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Abstract: It is necessary to improve the machinability of difficult-to-cut materials such as hardened
steel, nickel-based alloys, and titanium alloys as these materials offer superior properties such as
chemical stability, corrosion resistance, and high strength to weight ratio, making them indispensable
for many applications. Machining with self-propelled rotary tools (SPRT) is considered one of the
promising techniques used to provide proper tool life even under dry conditions. In this work,
an attempt has been performed to analyze, model, and optimize the machining process of AISI
4140 hardened steel using self-propelled rotary tools. Experimental analysis has been offered to
(a) compare the fixed and rotary tools performance and (b) study the effect of the inclination angle
on the surface quality and tool wear. Moreover, the current study implemented some artificial
intelligence-based approaches (i.e., genetic programming and NSGA-II) to model and optimize
the machining process of AISI 4140 hardened steel with self-propelled rotary tools. The feed rate,
cutting velocity, and inclination angle were the selected design variables, while the tool wear,
surface roughness, and material removal rate (MRR) were the studied outputs. The optimal surface
roughness was obtained at a cutting speed of 240 m/min, an inclination angle of 20◦, and a feed
rate of 0.1 mm/rev. In addition, the minimum flank tool wear was observed at a cutting speed of
70 m/min, an inclination angle of 10◦, and a feed rate of 0.15 mm/rev. Moreover, different weights
have been assigned for the three studied outputs to offer different optimized solutions based on
the designer’s interest (equal-weighted, finishing, and productivity scenarios). It should be stated
that the findings of the current work offer valuable recommendations to select the optimized cutting
conditions when machining hardened steel AISI 4140 within the selected ranges.

Keywords: modeling; machining; optimization; rotary tools

1. Introduction

Difficult-to-cut materials such as hardened steel, titanium alloys, nickel-based alloys,
and ceramics are widely applied in many industrial fields, including aerospace, automotive,
and biomedical [1]. The superior properties of these materials, as shown in Table 1, make
them indispensable for many applications. However, machining of these materials is al-
ways a challenge due to their low thermal conductivity, which leads to a high concentration
of the generated heat in the cutting zone and allows the temperature to hit severe levels [2].
This excessive concentrated heat affects machining performance and tool wear behavior.
Additionally, instantaneous damage to the machining surface or the insert can occur due to
the high temperature levels. Flood coolant is one of the widely used techniques to solve
the concentrated heat problem by dissipating the generated heat to reduce the temperature.
However, using the flood coolant technique has severe effects on the environment and the
operator’s health [3]. The employed coolant also increases the operation cost by about 10%
to 15%, as discussed by Markesberry [4]. It was found that machining using self-propelled
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rotary tools can be a suitable approach, especially for difficult-to-cut materials, even under
dry conditions [5].

In self-propelled rotary tools, the insert is a round disc that is allowed to rotate around
its axis freely. As a result of the tool motion, the whole circumference of the disc can be used
as a cutting edge. The motion also allows each portion of the cutting edge to engage with
the workpiece for a short time and disengage to cool down before cutting again. Therefore,
a self-cooling feature occurs when the tool rotates, which dissipates the generated heat and
maintains acceptable temperature levels even under dry machining conditions. Moreover,
the tool wear is distributed over the whole round edge instead of being concentrated at
a single point, as occurs in traditional machining. Thus, superior wear resistance was
observed when machining with self-propelled rotary tools compared to traditional tools [6].

Table 1. Properties of some super-alloys at room temperature [7,8].

