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Abstract: Electrical discharge machining (EDM) has recently been shown to be one of the most suc-
cessful unconventional machining methods for meeting the requirements of today’s manufacturing
sector by producing complicated curved geometries in a broad variety of contemporary engineering
materials. The machining efficiency of an EDM process during hexagonal hole formation on pearlitic
Spheroidal Graphite (SG) iron 450/12 grade material was examined in this study utilizing peak
current (I), pulse-on time (Ton), and inter-electrode gap (IEG) as input parameters. The responses,
on the other hand, were the material removal rate (MRR) and overcut. During the experimental
trials, the peak current ranged from 32 to 44 A, the pulse-on duration ranged from 30–120 s, and the
inter-electrode gap ranged from 0.011 to 0.014 mm. Grey relational analysis (GRA) was interwoven
with a fuzzy logic method to optimize the multi-objective technique that was explored in this EDM
process. The effect of changing EDM process parameter values on responses was further investigated
and statistically analyzed. Additionally, a response graph and response table were produced to
determine the best parametric setting based on the calculated grey-fuzzy reasoning grade (GFRG).
Furthermore, predictor regression models for response characteristics and GFRG were constructed,
and a confirmation test was performed using randomly chosen input parameters to validate the
generated models.

Keywords: grey theory; fuzzy logic; process parameter; response; optimization

1. Introduction

Electrical discharge machining (EDM) is a sophisticated, advanced machining method
that utilizes a number of discrete sparks to remove the material from a workpiece and
produce the finished component to the desired form [1,2]. During the EDM process, an
identical replica of the tool shape is produced on the machined component [3,4]. It is
especially well adapted to creating complicated form profiles on electrically conductive
materials with poor machinability [5]. This operation is devoid of mechanical stress,
chatter/burr production, and vibration issues, as the tool and the workpiece are not
in direct touch. The abrasion resistance of the work material has little influence on its
machining performance since the material is removed by melting via increased localized
heat production. Due to the absence of cutting force, exceptionally deep narrow holes with
a greater aspect ratio format can be machined, if necessary, with a minimal depreciation of
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the tool [6,7]. It may even create complex cavities in one operation. However, this operation
has a number of disadvantages, including the creation of a recast layer, a poor material
removal rate, a long machining time and associated expenses, limited flexibility, and the
capacity to machine solely electrically conductive materials.

There are several input factors that may be adjusted during an EDM process when
cutting a certain material. Examining all of the EDM process parameters during an actual
machining operation is challenging since the quantity of input parameters increases the
experimental time and expenses proportionally. Various electrically controlled variables,
such as peak current, cycle time, polarity, inter-electrode spacing, gap voltage, and so on,
as well as non-electrically controlled factors such as electrode material, dielectric pressure,
nature of dielectric, electrode rotation, and so on, have been observed to have a significant
impact on the machining efficiency of an EDM operation. As a consequence, it is always
desirable to operate the EDM machine by keeping the optimum value of the various input
variables in order to fulfill the criteria of improved response outcomes. It would also result
in a faster production rate due to the shorter machining time. However, previous research
has revealed that the efficiency of the EDM operation’s machining is strongly impacted by
three input variables: peak current (I), pulse-on time (Ton), and inter-electrode gap (IEG).
In this research, a hexagonal tool was used to machine the workpiece to truly comprehend
the influence of input variables on the response. As a result, this study article employs a
hybrid of two prominent approaches, namely, Grey Relational Analysis (GRA) and Fuzzy
Logic, to explore the impact of input factors on output variables while machining tool
steel (D3 grade). This method also assists in the finding of the optimum parametric setting
for the EDM machining operation to achieve the best possible response values (outputs).
The primary problems encountered during machining were that numerous machining
operations and readings were required for a single set of parametric intermix of process
variables to eliminate machining ambiguity.

