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Abstract: Three photobicyclized benzodithienoquinolizinium tetrafluoroborates (BPDTQBF4) were
prepared and evaluated by UV–Vis and fluorescence spectral, electrochemical analysis, and by
theoretical calculations as possible organic n-type semiconductors. Evaluation and comparison of
their LUMO levels, HOMO-LUMO energy gaps as monomeric and π-stacked dimers with those
of other materials, suggest their potential as organic n-type semiconductors. Calculations of their
relative charge carrier mobilities confirmed this potential for one derivative with a long (C-14) alkyl
chain appended to the polycyclic planar π-system.

Keywords: benzodithienoquinolizinium cations; photocyclization of N-aryl pyridinium salts;
π-stacked assemblies; organic semiconductors

1. Introduction

The development of new and more efficient organic semiconductors is an active area
of research with a plethora of applications. They are normally classified as p-type (electron-
donating or hole-conducting), n-type (electron-accepting or electron-conducting), and
ambipolar (hole- and electron-conducting) semiconductors. The preparation and the study
of electron-donating or p-type semiconductors have received considerable attention [1].
Compared to them, the development of their n-type counterparts has been left behind due
in part to their greater atmospheric sensitivity and the rather limited number of molecular
scaffolds employed for their synthesis. Research has been mainly concentrated on fullerene
derivatives because of their high electron affinity and electron mobility [2–6]. Due to their
ease of polymer intercalation and efficient electron transport, fullerene derivatives became
an important class of electron acceptors for highly efficient organic solar cells, particularly
when coupled with high-performance, electron-donating polymers [7]. Table 1 shows a
comparison of some properties of fullerene derivatives and small molecules, when they are
used as n-type semiconductors in organic solar cells.
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Table 1. LUMO energy levels (obtained by electrochemical measurements), electron mobility values,
donor/acceptor ratio and power conversion efficiency (PCE%) of fullerene derivatives and some
organic small molecules used as n-type semiconductors.

Acceptor. LUMO Energy (eV) µe
(cm2·V−1·s−1) D/A Ratio PCE (%)

PC61BM [8] −3.70 2.39 × 10−4 1:0.7 3.80
NC61BM [8] −3.68 2.27 × 10−4 1:0.7 4.09
AC61BM [8] −3.75 1.75 × 10−4 1:0.7 1.14

PyC61BM [8] −3.72 2.13 × 10−4 1:0.7 1.95
oo-PDI [9] −3.90 - 1:1 8.12
PDI-3 [10] −3.63 - 1:2 0.96
PDI-1 [10] −3.67 - 1:2 0.13

NDITz [11] −3.99 0.15 - -
NDINI [12] −4.20 1.75 - -

C8-NDTI [13] −4.00 0.05 - -

Despite these advantages, however, recent studies have suggested that degradation
of organic solar cells may be due to their high photo- and oxygen-sensitivity, and their
tendency to form macroscopic aggregates [14–16]. Fullerene and its derivatives are weak
absorbers of visible light [17,18]. This feature results in poor light-harvesting properties,
thereby substantially reducing the potential of the photocurrent generation of organic solar
cells in the UV–Visible range of the solar spectrum. These limitations and the poor synthetic
flexibility shown by fullerene have led to efforts to develop other organic n-type semicon-
ductors with a non-fullerene scaffold. Research in this field has concentrated on various
oligomers [19,20] and polymeric materials [21,22], with few examples of small molecules.

A variety of oligomeric N-hydrogenated/N-methylated pyridinium salts have been
used as cathode interfacial layers to increase the electron-mobility without modifying the
work function of the electrode [23,24]. Oligothiophenes [25–27] have exhibited decreased
LUMO energies, together with increased electron mobilities. Many of these properties
can be anticipated theoretically, allowing for the identification of potentially interesting
materials for the development of n-type organic semiconductors. An example of such com-
putational studies is the theoretical calculation of HOMO-LUMO energy gaps of thiophene-
based discotic systems, their charge-transfer rates, and relative charge-mobilities [28–31].
Theoretical structural and electronic properties of these kinds of compounds have been
studied [32–35]. A series of ten 2-naphthyl and 2-anthrylbithiophene derivatives were syn-
thesized and studied as possible n-type semiconductors [36]. Spectroscopic measurements
and X-ray analyses were carried, together with theoretical calculations with DFT methods.
Some experimental properties were in good agreement with the theoretical predictions.
Theoretical and experimental studies with monomeric and dimeric DAE molecules have
been carried out [37]. Theoretical calculations showed that the π extension of the dimer
produced a decrease in the LUMO energy by comparison with the monomer. Low values
for the internal reorganization energies (λ) were obtained for the dimer when compared
with the monomer, leading to a higher semiconductor performance of the former.