Property
Material

Ti-6Al-4 V Inconel 718 Titanium AISI 4140

Density (g/cm3) 4.43 8.22 4.5 7.85
Ultimate tensile strength (MPa) 950 1350 220 729.5
Yield strength (MPa) 880 1170 140 379.2
Modulus of elasticity (GPa) 113.8 200 116 198
Ductility (%) 14 16 54 25.7
Fracture toughness (MPa m1/2) 75 96.4 70 66
Thermal conductivity (W/mK) 6.7 11.4 17 42.7

Chen et al. [9] used self-propelled rotary tools made of carbide for machining SiCw/Al
composite workpieces. The results showed that rotary tools offered a dramatic increase in
tool life compared to traditional tools. Ezugwu [10] observed that the use of rotary tools
provided better surface roughness, reduced the machining temperature, and increased the
tool life compared to the conventional cases. Wang et al. [11] have employed self-propelled
rotary tools in machining Ti-6Al-4V at low cutting speeds. They showed that tool life was
significantly improved, and tool wear was dramatically decreased in the case of SPRT
compared to conventional cutting tools. The same observations were presented by Lei and
Liu [12] when machining Ti-6Al-4V using driven rotary tools. Their results showed that tool
life was increased by more than 60 times compared to the stationary round insert under the
same conditions. Harun et al. [13] have also used driven rotary tools for cutting plain carbon
steel. They measured the cutting-edge temperature using the thermocouple method. In
addition, they modeled the thermal behavior of the cutting process using rotary tools with
one-dimensional unsteady heat transfer theory. The effect of cutting and cooling conditions
on tool life when machining using rotary tools was discussed by Karaguzel et al. [14].
A tool temperature model for machining using self-propelled rotary tools was developed
by Kishawy et al. [15], and the results proved that lower cutting temperature occurs in
the case of rotary tools compared to fixed tools. El-Mounayri et al. [16] conducted an
experimental study to compare the machining characteristics (including surface quality,
tool wear, and cutting forces) when utilizing self-propelled rotary with conventional tools.
The hardness of the workpiece material was 55RC workpiece, and coated carbide inserts
were used. The results showed that SPRT provided better overall performance compared
to traditional tools. Moreover, Kishawy et al. [17] developed an analytical model to predict
the chip flow angle for the tube-end turning machining process of hardened steel using
self-propelled rotary tools. This work was further developed, and another analytical
model was provided to accurately predict the cutting forces when machining with self-
propelled rotary tools [18]. Another analytical model was developed by Kishawy et al. [19]
to accurately predict the cutting forces and tool rotational speed for machining with self-
propelled rotary tools by considering the bearing friction. The performance of machining
hardened steel with self-propelled rotary tools was analyzed by Kishawy and Wilcox in
terms of tool wear and chip morphology [20]. Recently, Thellaputta et al. [21] studied the
effect of different machining variables on the milling process performance of Inconel 625
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using rotary tools. In this study, an infrared thermal camera was utilized to measure the
cutting temperature. It was observed that the machining temperature increased as the
cutting speed and feed rate increased. The effect of different cutting conditions on the
cutting forces and surface roughness when machining hardened 41Cr4 steel with SPRT
was investigated by Nieslony et al. [22]. Furthermore, Ahmed et al. [23,24] performed
numerical and experimental studies to model and investigate the machining process with
self-propelled rotary tools, and 3-D distribution of the tool’s temperature was presented.

On the other hand, multi-objective optimization using the non-sorted genetic algo-
rithm (NSGA-II) was employed in the study by Abbas et al. [25] to optimize the machining
performance and sustainability aspects using different cooling techniques when machining
AISI 1045 steel. An integrated approach between the genetic algorithm and neural network
was used by Sangwan et al. [26] to optimize the machining variables to minimize the
surface roughness when machining Ti-6al-4v. Pawar et al. [27] employed the artificial bee
colony algorithm to perform multi-objective optimization for the wire-electric discharge
process. The tool wear, surface roughness, and productivity aspects were considered
as machining outputs. Dabade et al. [28] utilized self-propelled rotary tools for the face
milling process. Optimization was employed to study the effect of the machining variables
on the output responses, including chip cross-surface area and surface roughness. The
inclination angle was the most significant variable that affected the machining outputs.
Hao et al. [29] used the artificial neural network (ANN) technique to predict the cutting
force components when machining low carbon steel. Cutting velocity, feed rate, tool in-
clination angle, and depth of cut were considered as input variables. Nguyen et al. [30]
developed a sustainability-based optimization model for the turning process of hardened
steel using rotary tools. The genetic algorithm was used, aiming to reduce the machining
cost and surface roughness, as well as enhance energy efficiency and operation safety.