Mandal et al. [8] utilized an artificial neural network (ANN) to simulate an EDM
process. Later, non-dominating sorting genetic algorithm-II (NSGA-II) was used to improve
the EDM parameters. Bharti et al. [9] optimized different input parameters of a die-sinking
EDM operation utilizing the controlled elitist NSGA method. The considered process was
also modelled using an ANN with a back-propagation method. For an EDM operation,
Baraskar et al. [10] utilized the NSGA-II approach to find the optimum combinations of
pulse-on time (Ton), discharge current (I), and pulse-off time (Toff) to improve surface
roughness (SR) and material removal rate (MRR) responses. During EDM operation
of D3 die steel, Shivakoti et al. [11] examined the effects of utilizing deionized water
combined with salt as a dielectric medium on outcomes such as MRR, tool wear rate (TWR),
radial overcut (ROC), and taper. Later, the Taguchi technique was applied to improve the
EDM operation parameters that were taken into consideration. Aich and Banerjee [12]
applied the weight-varying multi-objective simulated annealing technique to develop the
corresponding Pareto-optimal front for the simultaneous optimization of MRR as well
as SR in an EDM operation. Radhika et al. [13] considered peak current (I), pulse-on
time (Ton), and flushing pressure (P) as the input variables of an EDM process. A hybrid
optimization technique consisting of ANN and genetic algorithm (GA) was later employed
to reduce SR and TWR, and increase MRR. A Pareto-optimal front was also developed
offering a set of non-dominated solutions. Tiwari et al. [14] deployed the GA method
to simultaneously optimize MRR and SR during an EDM operation. The corresponding
Pareto-optimal solutions were subsequently proposed. Mazarbhuiya et al. [15] carried
out experimental runs on the basis of the Taguchi layout and used the GRA approach to
determine the optimal discharge current, flushing pressure, polarity, and pulse-on duration
for maximizing MRR and minimizing SR values during an EDM operation. Satpathy
et al. [16] examined a metal matrix composite of AlSiC with input parameters such as peak
current, pulse-on-time, duty cycle, gap voltage, and output characteristics such as MRR,
TWR, diametral overcut (Z), and SR and optimized it using the combination of principal
component analysis (PCA) and technique for order preference by similarity to ideal solution
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(TOPSIS) method (PCA-TOPSIS). Mohanty et al. [17] determined the best discharge current
(I), pulse-on time (Toff) and voltage (V) for having better results of MRR, TWR, SR and
ROC. Singh et al. [18] optimized MRR using the NSGA-II method and TWR in an EDM
operation while considering I, Ton, Toff, and V as the input variables. Gostimirovic et al. [19]
calculated the energy efficiency of an EDM operation using a mathematical model with
respect to MRR and SR responses. Later, a collection of optimum solutions was derived
via evolutionary multi-objective optimization for discharge energy taking into account
I and Ton as the input variables. Ramprabhu et al. [20] applied passing vehicle search
(PVS) as a multi-objective optimization technique for optimizing various EDM process
input variables. The performance of the adopted technique was also compared with that
of other intelligent computing models. Based on the GRA technique, Tharian et al. [21]
implemented a multi-objective optimization of MRR and SR during an EDM operation
of Al7075 alloy. Huu et al. [22] suggested, as a solution, the multi-objective optimization
based on ratio analysis (MOORA) methodology for having the best results of MRR, SR
and TWR throughout the EDM operation of SKD61 die steel with low-frequency vibration.
Analytic hierarchy process (AHP) was utilized to estimate relative weights of the considered
responses. Kumar et al. [23] employed the GRA technique to evaluate the impact of input
variables such as I, Ton, and Toff on different surface roughness characteristics during EDM
machining of D3 tool steel. Niamat et al. [24] attempted to examine the implications of
I, Ton, and Toff on MRR, SR, and TWR in an EDM operation by using response surface
methodology (RSM)-based regression models. To ensure sustainability while optimizing
the conflicting responses, multi-objective optimization was used as well. Kumar et al. [25]
suggested teaching learning-based multi-objective optimization (TLBO) for optimizing
MRR, SR, TWR, ROC, and circularity error during an EDM operation, with the results
compared to existing metaheuristic algorithms. Pradhan [26] examined the machining
behavior of AISI D2 tool steel using commercial grade EDM oil and optimized the MRR,
TWR, and radial overcut using an RSM-based GRA method. Laxman et al. [27] machined
the titanium-based super alloy using I, Ton, and tool lift time as input parameters and
MRR and TWR as output parameters, then improved the response characteristics using the
Taguchi-Fuzzy method. Surekha et al. [28] used kerosene oil as a dielectric medium while
machining EN-19 alloy steel and used the grey-fuzzy technique to optimize the output
variables, MRR and TWR. Using GRA-PCA, Payal et al. [29] optimized MRR, TWR, and SR
while machining Inconel 825. Prayogo et al. [30] investigated the machining properties of
ST 42 steel, measuring MRR and overcut using transformator oil as a dielectric medium
and optimizing the response characteristics using the Taguchi-GRA method. Rath [31] and
Singh et al. [32] used the Grey-Taguchi technique to solve the multi-objective optimization
problem for the optimization of output variables such as MRR, TWR, and SR. Sharma
et al. [33] machined the Inconel and Nimonic alloys and used the fuzzy GRA method
to optimize MRR, SR, electrode wear rate (EWR), and overcut. Bhaumik et al. [34] used
the GRA method to optimize MRR, SR, ROC, and TWR when machining titanium alloy
(grade 6). Belloufi et al. [35] used fuzzy logic to optimize MRR, TWR, wear rate (WR), SR,
ROC, circularity (CIR), and cylindricity (CYL) during the machining of AISI 1095 steel
utilizing Kerosene oil as a dielectric medium. In addition, a lot of research has been done
in this area, using the grey approach [36] and hybrid nature-inspired algorithms [37,38]
as multi-objective optimization tools, as well as the TOPSIS technique [39] for parameter
selection.

It has been observed that the majority of research has focused on three input param-
eters: peak current, pulse-on time, and inter-electrode gap. However, there is limited
research available in the machining of SG 450/12 iron material using Castrol SE 180 EDM
fluid as a dielectric and machining a hexagonal hole. The above-cited evaluation of the
existing literature reveals that quantitative optimization of EDM processes has already
caught the attention of the research community, and several optimization techniques, such
as GA, NSGA-II, simulated annealing, PVS, particle swarm optimization (PSO), TLBO,
etc., have been applied in this direction. Those adopted algorithms have too many algo-
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rithmic parameters, which if not properly tuned, may increase the computational effort
and result in local optimal solutions. Similarly, numerous decision-making techniques,
such as VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR), TOPSIS, GRA,
AHP, MOORA, etc., have also been utilized to determine the most feasible parametric
mixes for EDM processes. In this paper, an endeavor is described which focuses on the
experimental examination of the effects of several process variables of an EDM operation
on its responses (outputs) through interaction plots during machining pearlitic SG iron
450/12 grade material. In this EDM operation, I, Ton, and IEG were considered the process
variables, whereas the removal rate of a material and overcut were considered the output.
Furthermore, the GRA technique in conjunction with fuzzy logic was used to determine
the best parametric combination for the aforementioned operation. Consequently, the esti-
mated grey-fuzzy reasoning grade (GFRG) results would aid the appropriate processing
designers in determining the most suitable configuration of the EDM process variables
and optimizing all competing performance metrics. Furthermore, the analysis of variance
(ANOVA) method was also utilized to recognize the contributions of the EDM input vari-
ables in evaluating the machining performance. Finally, surface plots were established
to assist process engineers in deciding the particular mix of input variables required to
achieve the desired values of the properly considered responses. As a result, the operational
effectiveness of EDM operations may be greatly enhanced by applying this multi-objective
optimization technique.

