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Abstract: Self-consolidating concrete (SCC) is a well-known type of concrete, which has been em-
ployed in different structural applications due to providing desirable properties. Different studies
have been performed to obtain a sustainable mix design and enhance the fresh properties of SCC.
In this study, an adaptive neuro-fuzzy inference system (ANFIS) algorithm is developed to predict
the superplasticizer (SP) demand and select the most significant parameter of the fresh properties of
optimum mix design. For this purpose, a comprehensive database consisting of verified test results
of SCC incorporating cement replacement powders including pumice, slag, and fly ash (FA) has been
employed. In this regard, at first, fresh properties tests including the J-ring, V-funnel, U-box, and
different time interval slump values were considered to collect the datasets. At the second stage,
five models of ANFIS were adjusted and the most precise method for predicting the SP demand
was identified. The correlation coefficient (R2), Pearson’s correlation coefficient (r), Nash–Sutcliffe
efficiency (NSE), root mean square error (RMSE), mean absolute error (MAE), and Wilmot’s index
of agreement (WI) were used as the measures of precision. Later, the most effective parameters
on the prediction of SP demand were evaluated by the developed ANFIS. Based on the analytical
results, the employed algorithm was successfully able to predict the SP demand of SCC with high
accuracy. Finally, it was deduced that the V-funnel test is the most reliable method for estimating the
SP demand value and a significant parameter for SCC mix design as it led to the lowest training root
mean square error (RMSE) compared to other non-destructive testing methods.

Keywords: artificial neural network; prediction; superplasticizer demand; self-consolidating concrete;
fresh properties; cementitious replacements

1. Introduction

SCC is a type of concrete that requires a higher dosage of cement and fine aggregate
as well as lower coarse aggregate content in comparison with normal concrete [1]. This
material provides a high level of workability for structural applications and is a good
option for enormous cast volume. On the other hand, high cement content is one of the
harmful issues of SCC for the environment. Segregation is another typical problem of
employing SCC that is highly sensitive to the water to cement ratio. Different types of SCCs
have been proposed by researchers to address mentioned shortcomings [2]. In order to deal
with high cement content, various cement replacement powders including either natural
or synthetic powders have been proposed and verified by reliable investigations [3–5].

Different types of natural and industrial powders are available, which have several
advantages and disadvantages. Synthetic powders including silica fume, slag, and fly ash
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typically enhance the hardened properties of concrete especially the compressive strength,
but as long as they are industrial products, their environmental problems encourage re-
searchers to find environmentally friendly alternatives for them. Many natural cementitious
materials have been proposed in the past decades such as rice husk ash (RHA), perlite,
zeolite, limestone, and pumice. These powders did not present the same performance,
and each one has a unique behavior in concrete [6]. Some studies have worked on the
evaluation of the properties of SCC containing fly ash and silica fume and reported that
silica fume has a noticeable effect on the hardened properties of SCC, especially when
incorporated with 10–25% volume content [7–10].

Pumice is a kind of volcanic product, which is mostly made of silica and alumina, and
its components are similar to bubbles with a large inner surface [11]. The physical and
chemical properties of pumice result in great durability and strength. Pumice improves not
only concrete durability [12] but also shows excellent resistance against sulfate attacks [13].
Concrete can be produced by pumice with high strength and low weight in comparison with
concrete made by cement [14,15]. Using pumice powder and slag as cement replacement
has been also investigated in another study [16], where SCC incorporated with pumice
showed proper sustainability and mechanical properties. However, slag represented better
performance compared to pumice. Moreover, SCC incorporating pumice can keep the
slump flow in a suitable range and increase the SP dosage in the mixture. Pumice is
able to decrease the possibility of segregation and increase the workability retention of
the SCC [17]. On the other hand, slag is a mineral product that is chemically similar to
cement [18]. There are several types of slag generally divided into two main categories:
(1) crystallized slag and (2) granulated blast furnace slag. Low heat in hydration, proper
performance, resistance to sulfate attack and acid, resistance to abrasion and corrosion, and
reasonable cost [18] are the benefits of slag. Natural powders typically help to maintain
workability in SCC especially with increasing cement replacement content up to 30% of
total binder volume [19]. According to Zhao et al. [20], partial replacement of cement with
slag and fly ash assists the SCC mixture to remain in target slump value. Besides, it was
found that slag can decrease the slump loss rate.