Polycyclic aromatic hydrocarbons (PAHs) have been proposed as semiconductors
due to their ability to produce a discotic stacking, allowing an efficient charge-transport
through their vertical intermolecular axis [38–40]. Polycyclic pyridinium salts are pos-
itively charged PAHs [41,42] and they constitute a class of electron-deficient planar π-
system whose versatile synthesis can include other electron-donor or acceptor groups.
Recently, pyridinium-based molecules have been used in dye-sensitized solar cells [43,44].
A pyridinium fragment, appended to a polyelectrolyte system, enabled efficient electron
transport/collection, giving rise to a PCE value of 16.14% in an organic solar cell [45].

The above features of pyridinium- and thiophene-based extended π-systems and their
possible formation of a discotic stacking have attracted our attention as a new class of
electron-deficient systems with potential use in solar cells. To the best of our knowledge,
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photocyclized pyridinium salts have never been proposed as potential n-type organic semi-
conductors. Their synthesis by photocyclization of readily obtained N-arylpyridinium salts
has been described for more than thirty years [46,47]. More recently, some of their deriva-
tives such as 2-phenyl-benzo[8,9]quinolizino[4,5,6,7-fed]-phenanthridinylium tetrafluo-
roborate (PQPBF4) have been shown to form columnar π-stacked aggregates in the solid
phase [48]. Although such aggregation in acetonitrile has been disputed [49], spectral
evidence for its formation in water has been obtained in our laboratories [50]. Thus, planar
electron-deficient π-systems like PQP+ or its dithienoquinolizium analog BPDTQ+ should
be good candidates for promising n-type semiconductors. The incorporation of side-chains
of variable size into PQP+ derivatives has led to materials with different discotic stackings
in the solid state [51,52], suggesting their use in supramolecular assemblies on electronic
surfaces [53,54].

In line with other theoretical studies [55] that not only shed light on their proper-
ties, but also help identify new interesting compounds by comparing their properties
with those of known materials, we investigate in the present communication the proper-
ties of polycyclic pyridinium salts as candidates for the development of n-type organic
semiconductors. Besides their electron-deficient character and their potential ability to
form columnar aggregates, other structural features were included in their synthesis,
which were above-mentioned as leading to better n-type organic semiconductors. They
include the presence of dithieno substituents to the pyridinium core, and of alkyl side-
chains of variable size, all of which should be expected to improve the charge-mobility in
these systems. The effect of these structural modifications on a discotic arrangement of
these molecules was assessed by calculations of their electronic behavior, injection, and
charge-transport properties, HOMO and LUMO energies, and supported by experimen-
tal determination of their thermal stability and oxidation/reduction potentials through
electrochemical measurements.

2. Materials and Methods
2.1. Synthesis of Polycyclic Heteroaromatic Salts

Melting points were measured with a capillary Microthermal apparatus and were not
corrected. 1H NMR spectra were obtained with a Bruker Avance 400 MHz and the samples
were prepared in acetone-d6. The UV–Vis spectra were recorded with a Cary 50 spectrome-
ter. Fluorescence spectra were recorded with a Perkin Elmer LS55 spectrofluorimeter.

The precursor 2,6-bis(2-thienyl)-4-phenylpyrylium tetrafluoroborate (2) was prepared
following a reported procedure by condensation of benzaldehyde and 1-phenyl-3-(2-
thienyl)propenone (1) in the presence of the diethyl ether–boron trifluoride adduct [56].

The preparation of the N-(4-alkylphenyl)-2,6-bis(2-thienyl)-4-phenylpyridinium tetraflu-
oroborate (3a–c) followed a general procedure by refluxing for 12 h in ethanol (30 mL)
equimolar amounts of the precursor (2) and 4-alkylaniline (0.37 mmol), filtering the resulting
precipitate, washing with cold ethanol, and recrystallizing from ethanol to give the corre-
sponding fluoroborates (3a–c). In this way, the following fluoroborate salts were prepared:

N-(4-Hexylphenyl)-4-phenyl-2,6-bis(2-thienyl)pyridinium tetrafluoroborate (3a),
yield 70%, mp 126–129 ◦C. 1H NMR (400 MHz, Acetone-d6) δ 8.71 (s, 2H), 8.30 (d, J = 7.2 Hz,
2H), 7.87 (d, J = 4.9 Hz, 2H), 7.80–7.63 (m, 7H), 7.43 (d, J = 8.1 Hz, 2H), 7.17 (t, J = 4.3 Hz,
2H), 2.86–2.68 (m, 4H), 1.77–1.57 (m, 2H), 1.32 (s, 4H), 0.91 (t, J = 6.0 Hz, 3H).