2. Materials and Methods
2.1. Workpiece and Tooling

In this research, the SG iron (grade-450/12, M/s Hindustan Malleables and Forge
Ltd, Dhanbad, Jharkhand, India) material of the workpiece for EDM operation was chosen
due to its several advantageous properties, such as good wear and corrosion resistance,
better castability and machinability, reasonable strength, low cost, suitability for hydraulic
applications as compared to steel, malleable and grey iron castings, capability to generate
intricate shapes due to better fluidity as compared to steel castings, and requirement of
less heat treatment resulting in better dimensional stability compared to malleable castings,
hydraulic pump bodies, pump enclosures, pump casings, and pump hubs for diesel engine
cooling systems. Tables 1 and 2 indicate the chemical constitution of pearlitic ductile iron
and mechanical properties of pearlitic SG iron (450/12 grade), respectively. In this research,
a hexagonal-shaped copper tool was used for machining as shown in Figure 1b.

Table 1. Chemical constitution of pearlitic ductile iron.

Element C Si Mn P S Cr Mo Cu Mg Ti Zn Fe Others

% 3.365 2.393 0.238 0.072 <0.150 0.007 <0.010 0.37 0.085 0.032 0.027 90.75 2.661

Table 2. Mechanical properties of pearlitic SG iron (450/12 grade).

Mechanical Attributes. Value

Ultimate tensile strength 450 × 106 N/m2

Yield stress 310 × 106 N/m2

Elongation 12%
Hardness 197 BHN

Volumetric mass density 6950 kg/m3

Relative wear resistance Excellent
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Figure 1. Electric discharge machining set-up. (a) Oscar electrical discharge machining machine.
(b) Copper tool. (c) Weighing equipment. (d) Coordinate measuring machine (CMM).

2.2. Experimentation and Characterization

Using an EDM set-up, experimental trials were carried out for producing hexagonal
holes on pearlitic SG iron material (grade-450/12), with peak current, pulse-on duration,
and inter-electrode spacing as adjustable process variables. The results of each of the
variables under discussion were varied during the EDM operation on SG 450/12 iron
material at four distinct operating levels, as implied in Table 3. Table 4 lists the technical
characteristics of the Oscar Max EDM machine (OSCAR EDM Manufacturers, Taichung,
Taiwan), and Figure 1a exhibits a picture of the EDM set-up, which was used to conduct
sixteen experiments using a three-factor, four-level Taguchi orthogonal array. Voltage and
pause time were kept constant at 45 V and 40 µs, respectively. Castrol SE 180 EDM fluid
(Broughton lubricants, Preston, UK) was utilized as the dielectric fluid throughout the
machining process because of its several benefits, including low smell, enhanced stability
with prolonged life, low viscosity, high flash point, increased dependability, and safe usage.
The size of the specimen was 15 × 40 mm2.

Table 3. Input factors and its operating levels.

Input Variables Symbol Unit
Operating Levels

1 2 3 4

Current (I) A A 32 36 40 44
Pulse-On Time (Ton) B s 30 × 10−6 60 × 10−6 90 × 10−6 120 × 10−6

Inter-Electrode Gap (IEG) C m 11 × 10−6 12 × 10−6 13 × 10−6 14 × 10−6
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Table 4. EDM set-up specifications.

Manufacturer Model Travel Accuracy

Taiwan Oscar-S 430 [X-400 Y-300 Z-300] mm 0.02 mm/300 mm

It is worth mentioning that the sixteen trial runs were done in a random order to
minimize machining error, with the two most critical outputs, MRR and overcut, being
considered as responses. The initial and final weights of the specimen were acquired using
the weighing equipment (A&D GR-202, Tokyo, Japan) illustrated in Figure 1c, and the net
difference in weight was divided by the product of material density and machining time to
determine the MRR. Furthermore, as depicted in Figure 1d, overcut was assessed using
a coordinate measuring machine (CMM) (ZEISS O-INSPECT 442, Jena, Germany) with
GEOMET universal CMM software (Geomet Version 7, 2010, Helmel Engineering Products,
Inc., Niagara Falls, NY, USA) with an accuracy of 4.5 µm.

2.3. Grey Relational Analysis(GRA)-Based Grey-Fuzzy Technique

Deng [40] developed the grey system idea, which refers to the rudimentary data in an
impoverished, incomplete, and ambiguous system. The term “grey relation” refers to an
inadequate connection of expertise inside a dataset. The GRA technique analyzes numerical
data sequences to quantify the level of correspondence between the idealized and empirical
levels (response values). The estimated level of sequence similarity is denoted by the grey
relational coefficient (GRC). The GRC value will be one if two parameters of the elements
under evaluation appear to be of equivalent significance. The GRA methodology may
therefore be used to transform multiple-response variables to a single grey relational grade
(GRG) value by taking into account mean GRC results for each dataset. Following that, the
choice with the highest GRG result is deemed the most preferred option.

The Taguchi technique was used to estimate the most pertinent operating conditions
for a certain expected quality. As a result, it was created with the express purpose of
enhancing a particular quality attribute. It is obvious that the items must have a high-
quality characteristic to satisfy the demands of the clients. The Taguchi approach involves
the utilization of technical expertise to recognize the optimal input parameters for obtaining
certain output values which could result in the vagueness of the decision-making procedure.
The notion of grey system theory can effectively solve this flaw. This method reduces the
number of stated quality criteria to a singular GRG value. The estimated GRG results are
compared to satisfy the requirements of achieving the most preferred response results to
evaluate the best possible operating levels of various input variables.

Several stages must be followed in order to conduct GRA, and these processes are
outlined below:

Step 1: Normalize the experiment results.
In order to decrease variability and make the decision matrix dimensionless, the

obtained results are first normalized to put them within a range from 0 to 1. The following
normalization formula could be used based on the type of quality characteristics that are
being put into consideration.

For beneficial characteristics:

z∗p(q) =
zp(q)−minzp(q)

maxzp(q)−minzp(q)
(1)

For non-beneficial characteristics:

z∗p(q) =
maxzp(q)−zp(q)

maxzp(q)−minzp(q)

p = 1, 2, . . . , m and q = 1, 2, . . . , n
(2)

where zp(q) and z∗p(q) are the actual and normalized readings for pth choice with regards
to qth criterion.
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Step 2: Evaluation of GRC
From the normalized data, Equation (3) is used to compute the GRC values for each

response. GRC values are used to indicate the relationship between the best and normalized
values.