Workability retention and slump durability are the most critical factors of a sustainable
SCC [21]. To maintain the slump flow in SCC as long as it takes to cast in situ applications,
SP content should be considered as a key parameter in the mix design [22]. SP content
also plays an important role in the workability retention of SCC. In fact, SP demand is the
required value of SP to maintain both the slump flow and workability in structural appli-
cations, which is obtained from experimental investigations. Employing natural cement
replacements mainly increase the SP demand compared to control SCC samples [23].

Although in recent years, several experimental studies have been carried out to inves-
tigate the properties of concrete products incorporating cementitious materials, artificial
intelligence (AI) as a human intelligence-based approach can be utilized as assistance for
numerical and experimental approaches [24–27]. The advantage of AI models in many
studies has been proven due to providing more reliable results compared to other methods.

In a research study conducted by Uysal and Tanyildizi [28], an artificial neural net-
work (ANN) model was utilized to estimate the loss in compressive strength of the SCCs
containing polypropylene (PP) fiber and different types of mineral additives. Promising
results were obtained using the ANN model as a reliable alternative instead of experimental
methods. Similarly, Asteris et al. [29] proposed an ANN model based on experimental
data to estimate the mechanical characteristics of the SCC. The comparative results of this
study proved the valuable and reliable use of neural networks in predicting the mechanical
properties of SCCs. Golafshani et al. [30] applied the grey wolf optimizer (GWO) in the
training phase of ANN and ANFIS models to develop hybridized algorithms for predicting
the compressive strength of normal and high-performance concrete. The findings showed
improvement in the training phases and generalization capabilities of the proposed models
using GWO. Vakhshouri and Nejadi deployed ANFIS models to predict the compressive
strength of SCC. They assigned the compressive strength as the output, and slump flow
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and mixture proportions were considered as inputs. It was reported that the most accurate
prediction is obtained for compressive strength when the model includes all input data [31].

In addition, several attempts were carried out to predict the mechanical properties
of SCC or determine optimum values of the related parameters to achieve the desired
compressive strength. In this regard, a research study conducted by Douma et al. [32]
showed correct estimation of fresh SCC properties using the ANN model. Similarly, the
research study conducted by Elemam et al. [33] demonstrated the applicability of the
ANN model in estimating the fresh and hardened properties of SCC. In another effort
by Azimi-Pour et al. [34], support vector machines (SVMs) were used to model the fresh
properties of fly ash-based SCC by minimizing the experimental tests.

As mentioned earlier, many papers investigated the fresh properties of SCC incorpo-
rating cement replacement materials. Partial replacement of cement in SCC with other
materials may lead to changes in the fresh properties. Although these changes can be
observed and calculated based on experimental tests, identifying the most influential pa-
rameter might not be a straightforward task. To address this problem, the use of artificial
intelligence (AI) tools could be helpful. The adaptive neuro-fuzzy inference system (ANFIS)
is a form of neural network that can learn and adapt automatically [35]. ANFIS, in contrast
to most analytical procedures, does not require the system parameters to be known, and its
simpler solutions can be adopted for multivariable problems [36–39].

Aim of the Study

According to the literature, the SP demand as one of the controversial parameters of
mix design of SCC has not been investigated as much as fresh and hardened properties.
For example, Feng et al. [40] examined the SP demand of SCC using hybrid intelligent
algorithms and obtained promising results. Additionally, as discussed comprehensively,
several studies were performed to predict the different characteristics of concrete using
AI models. However, there is no study regarding the most influential parameters on the
SP demand. Therefore, this study aims to investigate, estimate, and determine the SP
demand and its most effective factors using an AI technique. For this purpose, an ANFIS
algorithm is deployed to predict the SP demand of SCC incorporating pumice, slag, and
fly ash powders as partial replacements. In addition, several ANFIS models, including
5 models with separate inputs and 21 models with a couple of parameters were trained
using experimental data [16]. Finally, the effect of input parameters, i.e., contents of slag,
silica fume, pumice, fly ash, cement, and coarse and fine aggregates were investigated.

