 3D and (b) 2D plots with same parameter values as above µ = 0.5 of v25(ξ, τ) with the beta-derivative.
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μ=0.9

μ=0.5

-10 -5 0 5 10
0

200

400

600

800

ξ


v(
ξ
)

(a) (b)

Figure 6. (a) 3D and (b) 2D plots with same parameter values as above µ = 0.5 and Θ = 1.1 of v25(ξ, τ) with the
M-truncated derivative.

5. Conclusions

In the present work, Equation (1), which describes the propagation of waves in
negative-index metamaterials with the Bohm potential term, is taken in the sense of the
beta and M-truncated derivatives. The Bohm potential term is accounted for the quantum
phase behavior in the NLSE. This exploration elaborates on new families of solitons in
negative optical metamaterials. To obtain the various type of solutions, the new extended
algebraic method is considered. The considered technique also yielded new families
including dark–bright, dark, dark–singular, and singular solutions of Type 1 and 2 of the
governing equations. The consequences of this paper are of incredible interest in the fiber
optic industry and designed by and large.
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