ξp(q) =
δmin + ηδmax

δ0p(q) + ηδmax
(3)

where δ0i(j) is the difference between the results, z0
p(q) (idealized sequence) and z∗p(q),

and η is the distinctive characteristic with results ranging from 0 and 1 (η = 0.5 is frequently
favored). It is primarily accountable for the extension or reduction of the range of GRC
values. Additionally, δmin = ∀qmin ∈ p∀qmin ‖ z0(q)− zq(q) ‖ is the minimum value of
δ0p, and δmax = ∀qmax ∈ p∀qmax ‖ z0(q)− zq(q) ‖ is the maximum value of δ0p.

Step 3: Computation of GRG
Finally, for each of the options, the GRG results are generated using the average GRC

values of the evaluated criterion.

Gp =
1
n

n

∑
q=1

ξp(q) (4)

The experimental run with the greatest GRG result is the preferred option delineating
its dominance over others for a certain machining framework.

The fuzzy set theory [41] was mainly proposed to explain inaccuracies in the data in
order to obtain a logical solution for every decision situation. In this research, the usage
of beneficial and non-beneficial generates confusion, thus GRA employs fuzzy logic to
address them.

A fuzzy set is made up of many membership functions that translate each component
p into a universe of entities, such as P to a real number R in the (0,1) unit interval. The
uncertainty of grey theory may be handled by establishing a fuzzy multi-performance tool
utilizing a fuzzy logic method, often referred to as a grey-fuzzy logic approach.

Fuzzifiers, membership functions, rule bases, inference engines, and defuzzifiers are all
part of a fuzzy logic methodology. It requires fuzzifying the GRC data into linguistic words
using membership functions that transform each input into some kind of membership
value between zero and one for each input. After that, the inferential engine uses fuzzy
logic to construct a fuzzy value based on the rule foundation. With the assistance of a
defuzzifier, the resulting fuzzy value is converted to a binary value called the grey-fuzzy
reasoning grade (GFRG). Fuzzy rules are used to relate the input grey relational coefficient
to the output grey-fuzzy reasoning grade. The following is a typical representation of the
set of rules:

First Rule: Fuzzy output (G is E1), if (w1 is A1) & (w2 is B1) & (w3 is C1) & (w4 is D1).
Second Rule: Fuzzy output (G is E2), if (w1 is A2) & (w2 is B2) & (w3 is C2) & (w4 is D2).

Nth Rule: Fuzzy output (G is En), if (w1 is An) & (w2 is Bn) & (w3 is Cn) & (w4 is Dn).
(5)

where An, Bn, Cn, Dn and En are fuzzy elements which can be determined by the mem-
bership in the problem by the membership functions, i.e., µAi, µBi, µCi, µDi and µEi, inde-
pendently under consideration. The fuzzy multi-response output, µc0(G) may, thus, be
enumerated utilizing the maximum-minimum interface approach. In a fuzzy system with
a multi-response output and a variety of membership functions, the observational result
may be expressed as follows:

µG0(G) =
(
µA1

(w1) ∧ µB1
(w2) ∧ µC1

(w3) ∧ µD1
(w4) ∧ µE1

(G)
)
∨(

µA2(w1) ∧ µB2(w2) ∧ µC2(w3) ∧ µD2(w4) ∧ µE2(G)
)
∨ . . . . . .(

µAn(w1) ∧ µBn(w2) ∧ µCn(w3) ∧ µDn(w4) ∧ µEn(G)
) (6)

where symbol ‘∧’ denotes the minimization process and symbol ‘∨’ denotes the maximiza-
tion process, respectively. Finally, several approaches, such as center of gravity fuzzification,
weighted average, and mean of max membership, can be used to defuzzify the produced
fuzzy output. The centroid or center of gravity fuzzification methodology is primarily
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utilized to transform the multi-response fuzzy output
(
µc0(G)

)
into the equivalent binary

value of GFRG, because it is the most prevalent and significant illustration of all techniques.

GFRG =
∑ GµG0(G)

∑ µG0(G)
(7)

The computed GFRG results could then be ranked in decreasing order, the preferred
option being the alternative having the greatest GFRG value, which reduces unpredictabil-
ity and ambiguity in the experimentally obtained data. The combination of the GRA
methodology and fuzzy logic has evidently been a simple and effective way to solve
multi-variable problems [42–48]. In this study, the grey-fuzzy method was utilized as a
multi-criteria optimization procedure to evaluate the optimum intermix of input factors
for the EDM process under consideration. Figure 2 shows the processes involved in using
the grey-fuzzy method. The first and most important stage was to identify and choose key
process and response parameters for the EDM operation, as indicated in Table 3. Once the
parameters were defined, the appropriate experimental arrangement (Taguchi design) was
determined while taking into account all process factors. The experimental trial was then
carried out, and response values were assessed using different measuring equipment, as
shown in Table 5. After obtaining the experimental layout shown in Table 5, grey relational
analysis (GRA) was applied to that data, with the first step being data pre-processing using
Equations (1) and (2), followed by a grey relational coefficient (GRC) evaluation using
Equation (3), and finally a grey relational grade calculation using Equation (4). Following
the application of GRA, the obtained result was coupled with the fuzzy logic technique and
fed into the MATLAB environment (MATLAB 2013b, The MathWorks, Inc., Natick, MA,
USA), where fuzzification and defuzzification of the membership function were performed
using generated fuzzy rules based on the experimental data, and thus, the grey-fuzzy
reasoning grade (GFRG) was calculated. Following that, a response table, response graph,
and surface plots were generated in order to find the best parametric combination, and
ANOVA was used to identify the significant parameters.

Table 5. Experimental details. Peak current (I). Pulse-on time (Ton). Inter-electrode gap (IEG).
Material removal rate (MRR). Overcut (OC).