2. Experimental Method
2.1. Materials

The verified experimental results from the literature [16] for a commercially available
ASTM type II Portland cement with a specific density of 3160 kg/m3 and a fineness of
290 m2/kg containing the volcanic pumice were employed. Coarse aggregates were mixed
with a maximum size of 19 mm and a density of 2.5 kg/cm3, and fine aggregates with a blain
of 3.6 m2/kg, specific density of 2.7 g/cm3, and water absorption of 2.95% were considered.
The quality of water can affect the mechanical properties of concrete according to previous
studies [41–43]. However, in this research, tap/drinking water was employed for sample
preparations. The carboxylate-based superplasticizer (SP) with a density of 1.07 g/cm3 was
applied to obtain a desirable efficiency and regulate the slump loss. As mentioned earlier,
pumice, fly ash, slag, and silica fume are the cement alternatives with different replacement
percentages, which are used with binary and ternary mixtures. Table 1 reveals the specific
density and chemical components of the cement. Figure 1 indicates the sieving analysis
of fine and coarse aggregates based on the percentage of passing from the standard sieve
in mm.
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Table 1. Chemical ingredients of binder aggregates [40].

Components (%) Cement Slag Pumice SF 1 FA 1

SiO2 22.42 33.1 44.13 86.2 62.8
Al2O3 4.68 13.8 16.71 1.44 45.9
Fe2O3 3.68 3.12 1.72 0.2 0.92
CaO 63.25 40.7 11.09 3.06 2.60
MgO 3.63 8.70 1.95 1.32 1.40
SO3 1.74 0.60 0.39 0.34 0.49

Specific gravity (kg/m3) 3160 2850 2850 2350 2200
Blaine (m2/kg) 290 445 320 20000 260

1 SF: silica fume, FA: fly ash.
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2.2. Mixture

According to [16,40], the selected SCC specimens included fly ash, pumice, and slag
as binaries samples with replacement percentages of 10%, 20%, 30%, 40%, and 50% and a
water to cement ratio of 38%. In the second series of samples, ternary mixtures of pumice
and silica fume with the same water to cement ratio have been employed. In all designs, the
cementitious material content is 500 kg/m2. In addition, the replacement percentage of each
design is shown by its name. Based on the ASTM provisions for concrete production [44],
the dry materials are blended firstly, and then SP and water are added. Regarding the
EFNARC [45] guidance for fresh properties tests, the mixing process took about 10 min,
and after the first 3 min, the concrete rested for 4 min and therefore, SCC was mixed in the
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machine in 3 min. Finally, the slump flow test was started after 10 min, and the process of
slump test was continuously performed at 20, 30, and 40 min.

2.3. Test Procedure

Based on ASTM C1611 guidelines [46], the slump test was carried out to identify the
workability of the specific samples at different time intervals. The standard slump value is
measured after the funnel removal and waiting for the settling of the paste.