There are minimal studies in the open literature that implemented the multi-objective
optimization approach in the area of machining with self-propelled rotary tools [31,32].
In addition, few models have been performed (either analytical or artificial intelligence-
based models) to model wear behavior and surface integrity when machining with rotary
tools; the majority of the developed models are focused on the cutting forces. Firstly,
in this work, experimental analysis has been offered to (a) compare between the fixed
and rotary tools performance and (b) study the effect of the inclination angle on the
surface quality and tool wear. Secondly, the current study implemented some artificial
intelligence-based approaches (i.e., genetic programming and NSGA-II) to model and
optimize the machining process of hardened steel AISI 4140 with self-propelled rotary
tools. The feed rate, cutting velocity, and inclination angle were selected to be the design
variables, while the tool wear, surface roughness, and material removal rate (MRR) were
the studied outputs. Moreover, different weights have been assigned for the three studied
outputs to offer different optimized solutions based on the designer’s interest (equal-
weighted, finishing, and productivity scenarios). Figure 1 shows the flow chart of the
current work methodology.
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Figure 1. Flow chart for the research methodology.

2. Materials and Methods

In the current study, different cutting tests were carried out to investigate and analyze
the effect of the cutting conditions on machining performance when using self-propelled
rotary tools. The workpiece material was hardened steel AISI 4140 (46 ± 2 HRC). The
hardened steel AISI 4140 is widely used in many industrial applications, including shafts,
driving pins, axles, link components, gears, and milling spindles. That is attributed to its
high resistance to wear, corrosion, and abrasion, as well as its high durability, compared to
untreated steel. However, machining hardened steel is a challenge due to the relatively
high hardness, which causes abrasive wear and accordingly shortens tool life, especially
under dry conditions.

A tube-shaped workpiece was used to achieve homogeneous properties during the
heat treatment process. The outer diameter of the workpiece was 100 mm, while the
inner diameter was 50 mm. Table 2 shows the chemical composition of AISI 4140 steel.
A carbide round insert with an outer diameter of 27 mm was also used. The rake angle
was −5◦, while the clearance angle was 5◦. Figure 2 shows the experimental setup of the
current study.

Table 2. Chemical composite (wt. %) of AISI 4140.

C SI Mn Cr Mo Fe

0.38%–0.43% 0.15%–0.3% 0.7%–1% 0.8%–1.1% 0.15%–0.25% 96.75%–97.84%
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Figure 2. Experimental setup for the turning process using a self-propelled rotary tool.

The feed rate, cutting speed, and inclination angle were selected as design variables,
while the average surface roughness and flank tool wear were chosen to be performance
indicators. The average surface roughness was used to evaluate the machined surface
quality. The arithmetical mean deviation of the assessed profile (Ra) was measured using
Mitutoyo (SJ.201) portable surface roughness at a cut-off length of 2.5 mm. The surface
roughness was measured at three different locations, and the average value was calculated
and used for the analysis. Mitutoya toolmaker’s microscope (TM-A505B) was used to
measure the average flank wear of the insert after each run. The flank tool wear was
measured at four different locations on the circular flank face of the insert, and the av-
erage value was obtained and used in the analysis. Figure 3 shows a flow chart for the
experimental procedures.
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Figure 3. Flow chart of the experimental procedures.