N-(4-Decylphenyl)-4-phenyl-2,6-bis(2-thienyl)pyridinium tetrafluoroborate (3b),
yield 73%, mp 123–125 ◦C. 1H NMR (400 MHz, Acetone-d6) δ 8.71 (s, 2H), 8.30 (d, J = 7.3 Hz,
2H), 7.87 (d, J = 5.0 Hz, 2H), 7.80–7.64 (m, 7H), 7.43 (d, J = 8.0 Hz, 2H), 7.17 (t, J = 4.3 Hz,
2H), 2.86–2.69 (m, 4H), 1.73–1.60 (m, 2H), 1.32 (s, 12H), 0.91 (t, J = 6.3 Hz, 3H).

N-(4-Tetradecylphenyl)-4-phenyl-2,6-bis(2-thienyl)pyridinium tetrafluoroborate (3c),
yield 64%, 122–124 ◦C. 1H NMR (400 MHz, Acetone-d6) δ 8.71 (s, 2H), 8.30 (d, J = 7.3 Hz,
2H), 7.87 (d, J = 5.0 Hz, 2H), 7.78–7.63 (m, 7H), 7.43 (d, J = 8.1 Hz, 2H), 7.17 (t, J = 4.4 Hz,
2H), 2.84–2.64 (m, 4H), 1.72–1.60 (m, 2H), 1.32 (s, 20H), 0.89 (t, J = 6.4 Hz, 3H).
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The cyclized 2-phenyl-7-alkyl benzo[ij]pyrido[2,1,6-de]dithieno[3,2-b:2′,3′-g]quinolizinium
tetrafluoroborate salts (4a–c) were prepared following a general procedure. A solution
of the precursor 3a–c (0.5 mmol) in 50 mL of a 1:5 v/v mixture of ethanol:hexane was
irradiated for 80 h in a quartz flask in a Rayonet NORPR-100 photochemical reactor with
four 300 nm lamps. The precipitated quinolizinium tetrafluoroborate 4a–c was filtered
and recrystallized in ethanol. In this way, the following tetrafluoroborate salts (4a–c)
were prepared:

7-Hexyl-2-phenylbenzo[ij]pyrido[2,1,6-de]dithieno[3,2-b:2′ ,3′-g]quinolizinium
tetrafluoroborate (Hexyl BPDTQBF4) (4a), yield 33%, mp 275 ◦C (dec.). 1H NMR
(400 MHz, Acetone-d6) δ 9.05 (s, 2H), 8.92 (s, 2H), 8.62 (d, J = 5.21 Hz, 2H), 8.58 (d, J = 5.26 Hz,
2H), 8.42–8.35 (m, 2H), 7.77 (d, J = 5.21 Hz, 3H), 2.86–2.68 (m, 4H), 1.77–1.57 (m, 2H), 1.32
(s, 4H), 0.91 (t, J = 6.0 Hz, 3H).

7-Decyl-2-phenylbenzo[ij]pyrido[2,1,6-de]dithieno[3,2-b:2′ ,3′-g]quinolizinium
tetrafluoroborate (Decyl BPDTQBF4) (4b), yield 38%, mp 240 ◦C (dec). 1H NMR
(400 MHz, Acetone-d6) δ 9.07 (s, 2H), 8.94 (s, 2H), 8.67–8.55 (m, 4H), 8.39 (d, J = 6.36 Hz,
2H), 7.77 (d, J = 5.31 Hz, 3H), 2.86–2.69 (m, 4H), 1.73–1.60 (m, 2H), 1.32 (s, 12H), 0.91
(t, J = 6.3 Hz, 3H).

7-Tetradecyl-2-phenylbenzo[ij]pyrido[2,1,6-de]dithieno[3,2-b:2′,3′-g]quinolizinium
tetrafluoroborate (Tetradecyl BPDTQBF4) (4c), yield 44%, mp 225 ◦C (dec). 1H NMR
(400 MHz, Acetone-d6) δ 9.07 (s, 2H), 8.95 (s, 2H), 8.62 (q, J = 5.40 Hz, 4H), 8.38 (d,
J = 6.00 Hz, 2H), 7.77 (d, J = 5.31 Hz, 3H), 2.84–2.64 (m, 4H), 1.72–1.60 (m, 2H), 1.32 (s, 20H),
0.89 (t, J = 6.4 Hz, 3H).

