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Abstract: The results of microstructure and mechanical properties evaluation of a Stellite 6 (Co-6) alloy
deposited on X22CrMoV12-1 substrate by the laser-engineered net shaping (LENSTM) technology
are presented in this paper. The Stellite 6 alloy is widely used in industry due to its excellent wear
resistance at elevated temperatures and corrosive environments. Specific properties of this alloy
are useful in many applications, e.g., as protective coatings in steam turbine components. In this
area, the main problems are related to the fabrication of coatings on complex-shaped parts, the low
metallurgical quality of obtained coatings, and its insufficient adhesion to a substrate. The results
of recently performed investigations proved that the LENS technology is one of the most effective
manufacturing techniques of the Co-6 alloy coatings (especially deposited on complex-shaped turbine
parts). The microstructural and phase analyses of obtained Stellite 6 coatings were carried out by light
microscopy techniques and X-ray diffraction analysis. A chemical homogeneity of Co-6 based layers
and a fluctuation of chemical composition in coating–substrate zone after the laser deposition were
analyzed using an energy dispersive X-ray spectrometer coupled with scanning electron microscopy.
The room temperature strength and ductility of the LENS processed layers were determined in static
bending tests.

Keywords: laser-engineered net shaping; Stellite 6 cobalt-based superalloy; microstructure; micro-
hardness; bending test

1. Introduction

Stellite 6 (Co-6) is one of the most popular cobalt-based alloys exhibiting a good high-
temperature oxidation resistance (at temperature up to 1095 ◦C), excellent thermal stability,
good resistance to thermal fatigue, and good resistance to cavitation, corrosion, erosion,
abrasion [1–3]. The main alloying component of Stellite 6 is chromium (29% in weight),
which provides better corrosion resistance and strength by the formation of M7C3, M23C6
carbides [4]. The other components of the alloy are 4.5% W, 1.5% Mo, 1.2% C, Co balance,
in weight. Tungsten and molybdenum in Co-6 provide high strength by precipitation
hardening. The CoCr-based alloys are used as coating or overlay material in pump seals,
bearings, knives seats, blades in aviation engines, nozzle in diesel engines, etc. [5].

The hard coating of Stellite 6 is often deposited by conventional welding processes [6]
or also the use of surfacing techniques, such as a plasma spray [7,8], high-velocity oxygen
fuel (HVOF) [9], and a laser cladding (LC) [10]. Conventional methods (such as surface
welding or plasma spraying) are characterized by a high heat input, which results in
material embrittlement, distortion, and dimensional instability. Moreover, they are time
consuming, difficult to automate, and require relatively large amounts of filling material.
Furthermore, the accuracy of these methods is rather low. Gholipour et al. [11] reported
that delamination is the dominant mechanism of the wear in Co-6 weld cladding used as
coatings, which leads to the necessity of using an intermediate layer between the substrate
and a topcoat. However, the coatings obtained by the HVOF method contain oxides and
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porosity, which can lead to the debonding or spallation of coatings [12]. Therefore, the
coatings require additional treatments to improve their properties [13]. The research on
Stellite coatings has shown that laser deposition techniques are more effective methods of
producing dense and crack-free Stellite 6 coatings [14,15].

Additionally, the increasing performance requirements concerning industrial equip-
ment, especially with regard to surface properties, lead to a situation in which technologies
allowing deposition of protective coating and repair of damage elements are granted
greater attention. The most effective techniques for producing Co-6 coatings and repairing
parts are laser cladding methods [10,16–19]. The advantages of laser cladding techniques
include minimal mixing (a dilution) between a deposit and a substrate, lower heat input
and a narrower heat-affected zone, excellent metallurgical bonding between a substrate
and clad coatings [20,21]. One of the promising laser techniques for producing protective
Co-6 coatings is the laser-engineered net shaping (LENSTM) method [22,23].