Exp. No. I (A) Ton (µs) IEG (mm) MRR (mm3/min) OC (mm)

1 32 30 0.011 17.125 0.1775
2 32 60 0.012 27.971 0.0605
3 32 90 0.013 121.719 0.1175
4 32 120 0.014 187.005 0.0193
5 36 30 0.012 27.546 0.2266
6 36 60 0.011 78.464 0.069
7 36 90 0.014 30.514 0.1445
8 36 120 0.013 161.831 0.0258
9 40 30 0.013 76.156 0.1522

10 40 60 0.014 133.575 0.0619
11 40 90 0.011 25.174 0.0709
12 40 120 0.012 115.08 0.0177
13 44 30 0.014 99.588 0.039
14 44 60 0.013 79.916 0.0756
15 44 90 0.012 67.694 0.0744
16 44 120 0.011 62.934 0.0605
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3. Results and Discussions

The utilization of the proposed grey-fuzzy technique for determining the best possible
parametric intermix for EDM machining of pearlitic iron material SG 450/12 is addressed
in this section. Table 5 shows the experimental set-up as well as the measured results of
the responses under consideration. The machined component (5 mm depth and 20 mm
diameter) that was employed in the EDM operation is shown in Figure 3.



Materials 2021, 14, 5820 10 of 21
Materials 2021, 14, 5820 11 of 23 
 

 

 
Figure 3. Machined workpiece. 

3.1. Effect of Input Variables on Material Removal Rate (MRR) 
The removed volume of workpiece material divided by time is the material removal 

rate. MRR is greater when the pulse energy is higher [49]. Figure 4 shows the effects of 
several EDM input factors on MRR, as well as surface plots of MRR vs. input parameters. 
Figure 4a depicts the effect of Ton on MRR at various peak current levels. Figure 4b depicts 
the effect of IEG on MRR at various Ton levels. Figure 4c depicts the effect of I on MRR at 
various IEG levels. Figure 4d characterizes the surface plots of MRR vs. I and Ton. Figure 
4e illustrates the surface plots of MRR vs. I and IEG. Figure 4f demonstrates the surface 
plots of MRR vs. Ton and IEG. 

 
Figure 4. Influences of different EDM input variables on MRR with its surface plots. (a) Influence of Ton on MRR. (b) 
Influence of IEG on MRR. (c) Influence of I on MRR. (d) MRR vs. I and Ton. (e) MRR vs. I and IEG. (f) MRR vs. Ton and IEG. 

The pulse-on time is the time period during which an electron discharge in the form 
of a spark occurs between the tool and the workpiece, causing more machining and ma-
terial to be removed and, therefore, affecting the MRR. Since all the work is done during 
on-time, the duration of these pulses and the number of cycles per second (frequency) are 
important. Metal removal is directly proportional to the amount of energy applied during 
the on-time. In Figure 4a the increase in MRR with increasing Ton can be observed as the 
discharge channel created between the electrode and workpiece, which vaporizes more 

Figure 3. Machined workpiece.

3.1. Effect of Input Variables on Material Removal Rate (MRR)

The removed volume of workpiece material divided by time is the material removal
rate. MRR is greater when the pulse energy is higher [49]. Figure 4 shows the effects of
several EDM input factors on MRR, as well as surface plots of MRR vs. input parameters.
Figure 4a depicts the effect of Ton on MRR at various peak current levels. Figure 4b depicts
the effect of IEG on MRR at various Ton levels. Figure 4c depicts the effect of I on MRR
at various IEG levels. Figure 4d characterizes the surface plots of MRR vs. I and Ton.
Figure 4e illustrates the surface plots of MRR vs. I and IEG. Figure 4f demonstrates the
surface plots of MRR vs. Ton and IEG.
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(b) Influence of IEG on MRR. (c) Influence of I on MRR. (d) MRR vs. I and Ton. (e) MRR vs. I and IEG. (f) MRR vs. Ton and IEG.

The pulse-on time is the time period during which an electron discharge in the form of
a spark occurs between the tool and the workpiece, causing more machining and material
to be removed and, therefore, affecting the MRR. Since all the work is done during on-time,
the duration of these pulses and the number of cycles per second (frequency) are important.
Metal removal is directly proportional to the amount of energy applied during the on-time.
In Figure 4a the increase in MRR with increasing Ton can be observed as the discharge
channel created between the electrode and workpiece, which vaporizes more and more
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material from the workpiece. The available discharge energy increases as the Ton increases,
resulting in greater melting and vaporization of the workpiece. The impulsive force in
the spark gap rises as well, resulting in a larger MRR [25,49]. Figure 4d,f show a similar
pattern of behavior.

In Figure 4b, it can be seen that when the IEG is increased, the MRR increases on
different values of pulse-on time. The rise in IEG raises plasma resistance, which requires
more energy to overcome [50]. This additional energy is supplied by the power source in
the form of applied gap voltage and current. This electric energy is nothing more than the
energy input that removes the material from its thermal impact. For a given gap voltage,
increasing the gap distance increases plasma resistance, and increasing the gap distance
increases discharge energy according to Joules Law (Q = I2RT) [50]. At the given gap
distance, increasing the gap voltage reduces plasma resistance while continually increasing
current until peak current is not reached. As a result of the strong thermal effect of electric
discharge on the work material, material erosion rises with increasing IEG, which raises the
discharge energy level [49,50]. Figure 4e,f illustrates that a similar effect can be inferred.

In Figure 4c, as the peak current is increased, the more spark energy is generated
within IEG resulting in an increase in temperature, which can be seen at different values
of IEG. When the temperature difference between the machining zones is raised, more
material melts [51]. Furthermore, when the distance between the workpiece and the tool
widens, the debris gathered during machining has more room to be flushed out of the
machining zone, causing more material to be errored and ultimately leading to MRR [25,51].
Figure 4d,e shows a similar pattern of behavior.