3. Test Results
Fresh Properties

Figures 2–7 demonstrate a cumulative diagram of slump value between 10 and 50 min
for all binaries. According to these figures, each specimen has the same slump spread
(±5 cm) compared to the control (ctrl) sample. In Figure 2, pumice has increased the
slump flow by 20% replacement, especially in the first 30 min. On the other hand, other
replacement dosages have not increased the flow-ability of the concrete noticeably. Even in
higher dosages, slump flow experiences a significant loss at 50 min. The slump loss trend
of each pumice sample is indicated in Figure 3. According to Figure 4, FA replacement did
not increase the slump flow in comparison with control samples; however, FA specimens
retain the slump flow along the 50 min on an acceptable range. Figure 5 shows a diagram
of slump loss curves for FA specimens, which certify the information in Figure 4. Figure 6
illustrates the slag addition influence on slump loss pattern, where samples in the first
10 min revealed appropriate slump value and could keep the slump in an allowable range
until 50 min after initial mixing. Figure 7 shows a diagram for slump values of slag samples.
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Since the microparticles of slag absorbed a small amount of water at the beginning of
the production process, the whole slag binaries became sensitive to SP dosage. Therefore,
even a small dosage of SP over than standard value can lead to concrete segregation. On
the other hand, by comparing other results, it seems that slag shows better performance
than the other two powders due to the reasonable SP consumption and the slump loss. Due
to the smooth geometry of fly ash particles, the FA binaries have the minimum SP demand
and high slump loss. This specific shape even helps the samples to show better fluidity [47].
Moreover, according to the chemical properties of FA, binaries of FA require lower curing
time that leads to faster slump loss. Based on the test results, pumice samples indicated
higher SP demand to achieve a specific slump of 65 ± 2. Figure 8 reveals the cumulative
chart of SP consumption of each replacement powder according to the mix proportion for
65 cm as the fixed slump spread. Moreover, in the 10th minute, the SP amount to reach the
slump of 65 ± 2 is obtained. In general, it was found that as the replacement percentage
increases, the need for SP decreases.
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Ternary mixes (Figure 9) followed the same pattern as binary samples in slump loss
which were indicated in Figure 6. In Figure 9, the slump value has been presented for
the first 50 min, where C50-SF5-Pu45% revealed the best performance in retaining the
workability and the minimum slump loss. In Figure 10, the slump loss is shown by
different curves for ternary mixes. The C50-SF5-Pu45% sample is the optimum mix design
based on slump retaining and the workability of SCC.
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According to Figures 8 and 11, compared to other powders, by adding more pumice
to the admixture, more SP demand is required. Besides, the additional volume of pumice
(more than 30%) leads to higher slump loss. In the ternary samples, silica fume did
not change the SP demand or the initial slump but had some effects on the slump loss.
As a result, in an analogy between ternary mixes of pumice and silica fume, a mixture
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containing pumice with a higher percentage of replacement requires more SP. Generally,
the SP demand of samples had the opposite trend with slump loss, where samples with
low SP demand showed significant slump loss. Based on the results, 30% and 45% are
optimum replacement percentages for pumice in binary and ternary designs, respectively,
while this value is 50% for FA and slag powders.

Table 2 shows the V-funnel results for each sample based on the time taken for
admixtures to evacuate the funnel per second. Generally, the V-funnel results indicate the
fluidity of concrete by measuring the time taken of concrete to flow from the funnel after
10 s and 5 min of preparing concrete; however, once segregation happens in concrete, the
flow time of concrete increases significantly [45].

Table 2. V-funnel test value for each binary samples.

V-Funnel Ctrl 10% 20% 30% 40% 50%

Pumice 5 5 5 7 8 9
FA 5 5 5 7 7 8

Slag 6 9 10 10 7 7

The U-box test results are revealed in Table 3, which are based on measuring con-
crete heights in the separate sections of the U-box after pulling up the separator plate by
calculating the difference (H2–H1).

Table 3. U-box test value for each binary samples.

U-Box Ctrl 10% 20% 30% 40% 50%

Pumice 0.5 1 1 1.5 2 2.5
FA 0.5 1 1 1.5 2 2

Slag 3 8 5 4 3 3

In Table 4, J-ring test reports for each sample are indicated. The J-ring flow test
measures the diameter of flow and the difference between concrete height inside and
outside the J-ring (H2–H1) [16].

Table 4. J-ring test value for each binary samples.

J-Ring Ctrl 10% 20% 30% 40% 50%

Pumice 1 1 2 2 3 3
FA 1 1 1 2 3 3

Slag 1 1 1 1 1 1

Finally, the ternary results for J-ring, V-funnel, and U-box tests are presented in Table 5.

Table 5. Non-destructive tests value for each ternary samples.