Taguchi’s approach was utilized in the current study to conduct a minimum number
of experiments. Three design variables with four levels each were used in the present
study. The selected design variables were inclination angle (i), feed rate (f ), and cutting
speed (V). Three design variables with four levels each (i.e., 43) were utilized; therefore,
the full L64OA orthogonal array should be used. However, a fractional factorial L16OA
orthogonal array was employed to save cost and time [33]. The levels for the three design
variables were selected to be (a) 5, 10, 15, and 20◦ for the inclination angle; (b) 0.1, 0.15,
0.2, and 0.25 mm/rev for the feed rate; (c) 70, 127, 167, and 240 m/min for the cutting
speed. The levels of each design variable were selected based on the recommendation of
the tool’s manufacturer as well as the machine tool capabilities. The depth of cut was 0.2
mm, while the cutting length was 100 mm for all runs. Table 3 shows the 16 experiments of
the current study.
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Table 3. The design of experiments for the machining runs.

Test
No

Inclination Angle
Levels

Feed Rate
Levels

Cutting Speed
Levels

1 1 1 1
2 1 2 2
3 1 3 3
4 1 4 4
5 2 1 2
6 2 2 1
7 2 3 4
8 2 4 3
9 3 1 3
10 3 2 4
11 3 3 1
12 3 4 2
13 4 1 4
14 4 2 3
15 4 3 2
16 4 4 1

3. Results and Discussion

Table 4 shows the results of the average flank tool wear and average surface roughness
during dry machining with self-propelled rotary tools. The minimum flank tool wear was
observed at test 6, where the cutting speed was 70 m/min, the inclination angle was 10◦,
and the feed rate was 0.15 mm/rev. Test 14 showed the highest flank tool wear, where
the cutting speed was 167 m/min, the inclination angle was 20◦, and the feed rate was
0.15 mm/rev. In general, the results showed that reducing the cutting speed leads to low
flank wear, as expected. When using rotary tools, it was found that increasing the feed rate
decreases flank wear. That could be attributed to the fact that the cutting process becomes
more stable at a high feed rate as continuous chip was observed; however, discontinuous
chip was noticed at a low feed rate.

Table 4. Average surface roughness (Ra) and tool wear (VB) results, where (i) is the inclination angle,
(f ) is the feed rate, and (V) is the cutting speed.

Test
No

i
(◦)

f
(mm/rev)

V
(m/min)

VB
(µm)

Ra
(µm)

1 5 0.1 70 16 0.83
2 5 0.15 127 38 1.08
3 5 0.2 167 20 0.78
4 5 0.25 240 22 0.95
5 10 0.1 127 61 1.00
6 10 0.15 70 3 1.13
7 10 0.2 240 59 0.84
8 10 0.25 167 14 0.90
9 15 0.1 167 51 1.18

10 15 0.15 240 25 0.93
11 15 0.2 70 5 1.17
12 15 0.25 127 40 1.48
13 20 0.1 240 12 0.56
14 20 0.15 167 71 0.94
15 20 0.2 127 51 1.11
16 20 0.25 70 4 1.83

Regarding the average surface roughness, the results revealed that the variation of the
cutting conditions had a corresponding effect on the surface roughness. The optimal surface
roughness was obtained at test 13, where the cutting speed was 240 m/min, the inclination
angle was 20◦, and the feed rate was 0.1 mm/rev. It was observed that increasing the
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cutting velocity led to a reduction in the surface roughness value, as expected. Besides,
increasing the feed rate led to a deterioration of the machined surface due to the increase
of the chip load.

A comparison between the fixed and rotary tools was performed to study the effect of
the tool motion on the studied machining responses. Figure 4 shows the tool wear results
for fixed and rotary tools at the best and worst conditions (i.e., test 6 and test 14). The
wear of the rotary tool was reduced by 37% at test 14 (where the maximum tool wear
occurred) compared to the fixed tool. At test 6, the tool wear of the rotary tool was reduced
by 22% compared to the fixed tool. That could be attributed to the benefits of the tool
rotational motion.
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Figure 5 shows surface roughness results for fixed and rotary tools at the best and
worst conditions (i.e., test 13 and test 16). In general, the surface roughness values of rotary
tools are relatively low compared to conventional tools (i.e., single point) due to the large
radius of the round insert compared to the nose radius of the conventional tool. However,
better surface roughness was provided by fixed round tools compared to round tools under
motion, especially at the worst condition (i.e., test 16), where the surface roughness of the
rotary insert achieved 1.83 µm. That could be due to different possible factors, including
machining stability, which is significantly affected by the dynamic nature of the rotary
tool. This is because the self-propelled rotary tool is allowed to freely rotate around its
axis due to the chip tangential force which guides the tool motion. One of the solutions to
improve the surface roughness when using self-propelled rotary tools is to enhance the
design of the tool holder by increasing its rigidity. The surface roughness is also affected by
the generated marks in the direction of the relative cutting velocity as a result of the tool
motion, as discussed in the previous work [34].