3.2. Effect of Input Variables on Overcut

The discrepancy between the radius of the hole created and the radius of the electrode
utilized is known as the overcut. Figure 5 shows the effects of several EDM input factors
on overcut. Figure 5a depicts the effect of Ton on overcut at various peak current levels.
Figure 5b illustrates the influence of IEG on overcut at various Ton levels. Figure 5c outlines
the impact of I on overcut at various IEG levels. Figure 5d indicates the surface plots of
overcut vs. I and Ton. Figure 5e illustrates the surface plots of overcut vs. I and IEG.
Figure 5f demonstrates the surface plots of Overcut vs. Ton and IEG.
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Due to the existence of side sparks in the work material, overcutting is more com-
mon [51]. Ton is mainly responsible for overcut in Figure 5a. Due to a larger electric field,
dielectric breakdown at a broad gap occurs at higher settings of these three EDM process
parameters [52,53]. Increases in Ton are accompanied with an increase in overcut. Because
the current flow between the machined component and the tool increases as Ton increases,
this is expected. The more ions dissolve and the more hydrogen gas bubbles are created,
the greater the current flow [52]. Figure 5d,f show a similar pattern of behavior.

Overcut rises when the IEG and Ton increase in Figure 5b. This is because overcut
is mainly determined by the IEG and crater size [51]. When the IEG and Ton are both
raised, bigger and wider craters develop, resulting in a greater overcut [51]. Furthermore,
when the IEG increases, the gap widens and the time it takes for dissolution to complete
increases, resulting in an increase in the overcut [52]. Moreover, for higher IEG values,
spark density is greater, implying a quicker machining rate and, thus, side erosion is taken
into account, resulting in a larger overcut [53]. Figure 5e,f illustrate that a similar effect can
be inferred.

The overcut changes at various levels of IEG as the peak current rises in Figure 5c.
This is owing to the fact that the distance between the tool and the workpiece changed as a
result of IEG variation, and therefore, machining debris did not receive a consistent route
to be flushed out of the machining zone, resulting in a variation in overcut. The overcut is
primarily determined by peak current, and as peak current rises, so does the overcut [51].
As the peak current rises, a crater forms, resulting in the melting and vaporization of the
machined region, resulting in the increment in overcut [52,53]. Figure 5d,e show a similar
pattern of behavior.

3.3. Statistical Analysis

The ANOVA was used to discover which factors had the most influence on the MRR
results. Furthermore, a regression equation was constructed that connected the process
variable with the MRR values and defined the appropriate surface plots, as illustrated in
Figure 4d–f. The results of an analysis of variance (ANOVA) based on the MRR values
are shown in Table 6. A regression Equation (8) with a coefficient of determination (R2) of
71.81% and an adjusted coefficient of determination (R2-adj) of 29.53% was also constructed
to demonstrate the relationships between different EDM process parameters and MRR
values.

MRR = 484 − 24.9 A + 4.66 B − 31,374 C + 0.061 A × A + 0.0127 B × B − 2,720,875 C × C − 0.170 A × B + 2644 A × C + 75 B × C (8)

Table 6. ANOVA results obtained for corresponding MRR values. Degree of freedom (DF). Sum of
the Squares (SS). Mean of the Squares (MS).

Source DF Adj SS Adj MS F-Value p-Value

Regression 9 28,461.1 3162.35 1.70 0.267
A 1 241.2 241.18 0.13 0.731
B 1 657.9 657.94 0.35 0.574
C 1 19.6 19.62 0.01 0.922

A × A 1 15.2 15.23 0.01 0.931
B × B 1 2075.7 2075.67 1.11 0.332
C × C 1 118.5 118.45 0.06 0.809
A × B 1 3673.0 3672.98 1.97 0.210
A × C 1 984.4 984.41 0.53 0.495
B × C 1 44.0 43.97 0.02 0.883
Error 6 11,171.4 1861.90 - -
Total 15 39,632.5 - - -

The ANOVA results based on the overcut values are shown in Table 7. A regression
Equation (9) with a coefficient of determination (R2) of 82.05% and an adjusted coefficient
of determination (R2-adj) of 55.13% was also constructed to demonstrate the relationships
between different EDM process parameters and overcut values.

Overcut = −4.63 + 0.1276 A − 0.01605 B + 465 C − 0.000564 A × A + 0.000003 B × B − 6731 C × C + 0.000225 A × B −
8.18 A × C + 0.400 B × C

(9)
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Table 7. ANOVA results obtained for corresponding overcut values.

Source DF Adj SS Adj MS F-Value p-Value

Regression 9 0.044724 0.004969 3.05 0.094
A 1 0.006323 0.006323 3.88 0.096
B 1 0.007804 0.007804 4.79 0.071
C 1 0.004303 0.004303 2.64 0.155

A × A 1 0.001301 0.001301 0.80 0.406
B × B 1 0.000123 0.000123 0.08 0.793
C × C 1 0.000725 0.000725 0.44 0.530
A × B 1 0.006400 0.006400 3.92 0.095
A × C 1 0.009418 0.009418 5.78 0.053
B × C 1 0.001270 0.001270 0.78 0.411
Error 6 0.009784 0.001631 - -
Total 15 0.054508 - - -

3.4. Optimization Results

The GRC and GRG values are, hence, estimated depending upon the experimental
data given in Table 5. Experimental results were pre-processed between zero and one
in order to classify them in a normalized limit, based on the class of quality attribute to
be assessed and whether the Equations (1) or (2) was to be used. The GRC and GRG
values for each experimental sample were then calculated using these normalized data
and Equations (3) and (4), as shown in Table 8. Experiment 4, which had the greatest GRG
value, was the most effective. The fuzzy logic technique, on the other hand, was used to
increase the quality of the resulted solution while reducing the ambiguity and vagueness
in the experimental findings.

Table 8. Normalized data, GRC and GRG values. Grey relational coefficient (GRC). Grey relational
grade (GRG).