2.2. Electrochemical Measurements

Cyclic voltammetry experiments were carried out in a PalmSens 4 potentiostat/galvanostat/
impedance analyzer, using a one-compartment cell with a conventional three-electrode
arrangement. As the working electrode, a glassy carbon electrode (CH Instruments, TX,
USA) was used; as a counter electrode, we used a Pt wire (CH Instruments, TX, USA) and
as a reference, we used a Ag/AgCl (3 M KCl) electrode. This last electrode was sealed
and separated using a glass tube connected to the solution through a platinum bridge,
working as a Lugging capillary. This arrangement avoids any moisture contamination to
the working solution at the timescale of the CV experiments [57]. Tetrabutylammonium
perchlorate (TBPA) 0.1 M was employed as the supporting electrolyte in 1 mM solutions of
the tetrafluoroborate salts in DMF, with scan rates of 100 mV/s.

2.3. Thermogravimetric Measurements

The thermogravimetric analysis was performed using a NETZSCH TG 209 F1 Libra
thermoanalyzer at a constant heating rate of 3 K/min in a range of 30–500 ◦C. A con-
stant purging gas flow of 20 mL/min nitrogen was applied with a protective gas flow of
8 mL/min nitrogen. Data analysis was carried out with Proteus Software (version 6.1).

2.4. Computational Details

The optimized structures of the monomeric BPDTQ cations and of their tetrafluorobo-
rate salts, and the various conformations of their dimers (parallel and face to face) were
calculated with Gaussian 09 [58] employing the hybrid DFT-B3LYP and M062X functionals,
with the 6-31G (d) basis set. The electronic spectra of monomeric and dimeric molecules in
methanol were obtained by TD-DFT methods with the 6-31G (d) basis set. Solvent effects
were mimicked with the polarized continuum model (PCM). Intermolecular non-covalent
interactions within the various conformations of the dicationic dimers were depicted with
the NCIPLOT software (version 3.0) [59].

Intermolecular orbital overlap for holes and electrons were calculated using the
Koopman approximation.
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3. Results
3.1. Synthesis of the Polycyclic Heteroaromatic Salts 4a–c

The synthetic route to the heteroaromatic salts 4a–c is shown in Scheme 1.
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Scheme 1. Synthetic route for the preparation of polycyclic heteroaromatic tetrafluoroborates 4a–c.

The basic condensation of 2-thienylethanone with benzaldehyde to form propenone (1),
followed by acid-catalyzed cyclization of this product with benzaldehyde to give the
pyrylium tetrafluoroborate (2), are classical procedures reported previously [56]. Conver-
sion of (2) into the corresponding N-aryl-2,6-bis(2-thienyl)-4-phenyl pyrydinium tetraflu-
oroborates 3a–c by reaction with 4-alkylanilines also followed a standard procedure, de-
scribed in the literature [46]. The photocatalytic bicyclization of N-aryl-2,4,6-trisubstituted
pyridinium salts has been previously described [47] and the procedure was adapted to the
preparation of tetrafluoroborate salts 4a–c from the corresponding pyridinium salts 3a–c.

3.2. Spectroscopic Characterization of Tetrasubtituted and Photocyclized Pyridinium Salts

The tetrasubtituted pyridinium salts 3a–c showed two absorption maxima 327 and
312 nm, respectively, in chloroform (Figure 1). When the absorption spectra of these salts
were measured in methanol as the solvent, two absorption maxima were also registered at
378 and 385 nm (7S). The spectra were not affected by the size of the alkyl substituent of
the N-phenyl group, but there existed a hypsochromic shift of the maxima passing from
the chloroform to methanol medium (−15 and −7 nm), probably because of the major
stabilization of the ground state of the molecules with the polar protic solvent.

The optical band gap (Eg) for compounds 4a–c compounds could be estimated by
the equation

Eg = 1241/λonset (1)

where λonset is the low-energy absorption edge obtained from the UV–Visible spectra in
chloroform (Figure 2a) employing a geometric method [60]. From λonset values of 476, 475,
and 477 nm for compounds 4a, 4b, and 4c, respectively, Eg values of 2.61, 2.60, and 2.60 eV
were obtained.
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Upon cyclization, the extended heterocyclic π−system exhibited several new bands
around 360, 430, and 470 nm, in addition to the major absorption around 330 nm, which
consisted of at least two resolved bands (Figure 2).
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Unlike salts 3, the rigid polycyclic scaffold of 4a–c prevented non-radiative decay
processes of their excited species, leading to an emission band around 480 nm (Figure 3).
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The comparison of the UV–Vis and fluorescence spectra of 4a–c in chloroform and
in methanol (Figures 2 and 3) revealed some differences, but are not conclusive as to the
possible formation of aggregates in the more hydrophilic methanolic medium. Discotic
aggregation in methanol has been suggested for polycyclic systems analogous to 4 on
the basis of dynamic light-scattering measurements [51]. Following this view of a postu-
lated face-to-face aggregation in the solid phase of analogous highly planar hydrophobic
structures [48], we cannot discard the formation of salt 4 aggregates in methanol. A more
detailed investigation of this possibility, and of its consequences on the absorption spectra
of these compounds and on their electron-deficiency was carried out with theoretical tools
in Sections 3.4 and 3.5.