To study the effect of the inclination angle on the tool wear and the surface quality,
a comparison was performed between two cutting tests under certain conditions of cutting
speed and feed rate (i.e., V = 167 m/min and f = 0.15 mm/rev) with two different inclination
angles of 5◦ and 20◦, as shown in Figure 6. It was observed that when using a low inclination
angle (i.e., 5◦), the chips collided and were pushed into the workpiece surface, as shown
in Figure 6b. Afterward, the cutting edge crushes the adhered chips, which increases tool
wear, as can be seen in Figure 6d. On the other hand, no chip adhesion was observed in
the machined surface at a 20◦ inclination angle (see Figure 6a), and accordingly, lower tool
wear was obtained compared to the case of 5◦ inclination angle (see Figure 6c). That can be
attributed to the increase in the chip flow angle based on the oblique cutting principles, as
confirmed by Yamamoto et al. [35].
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4. Modeling of the Machining Characteristics

In this section, genetic programming (GP) was used to empirically model surface
roughness (Ra) and tool wear (VB). Genetic programming is considered one of the most
effective artificial intelligence techniques, and it is used in different engineering applica-
tions [36]. In genetic programming, each program is built of a tree structure of terminals
and functions (i.e., genotype). The terminals (i.e., leaves) are the inputs to the program,
and the used functions of the GP program include mathematical functions, programming
functions, and arithmetic operations. Every generated model is presented as a chromo-
some, and the fitness function is used to evaluate each chromosome. The fitness function
measures the error between the model output and the input data. Genetic operators include
mutation, and crossover factors are then utilized to generate new chromosomes. In the
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current study, the Eureqa software was used to develop models of the surface roughness
and tool wear, as shown in Equations (1) and (2), respectively. It should be stated that
the currently developed models are based on non-linear regression, and they are valid
within the selected ranges for the studied design parameters. In addition, the current
technique (genetic programming) was used in different studies to model the machining
performance [37–40].

Ra = 0.0066 ∗ i2 + 42.91 ∗ i ∗ f 4 − 0.07 ∗ i − 2.20e−9 ∗ V ∗ i5 − 10.9 ∗ i ∗ f 3 + 1.12 (1)

VB = 387.22 + 8.32
f + 16.53 ∗ i ∗ f + 0.03 ∗ f ∗ V2

− 21799.6+16.53∗i2∗ f 2

V − 2.31 ∗ V − 50.67 ∗ V ∗ f 3
(2)

Figures 7 and 8 show a comparison between the experimental and predicted results
for flank tool wear and average surface roughness, respectively. The surface roughness
(Ra) model showed average model accuracy of 94.33% with 0.89 goodness of fit (R2) and
0.06 mean absolute error. Besides, the average model accuracy of 87.44% was achieved for
the tool wear model with 0.88 goodness of fit (R2) and 3.82 mean absolute error.
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5. Multi-Objective Optimization

The non-dominated sorting genetic algorithm (NSGA-II) was used in the current study
to perform multi-objective optimization of the generated models. The NSGA-II is one of
the popular multi-objective optimization techniques as it utilizes special features such as
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fast non-dominated method, fast crowded estimation of distances approach, and simple
operator to perform a crowded comparison to find the optimal Pareto-front solutions [41].
The genetic algorithm evolutionary operators such as crossover and mutation are utilized
in the NSGA-II algorithm. The general steps of the NSGA-II can be summarized as
follows [42]:

• Select the size of the population based on the constraints and their range;
• Perform non-dominated sort for the initialized populations;
• Assign crowding distance values for the population of individuals;
• Select the individuals based on the rank and the crowding distance;
• Apply the genetic algorithm crossover and mutation operators;
• Recombine and select an individual for the next generation until the population size

exceeds the current size.

