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Abstract: Dense Ti3SiC2/ZnO composites were sintered at different temperatures by spark plasma
sintering (SPS). The effects of sintering temperature on composition and mechanical properties
of Ti3SiC2/ZnO composites were studied. The tribological behaviors of Ti3SiC2/ZnO compos-
ites/Inconel 718 alloy tribo-pairs at elevated temperature from 25 ◦C to 800 ◦C were discussed.
The experimental results showed that the initial decomposition temperature of the Ti3SiC2/ZnO
composite was 1150 ◦C, and Ti3SiC2 decomposed into TiC. When the decomposition temperature
was higher than 1150 ◦C, the compositions of the Ti3SiC2/ZnO composites were Ti3SiC2, ZnO, and
TiC. It was found that Ti3SiC2/ZnO composites had better self-lubricating performance than Ti3SiC2

at elevated temperature from 600 ◦C to 800 ◦C, which was owing to material transfers of tribo-pairs
and sheared oxides generated by tribo-oxidation reactions.
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1. Introduction

Ti3SiC2 is a ternary compound of the MnAXn + 1(MAX) phase which combines the
merits of both metals and ceramics, such as low density, high elastic modulus, favorable
electrical conductivity, excellent high-temperature oxidation resistance, and good mechani-
cal properties [1–4]. More significantly, it has potential application in self-lubricating under
certain conditions [5,6].

With the development and innovation of industrial machinery, lubrication under
extreme conditions has become one of the most interesting research areas [7–10]. Some
traditional solid lubricants, such as graphite and MoS2, are not able to work effectively at
elevated temperature in the fields of aerospace, aircraft, and others. Therefore, scholars
have tried to prepare advanced materials for continuous lubrication in a wide-temperature
range [11–13].

In previous studies, Ti3SiC2/Pb composites were successfully prepared, and it was
found that the addition of Pb could not only improve mechanical properties, but also signifi-
cantly decreased the friction coefficient and wear rate at 600–800 ◦C [14,15]. H.J. Wang et al.
used SPS to synthesize Ti3SiC2/Al2O3 composites and they found that the mechanical
properties and friction-wear properties of Ti3SiC2 could also be improved by adding
Al2O3 [12,16,17]. Islak et al. [18] prepared Ti3SiC2 and Ti3SiC2/SiC composites by a mix-
ture of Ti, Si, TiC, and Al powder and studied their mechanical properties and tribological
performances, respectively. It was shown that Ti3SiC2/SiC composites had higher hardness,
fracture toughness, and wear resistance than Ti3SiC2 [19,20]. These studies showed that
the mechanical properties and tribological performance of Ti3SiC2 were relatively poor at
elevated temperature. Fortunately, the friction coefficient and wear rate could be reduced
with the incorporation of second phases.
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Ternary layered carbide, Ti3SiC2, has good comprehensive properties. In this study,
solid lubricant ZnO was used as the second phase to prepare Ti3SiC2/ZnO composites.
It was expected that the addition of ZnO would improve the tribological performance of
Ti3SiC2 and especially promote its lubrication at elevated temperatures (600–800 ◦C).

2. Materials and Methods
2.1. Samples Preparation

The composites were prepared from powder mixture of Ti3SiC2 (purity: >98%, average
particle size: 2 µm, Jinhezhi Materials Ltd., Beijing, China) and ZnO (purity: >99.5%,
average particle size: 1 µm, Xilong Chemical Ltd., Shantou, China). The volume fraction of
ZnO in the Ti3SiC2/ZnO composite was 15 vol.%. The mixture with designed composition
was firstly mixed for 6 h by ball-milling then filled into graphite dies (inner diameter:
Φ25 mm) and sintered by SPS (manufacturer: Shanghai Chenhua Electric Furnace Co., Ltd.,
Shanghai, China, instrument model: SPS-20T10) under vacuum. The heating rate and
pressure were 50 ◦C/min and 35 MPa, respectively. The holding time was 5 min at sintered
temperatures (1100 ◦C, 1150 ◦C, and 1200 ◦C). Then, the furnace temperature was reduced
to 1000 ◦C with a rate of 50 ◦C/min, and held at 1000 ◦C for 15 min. Subsequently, the
sample was cooled to room temperature with the furnace. For comparison, Ti3SiC2 was
prepared at 1200 ◦C (purity: >99.5%, average particle size: 1 µm).