3.3. Electrochemical Studies

Cyclic voltammetric studies of pyridinium salts 3 and of their cyclized derivatives 4
were carried out to gain information on the potentials of these compounds as electron-
deficient materials, and on the effect of the bicyclization of 3 on these potentials.

The nature of the alkyl substituent R in series 3a–c and 4a–c, did not alter the obtained
voltammograms. Figure 4 presents the cyclic voltammogram of pyridinium tetrafluorob-
orate 3a. The same experimental conditions were applied in obtaining the voltametric
profile of the bicyclized derivative 4a shown in Figure 5.
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The potential of the first reduction process can be related to the electron affinity (EA)
of the compounds. For this, it is necessary to relate the electrochemical potential to the
vacuum level. Using Equation (1), it is possible to obtain the reduction potential (Ered)
relative to the vacuum level (Evac), the onset reduction potential (E

′
red), and the Ag/AgCl

reference electrode (EAg/AgCl) [61,62].

Ered = E
′
red + EAg/AgCl ≈ (E

′
red + Evac + 4.4) eV (2)

which, by making Evac = 0, reduces to

EA = −(E
′
red + 4.4) eV (3)
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as the supporting electrolyte and a scan rate of 10 V/s.

The obtained values of E
′
red for 4a, 4b, and 4c were −0.80, −0.78, and −0.77 V.

Since no oxidation processes were observed, the HOMO energy level value can be
calculated considering the optical band gap (Eg) determined previously for each compound.

Table 2 lists the estimated values of the onset reduction potential (E
′
red), and of the

HOMO and LUMO energies of BPDTQ tetrafluoroborates 4a, 4b, and 4c.

Table 2. Onset reduction potential (E
′
red), LUMO energies, and HOMO data obtained.

Compound E′ red (V) vs. Ag/AgCl LUMO (eV) HOMO (eV)

4a −0.80 −3.60 −6.20
4b −0.78 −3.62 −6.22
4c −0.77 −3.63 −6.23

For the sake of comparison, we list in Table 3 the HOMO and LUMO energy levels for
a number of small molecules used as n-type organic semiconductors [9–13,63–66], most of
them employed in organic solar cells.

Table 3. HOMO and LUMO energy values of various n-type organic semiconductors estimated
under similar conditions [9–13,63–66].

Cpd. LUMO Energy (eV) HOMO Energy (eV)

T(m-BODIPY)2 [63] −3.49 −5.53
Cz-BAR [65] −3.51 −5.63
Flu-BAR [65] −3.53 −5.81

PDI-3 [10] −3.63 −5.75
PDI-1 [10] −3.67 −5.79
PCBM [66] −3.83 −5.55
oo-PDI [9] −3.90 −6.15

PDI [9] −3.92 −6.21
Fullerene [66] −3.92 −5.71
NDITz1 [11] −3.99 −6.37

C8-NDTI [13] −4.00 −6.10
bo-PDI [9] −4.02 −6.23

IDTO-5Br [64] −4.12 −6.33
NDINI [12] −4.20 −6.68
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Note that the HOMO energies of BPDTQ salts 4 fall within the range of corresponding
values for n-type organic semiconductors, −6.68 (NDINI) < −6.37 (NDITz1) < −6.33
(IDTO-5Br) < −6.23 (4c) < −6.22 (4b) < −6.21 (PDI) < −6.20 (4a) < −6.15 (oo-PDI) < −6.10
(C8-NDTI). The same takes place with the LUMO energies, with values for the BPDTQ
salts close to –3.60 eV (Table 2), which fall within the range of −3.49 to −4.20 eV, observed
for the organic molecules in Table 3.

In order to produce a good ohmic contact between an n-type semiconductor and a
cathode, and a favorable electron injection into the former, the difference between its LUMO
and the cathode work function must be ideally smaller than 0.3 eV [67]. The estimated
LUMO energies of the tetrafluoroborate salts 4a–c (≈−3.6 eV), though slightly less negative
than those of the other n-type organic semiconductors of Table 3, fulfils this requirement
for commonly used electrodes such as Mg, with a work function of −3.66 eV.