Exp. No.
Normalization Results GRC

GRG
MRR Overcut MRR Overcut

1 0 0.2350 0.3333 0.3953 0.3643
2 0.0638 0.7951 0.3482 0.7093 0.5287
3 0.6157 0.5223 0.5654 0.5114 0.5384
4 1 0.9923 1 0.9849 0.9925
5 0.0613 0 0.3475 0.3333 0.3404
6 0.3611 0.7544 0.4390 0.6706 0.5548
7 0.0788 0.3930 0.3518 0.4517 0.4017
8 0.8518 0.9612 0.7714 0.9280 0.8497
9 0.3475 0.3562 0.4338 0.4371 0.4355

10 0.6855 0.7884 0.6139 0.7027 0.6583
11 0.0474 0.7453 0.3442 0.6625 0.5034
12 0.5766 1 0.5415 1 0.7707
13 0.4854 0.8980 0.4928 0.8306 0.6617
14 0.3696 0.7228 0.4423 0.6434 0.5428
15 0.2977 0.7286 0.4159 0.6482 0.5320
16 0.2697 0.7951 0.4064 0.7093 0.5579

The MATLAB (2013a) fuzzy toolbox was used to generate output GFRG values in
an analysis based on the grey-fuzzy method. The GRC values for the two outputs, i.e.,
MRR and overcut, were the entries to the fuzzy framework, whereas the GFRG was the
output. In this way, the investigated multi-criteria problem could be modelled as a fuzzy
two-in-one-out system, as shown in Figure 6. In Figure 6, the GRC value of the responses,
such as MRR and overcut, was used as the input to the fuzzy logic. The collection of if-then
rule bases was then created and sent into the fuzzifier, where the inputs were fuzzified
into the degree of match with linguistic values. Furthermore, decision making was based
on the Mamdani system, and the defuzzification of fuzzy outcomes into crisp output
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was performed, leading to the determination of GFRG. The input Gaussian membership
function with five fuzzy subsets is shown in Figure 7. A Gaussian membership function
with five fuzzy subsets was investigated in this context for input GRC values modified with
minimum and peak values of 0.3333 and 1, as illustrated in Figure 7. Input fuzzy sets could
be very low (VL), low (L), medium (M), high (H), and very high (VH). With nine subsets,
Figure 8 shows the output membership functions. Another Gaussian membership function
with nine fuzzy subsets was used to calculate the values of output GFRG, with minimum
and maximum values ranging from 0.3404 to 0.9925. As demonstrated in Figure 8, output
subsets of extremely low (EL), very low (VL), low (L), medium low (ML), medium (M),
medium high (MH), high (H), very high (VH), and extremely high (EH) were all used.
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Figure 8. Output GFRG Gaussian function with extremely low (EL), very low (VL), low (L), medium low (ML), medium
(M), medium high (MH), high (H), very high (VH), and extremely high (EH).

Sixteen rules describing the relations among the GRC (input) and GFRG (output)
results were developed based on sixteen sets of experimental trials. The following is an
illustration of a rule such as this:

(GFRG is EL), if (MRR is VL) & (Overcut is VL).
A pictorial illustration of these elaborated rules, obtained from the MATLAB tool box

of the grey-fuzzy system, is shown in Figure 9a,b. The fuzzy rules generated depending on
the sixteen groups of experimental runs are represented by the rows in Figure 9b, while
the first two columns display the input GRC results for the two-response variable, and
the final column provides the output GFRG value of the fuzzy system. The fuzzy rules
generated from the sixteen sample sets are represented by the rows in Figure 9b, while the
first two columns show the input GRC results for the two responses. On the other hand,
the last column depicts the GFRG result of the fuzzy system. The height of the colored
region for each Gaussian bell indicates the value of fuzzy associated with a fuzzy set’s
membership function, and the position of each Gaussian bell shape in this picture denotes
the fuzzy subset linked with the fuzzy rule. Following the application of grey-fuzzy, the
GRC input value for MRR was 0.333, and the GRC input value for overcut was 0.395, as
illustrated in Figure 9b. Furthermore, the initial experimental trial’s corresponding GFRG
value was 0.417. Figure 10 also shows the GFRG results for all sixteen experiments. Using
this number, it can be observed that the fourth experimental run, with the highest GFRG
value of 0.9925, turned out to be the optimal parametric intermix for the EDM operation
under consideration, which led to a simultaneous optimization of the response behavior.
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GFRG values, which were calculated by averaging the estimated GFRG value at
different parametric conditions, are accentuated in Table 9, taking into account the mean
of the calculated GFRG results at the respective operating levels of the input factors. The
highest GFRG values for unique machining conditions are shown in bold. Figure 11 shows
a response graph based on this table. Table 8 shows that the response values corresponding
to the GFRG value for the current were greatest at the first operating level and lowest at the
fourth operating level, as shown in Figure 11. The same type of fluctuation can be observed
for the other two input variables, namely, pulse-on time and inter-electrode gap, which
had the greatest GFRG values at the fourth operational level. The difference in slope for all
input parameters demonstrates their importance, with pulse-on time having the steepest
slope, as seen in Figure 11. The optimal set of machining parameters for EDM was found
to be I = 32 A, Ton = 120 µs, and IEG = 0.014 mm, which can symbolically be denoted as
A1B4C4. The max-min column in Table 9 reveals the Ton to be the most important process
variable, which is further confirmed by its steep slope in Figure 11.
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Table 9. Response table obtained for GFRG values. The highest GFRG values for unique machining
conditions are shown in bold.

Input Variables
Operating Level

Max-Min Ranking
1 2 3 4

Current 0.6145 0.5813 0.6045 0.5795 0.0350 3
Pulse-on time 0.4883 0.5800 0.5190 0.7925 0.3043 1

Inter-electrode gap 0.5220 0.5638 0.6150 0.6790 0.1570 2
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Figure 11. Response graph for GFRG values.

The ANOVA results based on the GFRG values are shown in Table 10. A regression
Equation (10) with a coefficient of determination (R2) of 82.91% and an adjusted coefficient
of determination (R2-adj) of 57.27% was also constructed to demonstrate the relationships
between different EDM process parameters and predicted GFRG values. Figure 12 depicts
the surface plots produced from this regression equation, which generally illustrate the
influence of numerous EDM process variables on the calculated GFRG values.