Ternaries Ctrl C70-SF5-Pu25% C50-SF5-Pu45% C50-SF10-Pu40%

J-ring 1 1 1 1
U-box 4 6 2 5

V-funnel 5 5 6 5

4. ANFIS Methodology

ANFIS is a fuzzy inference system [48] that is developed in an adaptive network
framework. The ANFIS network is made up of five levels, as shown in Figure 12 [49]. The
fuzzy inference system is generally located at the core of the ANFIS network. The first layer
takes inputs (x and y in Figure 12) and employs membership functions to transform them
to fuzzy values [50–53]. The Takagi–Sugeno style IF-THEN rules are presented as follows:
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Rule 1: if x is A1 and y is B1, then f1 = p1x + q1y + r1,
Rule 2: if x is A2 and y is B2, then f2 = p2x + q2y + r2,
Every node in this layer (the first) is chosen as an adaptive node with a node function:

O1
i = µAi(x) (1)

where Ai is a linguistic label and O1
i is the membership function of Ai. The bell-shaped

membership function is usually selected as it has the highest capacity for the regression of
nonlinear data [54]. Bell-shaped membership function with the maximum value of 1 and
minimum value of 0 is defined as follows:

µ(x) = bell(x; ai, bi, ci) =
1

1 +
[(

x−ci
ai

)2
]bi

(2)

where {ai, bi, ci, di} are the parameters set and x is the input. Premise is defined as the
parameter of this layer. The second layer multiplies the input signals before sending the
result to the next layer. Consider the following example:

wi = µAi(x)× µBi(y), i = 1, 2 . . . (3)

The firing strength of a rule may be seen in each node’s output. The rule layer is the
third and final layer. The ratio of the ith node’s rule firing strength to that of the other nodes
is computed in this layer as follows:

w∗i =
wi

w1 + w2
i = 1, 2 . . . (4)

where w∗i is referred to as normalized firing strength. The defuzzification layer is the fourth
layer, in which each node has a node function, as presented below:

O4
i = w∗i fi = w∗i (pix + qiy + ri) (5)

where w∗i is the third output layer and {pi, qi, ri} are defined as the consequent parameters.
The output layer is the fifth layer. The overall output is calculated in this layer by summing
all of the input signals. That is to imply:

O5
1 = f = ∑

i
w∗i fi (6)
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During this process, a threshold between the real value and the output is defined.
Then, using the least-squares approach, the consequent parameters are calculated, and an
error for each data set is determined. If this value is greater than the specified threshold, the
premise parameters will be updated using the gradient descent method. This procedure
is repeated until the error reaches below the threshold. The utilized approach in this
procedure is known as a hybrid algorithm since two algorithms (i.e., least-squares and
gradient descent algorithm) generate the parameters concurrently.

4.1. Precision Criteria

In this study, several performance metrics were utilized to assess the precision of
the proposed models. In this regard, correlation coefficient (R2), Nash–Sutcliffe efficiency
(NSE), Pearson’s correlation coefficient (r), Wilmot’s index of agreement (WI), root mean
square error (RMSE), and mean absolute error (MAE) were considered as follows:

R2 =
∑M

i=1
(
Oi −Oi

)
.
(
Pi − Pi

)√
∑M

i=1
(
Oi −Oi

)2
∑M

i=1
(
Pi − Pi

)2
[Range = (0–1); superior value = 1] (7)

NSE = 1− ∑M
i=1(Pi −Oi)

2

∑M
i=1
(
Oi −Oi

)2 [Range = (−∞, 1); superior value = 1] (8)

RMSE =

√√√√ 1
M

M

∑
i=1

(Pi −Oi)
2 [Range = (0,+∞); superior value = 0] (9)

MAE =
∑M

i=1|Pi −Oi|
N

[Range = (0,+∞); superior value = 0] (10)

WI = 1− ∑M
i=1(Oi − Pi)

2

∑M
i=1
(∣∣Pi −Oi

∣∣+ ∣∣Oi −Oi
∣∣)2 [Range = (0, 1); outstanding value = 1] (11)

r = M(∑M
i=1 Oi.Pi)−(∑M

i=1 Pi).(∑M
i=1 Oi)√

(M ∑M
i=1 O2

i −(∑M
i=1 Oi)

2
).(M ∑M

i=1 P2
i −(∑M

i=1 Pi)
2
)

[Range = (0–1); superior value = 1]
(12)

where Oi and Pi are measured and estimated values, respectively. Additionally, Oi and Pi
are mean of the measured and estimated values, respectively.