3.4. Thermogravimetric Measurements

The stability of BPDTQ tetrafluoroborates 4a–c was next evaluated by thermogravi-
metric analysis. Figure 6 reproduces the TGA of compound 4c, showing the loss in mass of
the salt with the increased temperature. As can be seen, the BPDTQ salts were thermally
very stable, only starting to decompose and lose mass at temperatures around 350 ◦C, thus
ensuring their use in solar cells.
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3.5. Theoretical Studies

In the previous sections, the potential of the photocyclized BPDTQ salts as promising
organic n-type semiconductors was established by experimental estimates of their HOMO
and LUMO energies, which fell within the range of frontier–orbital energies of other
organic n-type semiconductors and led to an adequate ohmic contact between them and a
metal cathode.

In order to gain a deeper insight into their behavior, we carried out theoretical calcula-
tions with three main purposes: (1) to have a clearer picture of the frontier orbitals and of
the HOMO→ LUMO transition of the isolated cations BPDTQ+; (2) to investigate the effect
of π-stacking of these extended planar structures on their properties as n-type electron-
accepting species; and (3) to have an insight into the electron-injection process from the
BPTDQ+ cation into a metallic surface and to evaluate charge mobility in these species.

3.5.1. Monomeric BPDTQ+ Cations

Frontier–orbital calculations of the optimized structures of BPDTQ+ cations of 4a–c
were carried out with the hybrid DFT-B3LYP and M062X functionals, employing the 6-31G
(d) basis set. Transition energies were obtained with TD-DFT calculations. Solvent effects
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were simulated with the PCM approach. Figure 7 reproduces the HOMO and LUMO of
the 4a cation. More detailed results from the frontier molecular orbital analyses are given
in the Supplementary Materials.
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Figure 7. HOMO (a) and LUMO (b) densities of the 4a cation in methanol, calculated using the
B3LYP/6-31G(d) method and the PCM option.

The HOMO–LUMO transition involves a charge-transfer process from the benzo- and
diethieno-rings to the quinolizinium and the 2-phenyl substituent.

Table 4 lists some calculated values for the 4a–c cations, which can be compared to the
experimentally-derived values of Tables 4 and 5. In general, the nature of the appended
alkyl chain did not affect the calculated values, so only the results for the 7-tetradecyl
BPDTQ+ cation are given in Table 4.

Table 4. Calculated values of frontier–orbital energies and corresponding absorption of the longest-
wavelength band of the 7-tetradecyl BPDTQ+ cation in methanol, together with its ionization potential
IP and electron affinity EA.

DFT
Functional

HOMO
Energy

(eV)

LUMO
Energy

(eV)

HOMO-LUMO
Energy Gap

(eV)

λmax of
Longest-

Wavelength
Band (nm)

Ionization
Potential
IP (eV)

Electron
Affinity
EA (eV)

B3LYP −8.84 −5.33 3.51 426 9.76 4.11
M062X −10.04 −4.61 5.43 381 - -

A comparison of these values with those of Tables 4 and 5 revealed a significant de-
parture of theory from the experimentally-derived values. Calculations with the B3LYP/6-
31g(d) method led to better results than with the DFT/M062X method, but still only
tolerably reproduced the experimental values. LUMO levels in particular, were signif-
icantly lower than the experimental value of ≈−3.6 eV. As pointed out at the end of
Section 3.3, caution is required when employing a HOMO–LUMO terminology based on
different methods of calculation [68]. Calculated values of HOMO and LUMO energy
levels may therefore differ from those estimated by optical or electrochemical measure-
ments. By adopting a different method of calculation, with the assumption that the LUMO
energy ELUMO = −EA [69], the calculated LUMO energy of cation 4c draws closer to the
electrochemically-derived experimental value of −3.6 eV.
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Table 5. Calculated properties of π-stacked dimers of 4a–c cations.

Dimers a
Distance between
π-Stacked Planes

(Å) b

Dipole
Moment

(D) b

Interaction
Energy

(kcal.mol−1) b

Longest-Wavelength
λmax Value

(nm) c

4a-FF 3.29 7.49 14.38 430
4a-FT 3.31 0.11 15.51 432
4b-FF 3.24 20.90 11.74 430
4b-FT 3.32 2.24 15.00 433
4c-FF 3.24 36.41 8.38 430
4c-FT 3.33 1.74 14.76 433

a Notations. 4a-FF: cation from 4a with a face-to-face alignment; 4a-FT: cation from 4a with a face-to-tail alignment;
b in the gas-phase; c in methanol.

3.5.2. π-Stacking in Dimeric BPDTQ+ Cations

Although the spectra of Figures 2 and 3 did not offer sufficient evidence for the forma-
tion of aggregates in more polar methanol, reports of π-stacking in dimeric PQP+ [48,51]
and in BPDTQ+ cations [50] led us to investigate the possible structures and electronic
properties of the dimers of the 4a–c cations.