2.2. Mechanical Property

Densities of the composites were determined by using Archimedes′ principle. Micro-
hardness was measured on a Micro-hardness Tester (Hengyi Technology Co., Ltd., Shanghai,
China, instrument model: MH-5-VM) applying a load of 500 g with a dwell time of 10 s. Flexu-
ral strength and compression strength were measured using a universal material tester (SANS-
CMT5205, MTS China, Shenzhen, China). The three-point bending test was conducted to ob-
tain the flexural strength and the samples were cut to 3 mm high × 4 mm wide × 20 mm long.
The cross-head speed and span were 0.05 mm/min and 16 mm, respectively. The sizes of
the samples for the compression strength test were Φ 5 mm × 12.5 mm and the cross-
head speed was 0.2 mm/min. All samples of mechanical properties were prepared by
wire cutting.

2.3. Friction and Wear Test

The friction and wear tests were conducted on a high temperature tribometer with
a pin-on-disk configuration (CSM Instruments SA, Peseux, Switzerland). Friction tests
under each condition were repeated three times. The pin was a Ti3SiC2 and Ti3SiC2/ZnO
composite with a size of Φ 6 mm × 12 mm by wire cutting. The disk was Inconel 78 alloy
with a size of Φ 32 mm× 8 mm by wire cutting. The surface roughness (Ra) of the disk was
0.06 µm after grinding and polishing. The test was conducted at room temperature with
relative humidity in the range of 20–50%. The sliding speed was 0.5 m/s and the normal
load was 5 N. The sliding distance was 200 m. The friction coefficient was be recorded by
a computer during the test. The wear volume was calculated by measuring the volume
loss of the Ti3SiC2 and Ti3SiC2/ZnO pin and the cross-sectional area of the wear track on
Inconel 718 disk using optical microscopy and 3D surface profilometry. The wear rates
were calculated from the wear volume divided by sliding distance and load. In addition,
scanning electron microscope (SEM, JEOL Company, Tokyo, Japan) was used to observe
the wear surface morphology, X-ray diffraction (XRD, Rigaku Corporation, Tokyo, Japan)
was used to analyze the phase of the wear surface, and X-ray photoelectron spectroscopy
(XPS, Physical Electronics Corporation, Chanhassen, MN, USA) was used to analyze the
oxidation on the wear surface.
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3. Results and Discussion
3.1. Effects of Sintering Temperature on Composition in the Ti3SiC2–ZnO System

Figure 1 shows the XRD patterns of Ti3SiC2/ZnO composites at different sintering
temperatures. The XRD pattern at 1100 ◦C shows that the main components of sintered
samples were Ti3SiC2 and ZnO. The results indicate that no chemical reaction occurred at
1100 ◦C between Ti3SiC2 and ZnO, and Ti3SiC2 did not decompose. At 1150 ◦C and 1200 ◦C,
diffraction peaks of Ti3SiC2, TiC and ZnO were found in the XRD pattern, which indicated
that TiC was generated by partial decomposition of Ti3SiC2. This result was consistent
with the previous research results [15]. Figure 2 shows the micrographs of Ti3SiC2/ZnO
composites at 1100 ◦C, 1150 ◦C, and 1200 ◦C. As seen from the figure, at 1100 ◦C, the
grain of Ti3SiC2/ZnO composites is coarse and irregular in shape, and many pores are
distributed among them. With the increase of temperature, the grain size was refined, and
its pores were obviously reduced.
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Figure 2. Micrographs of Ti3SiC2/ZnO composites at different sintering temperature: (a) 1100 ◦C,
(b) 1150 ◦C, and (c) 1200 ◦C.