Three machining objective functions were considered in the optimization process; tool
wear, surface roughness, and material removal rate. It should be stated that the generated
models obtained in Section 3 were used as objective functions in this stage. The problem
constraints, according to the current experimental plan, are as follows:

5◦ ≤ i ≤ 20◦

0.1 mm/rev ≤ f ≤ 0.25 mm/rev
70 m/min ≤ V ≤ 240 m/min

A sensitivity analysis was performed to select the optimized parameters used for
NSGA-II. Hypervolume Indicator was calculated to evaluate the performance of the Pareto-
front solutions set. This indicator is used to measure the convergence and the diversity of
Pareto-front solutions [43]. The hypervolume indicator follows the higher-better criteria,
which means the optimized solution can be found at the highest hypervolume indicators.
In the current study, the hypervolume indicator was calculated at three different values of
crossover (i.e., 0.6, 0.7, and 0.8) and three values of mutation (i.e., 0.005, 0.01, and 0.015).
Figure 9 shows that the highest hypervolume indicator of 7.3% was obtained at a mutation
factor of 0.01 and a crossover rate of 0.7, which was used in the current optimization
algorithm. The population size of 400 was selected, and the solver was allowed to proceed
until the function tolerance of 10−4 was achieved.
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Figure 10 shows the Pareto-front solutions for the three objectives functions. The
Pareto-front solution is distributed into two groups, group 1 and group 2. For the first
group, it can be noticed that the dominant relationship between the tool wear and the
material removal rate is an interdependent based-relation. That could be attributed to the
high cutting velocity, which associates with the high material removal rate. Besides, there is
a reduction in the surface roughness values when decreasing the inclination angle and the
cutting speed. That is because the surface roughness when machining with self-propelled
rotary tools depends on the machining stability (the dynamic nature of the process). The



Materials 2021, 14, 6106 11 of 15

tool rotational speed is directly affected by the cutting velocity and the inclination angle, as
seen in Equation (3) [44]:

Vr = V sin(i) (3)

where Vr is the tool rotational speed, V is the cutting velocity, and i is the inclination angle.
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Therefore, the low levels for both inclination angle and cutting velocity lead to the
slow rotational speed of the cutting insert, which increases the machining stability and
produces better surface quality. For the second group, the dominant relationship is an
interdependent relationship between the surface roughness and the material removal rate.
The higher values of the surface roughness at the high material removal rate are due to
the large value of the cutting velocity, which increases the rotational speed of the insert
(see Equation (3)) and accordingly reduces the machining stability. It should be stated that
the three selected points in Figure 10 represent the optimal boundaries of the obtained
two groups.

6. Optimized Scenarios

This section provides a new approach to optimize Pareto-front solutions based on
different machining scenarios. Three different machining scenarios were investigated,
namely: equal-weighted, productivity, and finishing. Different weighting factors were
assigned to each scenario to evaluate the output responses. It should be stated that the
weights provided in each studied scenario were based on a specific design requirement;
for example, 60% is assigned to MRR in the case of the productivity scenario, while 70% is
assigned to Ra in the case of the finishing scenario. In this way, this optimized approach
can allow different weight coefficients based on the desire requirements of the decision-
maker. Table 5 represents the scenarios used and the weighting factors for each scenario.
The multi-objective optimization NSGA-II provides some Pareto-front solutions, and to
choose the best optimal solution for a certain scenario (e.g., finishing or productivity),
normalized Pareto-front solutions based on each scenario were obtained. Afterward, the
highest normalized solution in each scenario was considered. The highest optimized
solution means that the selected solution achieves the best balance between all the output
responses within each studied scenario.
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Table 5. The weighting factors for the machining scenarios.