In the absence of data from crystal packing, we considered two forms of parallel
stacking, one in which the two delocalized ring systems were aligned in the same direction
(a face-to-face (FF) alignment) and another where they were aligned in opposite directions
(face-to-tail (FT) alignment). The two conformations are reproduced in Figure 8 for the
hexyl derivative 4a.
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Figure 8. Face-to-face (FF) and face-to-tail (FT) alignments of dimers from cations of BPTDQ salt 4a.

Table 5 lists some calculated properties of these dimers: the distance between their π-
stacked planes, their dipole moments, the interaction energies between the two monomers,
and their longest-wavelength λmax values.

A non-covalent interaction (NCI) analysis was performed for all dimers of Table 5,
and the results are summarized in Figure 9. More detailed results from the NCI analyses
are given in the Supplementary Materials.

As can be seen, interactions are governed by π − π charge repulsions between the two
cationic monomers, shown in red, which are compensated by a large, green iso-surface of
attractive van-der-Waals interactions between the two polycyclic systems [70].

Interestingly, face-to-face dimers present an additional non-covalent interaction be-
tween the parallel alkyl chains, giving rise to an additional attraction between the two
monomers. Such quasi-covalent interactions between parallel chains have been described
previously [71]. This “fastener effect” between alkyl chains in solid samples should be
responsible for an increased conductivity and electron mobility in their resulting films.
More detailed NCI analyses are shown the in Supplementary Materials (Figure S10).

The dipole moments listed in Table 5 point to significant differences between the FF
and the FT conformations, giving rise to correspondingly distinct interaction energies.
Relatively non-polar FT dimers should be favored in non-polar media, whereas an FF
alignment should predominate in polar solvents, giving rise to J-aggregates. In the latter
media, the non-covalent attraction between the alkyl chains should provide an additional
stabilization to these conformers.
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A noteworthy result from Table 5 is the bathochromic shift of the longest-wavelength
λmax value of the dimers when compared with the corresponding values in Table 4 for the
monomeric cations. Though small (<10 nm), using the B3LYP functional, this red shift
points to a HOMO–LUMO gap for the discotic π-stacked aggregates of compounds 4a–c
smaller than the ones listed in Table 4 for the monomeric cations. Following previous
suggestions of the formation of columnar aggregates in the solid phase [48] for analogous
systems, leading to materials with different discotic stackings [51,52], our calculations
point to a similar possibility for polycyclic systems 4a–c, suggesting their use as n-type
semiconductors in supramolecular assemblies.

3.5.3. Charge Mobility in Dimeric BPDTQ+ Cations

Charge mobility is an important factor to be considered in organic semiconductors.
Transport properties are commonly discussed with the aid of Marcus theory [55], though
other approaches are also found in the literature [72–78].

Having assumed the two parallel alignments for our cationic dimers, we estimated
the charge transport in these discotic systems employing the Marcus theory [55,79,80] and
Einstein’s equation for a one-dimensional diffusion process [81,82].

According to the latter, the diffusion µ of a charge or a hole between two parallel
surfaces separated by a distance l is given by Equation (4)

µ =
eD
kBT

=
el2

kBT
kET (4)

where e is the electron charge; kB is the Boltzmann’s constant; and kET is the charge-transfer
rate constant between the two contiguous molecules. The kET value can be obtained from
Equation (5), derived from Marcus theory

kET =
4π2

h
1√

4πλkBT
t2 exp

[
−λ

4kBT

]
(5)

where t is the electronic coupling between the two contiguous molecules and λ is the
reorganization energy of the system. The first term t depends on the distance between the
parallel monomers and can be calculated using different methodologies [83]. In the present
work, we employed Koopman’s methodology using the HOMO and LUMO energies of
the interacting monomers [84–86], and the hopping process where a dimeric system of two
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molecules M exchange hole/electrons through a hole/electron-transfer reaction, as shown
below in Scheme 2:
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The reorganization energy λ of Equation (5) comprises an inner and an outer con-
tribution. The first arises from rapid changes in the molecular geometries of the donor
(D) and acceptor (A) species, and the latter from nuclear polarization/relaxation of the
surrounding medium upon an electron transfer. In our case, this outer contribution can be
neglected because our system is a static crystal pack [87]. Thus, the reorganization energy
λ (inner) can be obtained from Equations (6), (7), and (10) for holes, and Equations (8)–(10)
for electrons, where E(M) is the total energy of species M and the superscripts A and D
refer to the electron-accepting and -donor molecules.

λA = E(M+) − E(M) (6)

λD = E(M) − E(M+) (7)

λA = E(M−) − E(M) (8)

λD = E(M) − E(M−) (9)

λ = λA + λD (10)

Table 6 lists the obtained values for parameters t and λ, µ, and kET, for the mobility of
electrons and holes in all cationic dimers from the BPDTQ+ salts.