Nash–Sutcliffe (NS) efficiency is a normalized statistic that determines the relative
amount of residual variance compared to the variance of the calculation (Nash and Sut-
cliffe [55]). The Nash–Sutcliffe performance shows how well the observed data graph
versus the simulated one corresponds to a 1:1 line. NS = 1 corresponds to the model of full
compliance with the observed data. NS = 0 indicates that the model predictions are as accu-
rate as the average of the observed data. 0 < NS < ∞ indicates that the observed average is a
better prediction of the model. Mean absolute error (MAE) and mean square error (RMSE)
are two of the most common criteria used to measure the accuracy of continuous variables.
MAE measures the average size of errors in a set of predictions regardless of their direction.
This average test is the absolute difference between prediction and actual observation that
all individual differences have equal weight. RMSE is a quadratic scoring rule that also
measures the average error rate. This square root is the average square difference between
prediction and actual observation [56]. From an interpretation point of view, MAE is the
winner. RMSE does not describe moderate error alone and has other implications that are
more difficult to understand. On the other hand, one of the distinct advantages of RMSE
over MAE is that RMSE avoids the use of absolute values, which is undesirable in many
mathematical calculations [57]. Correlation coefficients typically measure the scattering
of data against the standard deviation and draw a virtual envelope line across the data in
a Cartesian system. Based on the quality of difference between vertical axis number and
its corresponding horizontal axis number, the correlation value varies between zero and



Materials 2021, 14, 6792 12 of 20

one while the one is the best correlation coefficient and zero means no relation between
numbers [58,59].

4.2. Dataset Arrangement

The used data in this investigation was obtained from the conducted tests on the
specimens [16]. Totally, a database containing 340 datasets was collected. The results of
the J-ring, U-box, and V-funnel tests and slump values in the 3rd and 50th minutes were
considered as the inputs of the models, and the SP demand was set as the output. Table 6
shows some details of the dataset.

Table 6. Details of the input and output variables.

Inputs and Outputs Variables Minimum Maximum Mean Value Standard
Deviation

1 j-ring (mm) 0.70 6.15 2.71 1.44
2 u-box (mm) 0.50 25.00 4.12 5.19
3 50 min Slump (mm) 5.00 60.00 8.73 10.58
4 3 min Slump (mm) 41.00 66.00 52.85 6.72
5 V-funnel (s) 43.00 62.00 55.81 4.49

Output SP Demand (mm) 0.25 2.22 0.61 0.37

4.3. Development of Models

In order to identify the most effective parameters on the SP demand, 5 main models
were established, while 21 dataset models with multi-parameters and 340 samples were
developed and examined. After training different models, the results were compared,
and finally, five models were derived to predict the SP demand. The mentioned models
include inputs according to Table 6, where the first model comprised input 1, the second
model included both input 1 and input 2, and this sequence continues until model 5.
This arrangement was derived from test and trial procedures based on the quality of
precision coefficient from each model with a specific arrangement. Table 7 shows the input
parameters based on the quality of arrangement in each model. According to Table 7,
model 5 has all five parameters as inputs while model 1 includes only one input (j-ring).

Table 7. Arrangement of the models.

Parameter
Number of Model

1 2 3 4 5

j-ring (mm) * * * * *
u-box (mm) * * * *

50 min Slump (mm) * * *
3-min Slump (mm) * *

V-funnel (s) *
* shows the used parameter in each model.

Since the algorithm has to be developed by collected data, model 3 was selected
randomly to be adjusted based on the best possible results. After the adjustment, the
ANFIS algorithm was developed according to the new parameters. Considering the
number of data and avoiding overfitting, 75% of the inputs were randomly devoted to the
training phase of the models, and the remaining 25% were assigned to the testing phase.
All the codes were developed in the MATLAB environment, and available functions of the
MATLAB software (R2019a) were used in the developing process.