3.2. Effects of Sintering Temperature on the Mechanical Properties of the Ti3SiC2/ZnO Composites

Table 1 shows some mechanical properties of the Ti3SiC2 and Ti3SiC2/ZnO compos-
ites at different sintering temperatures. When the sintering temperature was 1100 ◦C, the
temperature was so low that it caused the formation of coarse grains and many holes in the
composites with poor mechanical properties. Therefore, these results were not listed in the
table. Compared with Ti3SiC2, the relative density, microhardness, flexural strength, and
compression strength of the Ti3SiC2/ZnO composites were decreased. In addition, with
the increase of sintering temperature, the mechanical properties of the Ti3SiC2/ZnO com-
posites had certain changes: the flexural strength decreased by about 15.4%, compression
strength increased by about 23.5%, and Vickers hardness increased by only 3.7%. It can be
concluded that Ti3SiC2/ZnO composites have relatively good mechanical properties with
sintering at 1200 ◦C, and their microhardness, bending strength, and compression strength
were 4.67 ± 0.93 GPa, 115 ± 5 MPa, and 557 ± 3 MPa, respectively. Figure 3 shows the
compression stress-strain curve of the Ti3SiC2/ZnO composites sintered at a temperature
of 1200 ◦C and the bending fracture morphology of the composites at different sintering
temperatures. As seen from Figure 3a, the stress-strain curve of the Ti3SiC2/ZnO compos-
ites was close to a straight line with a certain slope before the fracture. Consequently, the
composites only displayed elastic deformation before the fracture, which was consistent
with the characteristic of brittle fracture. In addition, the fracture mechanism of Ti3SiC2
was also brittle fracture [15]. Moreover, the addition of ZnO had no obvious effect on
the fracture mode. Figure 3b–d shows the bending fracture morphology of materials at
different sintering temperatures. From the perspective of macroscopic morphology, the
fracture mode of the Ti3SiC2/ZnO composites at room temperature was brittle fracture.
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Table 1. Properties of Ti3SiC2 and Ti3SiC2/ZnO.

Sample Relative
Density (%)

Microhardness
(GPa)

Flexural
Strength (MPa)

Compression
Strength (MPa)

Ti3SiC2 98.24 5.5 ± 0.2 428 ± 10 1230 ± 13
Ti3SiC2-15ZnO-1100 * * * *
Ti3SiC2-15ZnO-1150 96.35 4.50 ± 0.87 136 ± 11 451 ± 12
Ti3SiC2-15ZnO-1200 97.32 4.67 ± 0.93 115 ± 5 557 ± 3
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3.3. Tribological Behavior of Ti3SiC2/ZnO Composites
3.3.1. Friction Coefficients and Wear Rates

As mentioned before, the Ti3SiC2/ZnO composites sintered at 1200 ◦C (named TSC-
ZN) had favorable mechanical performance. The tribological and wear properties of
TSC-ZN and Inconel 718 alloys were studied at 25–800 ◦C. In comparison, the tribological
and wear properties of Ti3SiC2 sintered at 1200 ◦C (named TSC) were also tested.