GFRG = 7.29 − 0.146 A + 0.0136 B - 739 C + 0.00013 A × A + 0.000050 B × B + . . . . . . . . . . . . . . . ..
+ 5562 C × C − 0.000593 A × B + 14.54 A × C + 0.48 B × C

(10)

Table 10. ANOVA results obtained for corresponding GFRG values.

Source DF Adj SS Adj MS F-Value p-Value

Regression 9 0.310793 0.034533 3.23 0.083
A 1 0.008271 0.008271 0.77 0.413
B 1 0.005596 0.005596 0.52 0.496
C 1 0.010896 0.010896 1.02 0.351

A × A 1 0.000068 0.000068 0.01 0.939
B × B 1 0.033033 0.033033 3.09 0.129
C × C 1 0.000495 0.000495 0.05 0.837
A × B 1 0.044631 0.044631 4.18 0.087
A × C 1 0.029777 0.029777 2.79 0.146
B × C 1 0.001807 0.001807 0.17 0.695
Error 6 0.064074 0.010679 - -
Total 15 0.374867 - - -
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As shown in Table 11, a validatory test was performed on the randomly selected
input parameters, and Table 12 depicts a comparison of the findings acquired by previ-
ous researchers with the research examined in the current study. Using the established
regression Equations (8)–(10), the corresponding values of the predicted values of MRR,
overcut, and GFRG were computed. Furthermore, experimentation was carried out for
the corresponding randomly chosen input parameters, and the difference between the
predicted and experimental values was computed. It is clear that the difference between
them was extremely minimal. According to Table 12, previous researchers used a vari-
ety of dielectric mediums throughout the machining process, including deionized water,
kerosene oil, commercial grade EDM oil, and transformator oil on different workpiece
materials. Our current investigation, as shown in Table 12, indicated that the MRR value
was 187.005 mm3/min, whereas previous research work showed values around 18.619,
33.780, 10.339, 15.5844, 6.38141, 3.8370, and 59.95 mm3/min. This significant enhancement
in material removal response characteristics was found as a result of a variety of parameters,
including the use of a SG iron (pearlitic 450/12 grade) workpiece, Castrol SE 180 EDM
oil as a dielectric medium, and various process parametric settings. Castrol SE 180 EDM
oil is a low-viscosity, high-performance electric discharge machining (EDM) fluid that is
specially designed and formulated to enable optimum rates of metal removal, as well as
low electrode wear, good surface finish, and fine tolerances, and is equally suitable for
roughing and finishing operations. Furthermore, the low viscosity guarantees that spark
gaps are well cooled and flushed. Its excellent oxidation stability ensures a long service life.
Overall, the aforementioned benefits result in an improved outcome in terms of response
characteristics, particularly in 187.005 mm3/min of MRR and 0.0177 mm of overcut.

Table 11. Validation of regression equation.

Randomly Selected Input Parameters Response Predicted Experimental Error

A = 34 A, B = 50 µs, C = 0.011 mm
MRR (mm3/min) 39.4321 39.4100 0.0221

Overcut (mm) 0.1051 0.1029 0.0022
GFRG 0.5191 0.5184 0.0007

A = 38 A, B = 80 µs, C = 0.012 mm
MRR (mm3/min) 72.534 72.16 0.374

Overcut (mm) 0.0882 0.0849 0.0033
GFRG 0.5590 0.5579 0.0011

A = 42 A, B = 110 µs, C = 0.014 mm
MRR (mm3/min) 124.3180 123.926 0.392

Overcut (mm) 0.0415 0.0402 0.0013
GFRG 0.7815 0.7806 0.0009
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Table 12. Results reported by past researchers and present study for different work material and dielectric fluid medium.

Authors Work Material Dielectric Fluid
Output Parameter

MRR (mm3/min) Overcut (mm)

Mohanty et al. [17] High Carbon Steel Deionized Water,
Kerosene oil 18.619 0.175

Pradhan M.K [26] AISI D2 Tool steel Commercial grade
EDM Oil 33.780 0.005

Prayogo et al. [30] ST 42 Steel Transformator oil 10.339 0.087
Rath, U. [31] EN19 alloy steel EDM oil 15.5844 0.3

Sharma et al. [33] Nimonic 90 EDM oil 6.38141 0.3022
Bhaumik et al. [34] Grade 6 titanium alloy EDM oil 3.8370 0.023
Belloufi et al. [35] AISI 1095 steel Kerosene oil 59.95 0.46

Present study SG iron (pearlitic 450/12 grade) Castrol SE 180 EDM 187.005 0.0177

4. Conclusions

This study examined the parametric optimization and analysis of an EDM operation
using pearlitic SG iron 450/12 grade material, with I, Ton, and IEG as process factors
and MRR and overcut as response variables. A grey-fuzzy logic technique was used to
assess the optimum parametric intermix of those input process parameters. Based on the
aforementioned findings and discussions, it is clear that the EDM process variables (input)
must be maintained at I = 32 A, Ton = 120 s, and IEG = 0.014 mm in order to obtain the most
suitable response values. The impact of different input factors on response characteristics
was investigated. The ANOVA results also showed that none of the parameters were
statistically significant. A response table and response graph were generated, from which it
was deduced that pulse-on time was the most important of all process factors. Furthermore,
validation tests for the developed regression equation were performed with randomly
selected input parameters, and the error computed between the predicted and experimental
values was found to be in the tolerance region, indicating that our developed regressions
model is suitable for prediction.

As a consequence, it is possible to claim that a grey-fuzzy method based on a solid
mathematical foundation may be successfully used to choose the optimum parametric
mix for the EDM operation under discussion. Furthermore, the impact of more diverse re-
sponses, such as circularity error, tool wear rate, and surface roughness on the optimization
performance of grey-fuzzy logic may be investigated.
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