4.4. Results and Discussion

The impact of each input variable on the output variable can be observed by the RMSE
value. The model with the lowest value of RMSE in the training phase demonstrates a
better ability to solely predict the output. Each of the ANFIS models was run three times
and the mean value of RMSEs in the training and testing phases were recorded. Table 8
reveals the calculated accuracy criteria for the performance of the implemented models
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based on advanced input parameters. As can be seen in this table, model 5 is the most
effective parameter on the output, which has the lowest value of RMSE in the training
phase. In other words, the V-funnel test is the best indicator in the prediction of SP demand.
Figure 13 indicates the regression scatter diagrams of prediction results for each model, and
the relation between observed (experimental) value and predicted value is written as an
equation in each diagram. Besides, diagrams are separated into two single parts including
train chart and test chart and the dispersion percent is clarified by guidance line around
the envelope line (red line). Although all of the charts represent a suitable estimation, the
best chart is obviously Figure 13e which has been also presented in Figure 17 separately.

As shown in Table 8 and Figure 13, the best performance parameters in the testing
phase for ANFIS are RMSE = 0.001, r = 1.000, R2 = 1.000, NSE = 1.000, MAE = 0, and
WI = 1.000. Models 4 and 5 represented the best results, and in both models, the V-funnel
data has been added to other inputs. The best result for RMSE is the lowest value, and
for r, the best positive correlation coefficient is 1, which means that the numbers closer
to 1 are considered better results. Furthermore, the smaller values for NSE and MAE, and
greater values for WI indicate better performance. Additionally, it can be observed that
after model 5, model 4 has shown the lowest training MAE. Therefore, the slump value
is the second most effective parameter in the SP demand prediction. The order and the
efficiency of other inputs on the SP demand value can also be observed in Figure 13.

Table 8. Details of the input and output variables.

Input. Parameters Network Result
Training Phase Testing Phase

R2 r NSE RMSE MAE WI R2 r NSE RMSE MAE WI
j-ring (mm) 0.885 0.941 0.870 0.035 0.026 0.969 0.991 0.935 0.854 0.038 0.028 0.965
u-box (mm) 0.971 0.985 0.970 0.018 0.003 0.993 0.997 0.978 0.955 0.022 0.004 0.989

50 min Slump (mm) 0.999 1.000 1.000 0.002 0.000 1.000 0.999 1.000 0.999 0.003 0.001 1.000
3-min Slump (mm) 1.000 1.000 1.000 0.001 0.000 1.000 0.999 1.000 1.000 0.001 0.000 1.000

V-funnel (s) 1.000 1.000 1.000 0.000 0.000 1.000 0.999 1.000 1.000 0.001 0.000 1.000
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Figure 14 indicates the clustered charts of some precision parameters based on training
and test results. In this figure, the MAE and NSE values of the testing and training phases
for each model are displayed. By comparing their values in both phases, it can be concluded
that the developed models have revealed an appropriate performance and overfitting has
been avoided. All three parameters demonstrate that models 4 and 5 performed better
than other models.
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Figure 15 depicts the error histogram for model 5. This figure could prove the accuracy
of the model in each training and testing phase again. It was found that ANFIS had an
accurate prediction since both the training and testing phases have the same pattern
(convergence) in the same area of the samples, and also the difference between predicted
and measured values is not noticeable.
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Figure 16 indicates a tolerance diagram of predicted and measured values for both
testing and training phases, which contains a comparison of outputs and targets for the
selected ANFIS model. Figure 16b certifies the reliable prediction of model 5 and the
noticeable accuracy of the ANFIS.

Figure 17 shows the scatter plot of the predicted results for the SP demand of the
model, which obtained the highest rate among other inputs. In this diagram, the values of
RMSE, r, and R2 are equal to 0.001, 1.000, and 0.999, respectively. These values illustrate
that developing an ANFIS model can be an efficient approach in SP demand estimation.



Materials 2021, 14, 6792 17 of 20
Materials 2021, 14, x FOR PEER REVIEW 17 of 20 
 

 

(a) 

(b) 

Figure 16. Tolerance diagram of predicted and measured values for (a) training phase and (b) testing phase. 