Figure 4 shows the friction coefficients of the Ti3SiC2 and Ti3SiC2/ZnO composites as a
function of sliding distances and their average friction coefficients at different temperatures.
From 25 ◦C to 400 ◦C, the friction coefficients of the Ti3SiC2/ZnO composites were higher
than that of Ti3SiC2, and their friction coefficients fluctuated largely at 25 ◦C. However,
the friction coefficients of the Ti3SiC2/ZnO composites were obviously lower than that
of Ti3SiC2 from 600 ◦C to 800 ◦C. As seen from the figure, the friction coefficients of
the Ti3SiC2/ZnO composites decreased gradually with the increase of temperature at
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25–800 ◦C and there was a marked decreased at 600 ◦C. For Ti3SiC2, the friction coefficients
were relatively stable at 25–600 ◦C, and they showed a significant decrease at 800 ◦C. In
addition, the average friction coefficients of the Ti3SiC2/ZnO composites were higher than
those of Ti3SiC2 at 25–400 ◦C, but they were lower at 600–800 ◦C. It could be concluded
that Ti3SiC2 showed excellent self-lubricating properties at 800 ◦C, while the Ti3SiC2/ZnO
composites showed excellent self-lubricating properties at 600 ◦C.
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Figure 4. The friction coefficients and (f) average friction coefficients as a function of sliding distance
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Figure 5a shows the variation in wear rates as a function of the pin of the Ti3SiC2/Inconel
718 alloy and Ti3SiC2/ZnO-Inconel 718 alloy tribo-pairs at different temperatures. For the
Ti3SiC2/ZnO-Inconel 718 alloy tribo-pair, no obvious change was found in the wear rates
of the pin (Ti3SiC2/ZnO) at 25–400 ◦C and its wear rates decreased significantly at above
400 ◦C and reduced to about 7.32 × 10−5 mm3/N m at 800 ◦C. For the Ti3SiC2/Inconel
718 alloy tribo-pairs, the wear rates of the pin (Ti3SiC2) decreased gradually with the
increase of temperature (25–800 ◦C) and reduced to about 5.34 × 10−6 mm3/N m at 800 ◦C.
Figure 5b shows the variation in wear rates as a function of the disks of the Ti3SiC2/Inconel
718 alloy and Ti3SiC2/ZnO-Inconel 718 tribo-pairs at different temperatures. For the
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Ti3SiC2/ZnO-Inconel 718 alloy tribo-pair, the disk (Inconel 718 alloy) showed occured
at 25 ◦C; however, it turned into negative wear above 200 ◦C. Additionally, with the
increase of temperature, the negative wear rates increased gradually and reached about
−2.27 × 10−4 mm3/N m at 800 ◦C. In addition, the wear rates of the disk (Inconel 718) of
the Ti3SiC2/Inconel 718 alloy tribo-pair were positive at 25–600 ◦C and decreased with
the increase of temperature. Then, its wear rates became negative at 800 ◦C and the
negative wear rate were close to that of the disk (Inconel 718) of the Ti3SiC2/ZnO-Inconel
718 alloy tribo-pair.
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The experimental results showed that the wear resistance of the Ti3SiC2/ZnO com-
posites was worse than that of Ti3SiC2 from 600 ◦C to 800 ◦C; however, the friction coef-
ficients of the Ti3SiC2/ZnO composites were lower than that of Ti3SiC2. Therefore, the
Ti3SiC2/ZnO composites show good self-lubricating performance. It is feasible to add ZnO
to improve the tribological performance of Ti3SiC2 at elevated temperatures.

3.3.2. Morphology and Composition of the Worn Surfaces

Figure 6 showed the worn surfaces of the Ti3SiC2/ZnO-Inconel 718 alloy tribo-pair
from 25 ◦C to 800 ◦C, which was the typical morphology of the worn pin and disk below
800 ◦C. It was seen that the wear mechanism caused by the pulling out and falling off
of Ti3SiC2 grains during sliding was abrasive wear. There were some pits on the worn
surfaces of the Ti3SiC2/ZnO composites, and the worn surfaces were relatively rough
(see Figure 6a). At 25–400 ◦C, there was plastic flow on the worn surfaces of the Inconel
718 alloy (see Figure 6b), and Ti, Si, and Zn elements could be detected on these worn
surfaces (see Table 2(b)), which indicated that there was a one-way transfer of materials
from the Ti3SiC2/ZnO composites to the Inconel 718 alloy during the friction process. At
600–800 ◦C, Ti3SiC2 grains still fell off, and the Ti3SiC2/ZnO composites also exhibited
certain characteristics of plastic flow (see Figure 6c). Similarly, the surfaces of the Inconel
718 alloy still had characteristics of plastic flow (see Figure 6d). Moreover, there was
material transfer between tribo-pairs, and the material transfer films became denser after
sintering at high temperatures.