Table 6. Calculated values of the electronic coupling t, the reorganization energy λ, the charge-transfer
rate constant kET, and the relative mobility µ for all cationic dimers from 4a–c.

Dimer
Electrons a Holes a

102 te
(eV)

10 λe
(eV)

10−12 kET
e

(s−1)
µe

(cm2.V−1·s−1)
102 th
(eV)

10 λh
(eV)

10−12 kET
h

(s−1)
µh

(cm2·V−1·s−1)

4a-FF 3.36 1.9 7.10 0.30 2.14 1.95 2.69 0.115
4a-FT 3.80 1.9 9.05 0.38 16.4 1.96 158 6.65
4b-FF 5.17 2.0 14.7 0.63 2.56 2.0 3.46 0.148
4b-FT 4.87 2.0 13.0 0.53 9.28 2.0 45.5 1.86
4c-FF 2.67 1.95 4.19 0.18 10.20 7.9 0.089 3.84 × 10−3

4c-FT 4.25 1.95 10.6 0.43 0.41 7.9 1.49 × 106 6.1 × 10−8

a Subscripts e and h refer to electrons and holes, respectively.

An inspection of Table 6 revealed differences among the three dimers of 4a–c and
between each pair of FF/FT conformations. These variations point to possible differences
in the behavior of these π-stacked dimers as semiconductors.

With the exception of 4c dimers, the relative hole (µh) and electron (µe) mobilities of all
dimeric species are of the same order of magnitude, with µh < µe for the FF conformations,
and µh >> µe for the FT conformations. This amounts to predicting an ambipolar, or
even a p-character for semiconductors obtained from these dimeric molecules. Dimers
4c present a distinct behavior. For both conformers FF and FT, the relative hole mobility
µh is much smaller than the electron mobility µe, anticipating for these dimeric species
an n-type semiconductor behavior. Such low hole mobilities are a result of internal hole
reorganization energies λh almost four times greater than those of electrons λe. The fact
that dimers 4c, with the longest C14 chain, show a strong n-type character, at variance with
analogs 4a and 4b suggests that the size of the 7-substituent alkyl chain plays an important
role in the charge-transport and mobility of these dimers. This echoes previous reports



Materials 2021, 14, 6239 14 of 18

of changes in the hopping mobility of discotic alkylated hexabenzocoronenes with the
increased size of the alkyl substituents [88]. Thus, trapping and recombination in these
discotic materials are retarded by the increased size of the alkyl chains, a mechanism that
may also operate for materials derived from 4c.

4. Conclusions

Photobicyclization of N-aryl-2,6-dithienyl-4-phenyl pyridinium salts led to the forma-
tion of benzodithienoquinolizinium tetrafluoroborates (BPDTQBF4) that were investigated
by spectral, electrochemical, and theoretical tools as possible n-type semiconductors for
solar cells.

Their UV–Vis spectra and their voltamograms in DMF allowed for the estimation
of their LUMO levels and HOMO–LUMO energy gaps, which had values compatible
with those of other n-type semiconductors. Their UV–Vis spectra in chloroform and in
methanol as well as their fluorescence in the same solvents did not show any conclusive
evidence of aggregation, as might be surmised from reports of analogous systems in the
literature. Nevertheless, theoretical calculations of the monomeric cations 4a–c and of
their π-stacked dimers in two different conformations (face-to-face, FF, and face-to-tail, FT)
indicated that aggregation could lead to smaller HOMO–LUMO gaps, with a beneficial
impact on the behavior of these materials as n-type semiconductors. In order to substantiate
this expectation and obtain a deeper view on the many aspects that govern this complex
behavior, preliminary calculations on their relative charge mobilities were performed.
Estimates of relative charge mobilities for the two conformations of the cationic dimers
from 4a–c, based on Einstein’s diffusion equation and Marcus’ theory, led to inconclusive
results, with the characterization of dimers from cation 4c, with a long (C14) alkyl chain
appended to the polycyclic core as a probable, potentially interesting n-type semiconductor.

In conclusion, in the present communication, the preparation of a new family of
alkylated benzodithienoquinolizinium salts was described. Their electronic properties,
estimated from spectroscopic and electrochemical measurements in solution, coupled with
theoretical calculations in the gas-phase of their monomers and dimeric species, suggest
their potential use as organic n-type semiconductors. In order to confirm their potentiality,
measurements in the solid phase, and with thin films are necessary, aside from calculations
based on their crystal structures. We will address these necessary issues in a future work,
with the most promising compound of the series.
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BPDTQ salts 4b and 4c in DMF (c = 1 mM) with TBPA 0.1 M as the supporting electrode and a scan
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