Scenario
Machining Outputs

(Ra) (VB) (MRR)

(A): Equal-weighted 33.33% 33.33% 33.33%
(B): Productivity 10% 30% 60%
(C): Finishing 70% 20% 10%

Table 6 shows the result of the normalized optimal solutions for the three studied
scenarios. The optimal cutting conditions for the productivity scenario were obtained at
the highest cutting velocity and feed rate (i.e., V = 240 m/min and f = 0.25 mm/rev), as
expected, and at an inclination angle of 7◦. In contrast, the optimum conditions for the
finishing scenario were found at a cutting velocity of 235 m/min, a feed rate of 0.19 mm/rev,
and an inclination angle of 19◦. Moreover, the optimal conditions for the equal-weighted
scenario) were found at a cutting velocity of 98 m/min, a feed rate of 0.23 mm/rev, and an
inclination angle of 7◦.

Table 6. A summary of the optimal solutions for the studied scenarios.

Scenario

Machining Outputs

Ra
(µm)

VB
(µm)

MRR
(mm3/min)

(A): Equal-weighted 0.87 2.42 4580
(B): Productivity 0.92 32.56 11,851
(C): Finishing 0.38 79.93 9156

To validate the effectiveness of the three studied scenarios, confirmation experimental
tests were conducted, and the results showed good agreement with the predicted values,
as can be seen in Figure 11. For the flank wear results, the maximum deviation was about
8 µm at the finishing scenario. Regarding the surface roughness results, the maximum
deviation was about 0.17 µm for the equal-weighted case.
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7. Conclusions and Future Work

This work offers an attempt to analyze, model, and optimize the machining of AISI
4140 hardened steel with SPRT. The main findings obtained in this study have been
summarized as follows:

• Using a self-propelled rotary tool reduced the flank tool wear by 37% and 22% at the
worst and best cutting conditions, respectively, compared to the fixed tool;
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• Unlike conventional cutting, increasing the feed rate led to a decrease in the flank
tool wear;

• A comparison between the self-propelled rotary tool and the fixed tool shows that the
fixed tool provided better surface roughness;

• A comparison between two cutting tests with different inclination angles shows that
there were no chips adhesion observed in the machined surface at 20◦ inclination
angle, and accordingly, lower tool wear was obtained compared to the case of 5◦

inclination angle;
• The surface roughness values of rotary tools are relatively low compared to conven-

tional tools (i.e., single point) due to the large radius of the round insert compared
to the nose radius of the conventional tool. However, better surface roughness was
provided by fixed round tools compared to the round tools under rotational motion;

• Based on the optimized scenarios of multi-objective optimization (NSGA-II), the
optimal cutting variable levels for the equal-weighted scenario were found at a cutting
velocity of 98 m/min, a feed rate of 0.23 mm/rev, and an inclination angle of 7◦.
Besides, the optimal cutting conditions for the productivity scenario were obtained at
the highest cutting velocity and feed rate (i.e., V = 240 m/min and f = 0.25 mm/rev),
and an inclination angle of 7◦. While the optimum conditions for the finishing scenario
were found at a cutting velocity of 235 m/min, a feed rate of 0.19 mm/rev, and an
inclination angle of 19◦;

• To validate the effectiveness of the three studied scenarios, confirmation experimen-
tal tests have been conducted, and the results showed a good agreement with the
predicted values.

It should be stated that the findings of the current work offer valuable recommenda-
tions to select the optimized cutting conditions when machining hardened steel AISI 4140.
In terms of future work, an in-depth analytical model is needed to fully understand the
chip formation mechanisms for the machining process with self-propelled rotary tools. In
addition, the effect of the machining parameters (cutting speed, inclination angle, feed
rate) on the microstructure of the generated machined surface when using rotary and
conventional tools should be studied. Furthermore, to investigate the durability aspect, a
progressive tool wear test followed by tool wear mechanism analysis should be conducted
for both rotary and conventional tools.
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