In conclusion, there was a one-way transfer of materials from the Ti3SiC2/ZnO com-
posites to the Inconel 718 alloy in the friction process at 25–400 ◦C, and a mutual transfer
of materials between the Ti3SiC2/ZnO composites and the Inconel 718 alloy in the friction
process at 600–800 ◦C.
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Table 2. Average phase chemical composition of Figure 6 as determined by EDS.

Position Sample Temperature (◦C) Atomic Percentage (at.%)

a TSC-ZN pin 25 24.7%Ti, 6.3%Si, 45.4%C, 2.1%Al, 2.2%Zn, 19.3%O
c TSC-ZN pin 200 28.5%Ti, 9.1%Si, 39.5%C, 3.0%Al, 2.2%Zn, 17.7%O

b Inconel 718 disk 25 13.9%Ti, 5.8%Si, 37.9%C, 2.0%Al, 0.9%Zn, 24.5%O, 0.3%S, 7.5%Ni,
3.6%Cr, 3.2%Fe, 0.4%Nb

d Inconel 718 disk 200 20.9%Ti, 8.3%Si, 36.6%C, 2.5%Al, 0.3%Zn, 25.3%O, 3.3%Ni, 1.4%Cr, 1.4%Fe

3.3.3. Competition of the Tribo-Oxides

Figure 7 shows the element chemical states after friction and wear test from 25 ◦C to
600 ◦C. From the experimental results, it can be seen that ZnO and SiO2 were formed on
the worn surface of the Ti3SiC2/ZnO composites at 25 ◦C. At 200–600 ◦C, the oxide films
consisted of ZnO, SiO2, and TiO2. As shown above, tribo-oxidation reactions occurred for
the Ti3SiC2/ZnO composites to generate SiO2 and TiO2.

When the generation rate of oxide was greater than its consumption rate, an oxide layer
was formed on the friction surface. The progress of the tribo-oxidation reaction depended
on the frictional heat. At 25–400 ◦C, the oxidation reaction induced by friction heat was
not enough to form an oxide film on the friction surface. Therefore, the tribological and
wear properties of the Ti3SiC2/ZnO composites was not improved from 25 ◦C to 400 ◦C.
However, when the temperature exceeded 600 ◦C, the friction heat provided enough
energy to generate oxides continuously. At this point, the formed oxides, such as ZnO,
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SiO2, and TiO2, had obvious characteristics of plastic flow and could be sheared easily.
In addition, the oxide films avoided direct contact between the Ti3SiC2/ZnO composites
and the Inconel 718 alloy, and also decreased the material transfer and dropping of grains
of Ti3SiC2. Therefore, the friction coefficients of the Ti3SiC2/ZnO composites decreased
significantly. With the increase of temperature, the oxide films would be softened, making
it easier to shear.
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4. Conclusions

Dense Ti3SiC2/ZnO composites were successfully prepared by SPS from the mixture
of Ti3SiC2 and ZnO powders. The friction coefficients and wear rates of the composites
were relatively high at low and medium temperatures (at 25–400 ◦C). Fortunately, the
friction coefficients of the composites decreased significantly at higher temperature (at
600–800 ◦C), due to material transfers of tribo-pairs and the presence of SiO2 and TiO2.
These oxide films had obvious characteristics of plastic flow and avoided direct contact
of tribo-pairs. Therefore, Ti3SiC2/ZnO composites could be used as a solid lubricant in a
wide-temperature range.
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