Figure 17 shows the scatter plot of the predicted results for the SP demand of the 
model, which obtained the highest rate among other inputs. In this diagram, the values of 
RMSE, r, and R2 are equal to 0.001, 1.000, and 0.999, respectively. These values illustrate 
that developing an ANFIS model can be an efficient approach in SP demand estimation.  

 
Figure 17. Scatter plot of the SP demand prediction. 

5. Conclusion 
The prediction of superplasticizer (SP) demand is complicated due to the many fac-

tors involved in the estimation problem. Hence, in this paper, a soft computing method-
ology was employed, which is more accurate and reliable than other numerical and ex-
perimental methods. For the first time, an AI technique was used to select the most influ-
ential parameter in the SCC design. In order to achieve a reliable database, verified data 
from an experimental program was used to investigate the possible incorporation of pum-
ice, slag, and fly ash powders as cement replacements in binary and ternary mixtures. To 

Figure 16. Tolerance diagram of predicted and measured values for (a) training phase and (b) testing phase.

Materials 2021, 14, x FOR PEER REVIEW 17 of 20 
 

 

(a) 

(b) 

Figure 16. Tolerance diagram of predicted and measured values for (a) training phase and (b) testing phase. 

Figure 17 shows the scatter plot of the predicted results for the SP demand of the 
model, which obtained the highest rate among other inputs. In this diagram, the values of 
RMSE, r, and R2 are equal to 0.001, 1.000, and 0.999, respectively. These values illustrate 
that developing an ANFIS model can be an efficient approach in SP demand estimation.  

 
Figure 17. Scatter plot of the SP demand prediction. 

5. Conclusion 
The prediction of superplasticizer (SP) demand is complicated due to the many fac-

tors involved in the estimation problem. Hence, in this paper, a soft computing method-
ology was employed, which is more accurate and reliable than other numerical and ex-
perimental methods. For the first time, an AI technique was used to select the most influ-
ential parameter in the SCC design. In order to achieve a reliable database, verified data 
from an experimental program was used to investigate the possible incorporation of pum-
ice, slag, and fly ash powders as cement replacements in binary and ternary mixtures. To 

Figure 17. Scatter plot of the SP demand prediction.

5. Conclusions

The prediction of superplasticizer (SP) demand is complicated due to the many factors
involved in the estimation problem. Hence, in this paper, a soft computing methodology
was employed, which is more accurate and reliable than other numerical and experimental
methods. For the first time, an AI technique was used to select the most influential
parameter in the SCC design. In order to achieve a reliable database, verified data from an
experimental program was used to investigate the possible incorporation of pumice, slag,
and fly ash powders as cement replacements in binary and ternary mixtures. To this end,
different approaches, including the results of J-ring, U-box, V-funnel, and slump tests were
considered to predict the SP demand value. After comparing the different types of inputs,
five key characteristics of the SCC were selected as the most influential inputs, which
were J-ring, U-box, V-funnel, 3 min slump, and 50 min slump. In continue, five ANFIS
models were established and the impact of each model on the SP demand prediction was
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evaluated. In general, it was found that the ANFIS can accurately predict the results of the
experiments. In addition, the ANFIS parameters were kept constant (clusters = 10, train
samples = 75%) to compare the five ANFIS models. A summary of the obtained results are
presented as follows:

• Pumice showed the highest effect on the SP demand of admixture, in 50% replacement
binaries, it has increased the SP demand by 27% and 45% compared to slag and
FA, respectively. This higher SP dosage could be related to the geometry shape and
structure of pumice particles.

• The optimum content based on the results of fresh properties in binary samples was
30% for pumice and 50% for slag and FA.

• According to neural network results, the pumice incorporation has the most effect
on the maintenance of the SCC slump to keep the optimal performance. The best
prediction model was determined and the most accurate parameters for RMSE, r R2,
NSE, MAE, and WI were 0.999, 1.000, 1.000, 0.001, 0.000, and 1.000, respectively.

• Finally, among the five ANFIS models, the model corresponding to the V-funnel test
led to the best RMSE, MAE, and NSE values. The results indicate that the V-funnel
value is the most influential parameter in the SP demand prediction and SSC design.
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