The LENS process that was proposed by Sandia National Laboratories (Albuquerque,
NM, USA) and commercially developed by Optomec (Albuquerque, NM, USA) is a novel
and innovative additive technology of regeneration/deposition of coatings using a laser
beam. As a laser deposition technique of coatings, the LENS technology has several advan-
tages distinguishing it from conventional methods such as welding or thermal spraying.
This technology through a layer-by-layer (with controlled thickness) reproduction of a
CAD-designed project on the selected area of a metal substrate. Furthermore, the specified
type of microstructural morphology (e.g., a columnar structure, a fine-grained, or mixed
one), depending on an expected application of alloys can be obtained by using advanced
steering and control of heat transfer in the LENS technique [24,25]. In this method, local
heating minimizes the width of the heat-affected zone (HAZ), thus reducing the risk of
“thermal distortion” and limiting the participation of the substrate material in the deposited
layer to below 2% [26,27]. The LENS technique allows for the manufacturing of high-quality
thin deposits having little dilution that are nearly 100% dense and with minimal build-up,
which lowers the final process costs [23].

The LENS technique has so far been used successfully for a compressor seal made of In-
conel 718, a reparation of Ti-6Al-4V-bearing housing from a gas turbine engine, depositing
the coating with a tungsten carbide alloy on an oil field adapter, and a rotary atomizer used
in flue gas desulfurization systems. Previous studies have shown that the LENS technique
allows shortening the production/repair time and thus reduces costs by 50%. Moreover,
this technique has been used to fabricate a broad range of metallic materials, including stain-
less steels [28,29], tool steels [30], cobalt alloys [26,31], nickel-based superalloys [28,32,33],
copper alloys [34], titanium alloys [35], intermetallic alloys [26,36,37], gradient materi-
als [25,38], and functional composites with improved mechanical material properties,
compared with their counterparts obtained by traditional methods. The authors of [39]
demonstrated that it is possible to deposit functionally graded alumina coatings on 316
stainless steel substrate using laser-engineered net shaping. Liu et al. [32] used the LENS
process for the repair of Ni-base superalloy turbine components that contain casting or
manufacturing defects, while Li [40] showed that the LENS system allows a reparation
of GTD-111 directionally solidified superalloy. Some other examples include a coating of
titanium with tricalcium phosphate (TCP) ceramics to improve bone cell–material interac-
tion [41]. The authors of [42] used the laser deposition of Stellite alloy consisting of 70%
Stellite 3 and 30% Stellite 21 to control valve seat sealing surfaces, aiming at enhancing
the hardness and wear resistance. The LENS technique has been successfully used for the
application of multi-layer Stellite™ coating on stainless steel for use on cutting tools [43].
However, as the authors of [44] have indicated, there are very few papers on the fabrication
of Stellite 6 alloy parts using additive techniques. Recently, Traxel and Bandyopadhyay [22]
have successfully obtained WC-Co + diamond composites using the LENS technique.
Moreover, the prototype sample parts from Co-6 alloy have also been successfully obtained
from gas-atomized powder using binder-jet 3D printing [45].



Materials 2021, 14, 7442 3 of 15

This paper presents the results of technological trials on the deposition of a cobalt-
based Co-6 alloy on X22CrMoV12-1 steel substrate (pieces cut off from a new gas turbine
blade) using the LENS technology. The coatings obtained were analyzed in terms of
obtained microstructures and mechanical properties.

2. Materials and Methods
2.1. Materials

In order to evaluate the possibility of using the LENS technology for the repair of
gas turbine blades, Stellite 6 powder purchased from LPW Technology LTD (Gloucester,
UK) was used as a batch material. The feedstock material was characterized by a spherical
shape and a wide size range of particles (45–150 µm) (Figure 1). Before the deposition
process, the powder was dried at a temperature of 200 ◦C for 24 h under a protective
inert atmosphere (a content of oxygen and water vapor was below 0.1 ppm). The brand
new turbine (non-exploited) blade made of X22CrMoV12-1 steel was used as the substrate
during the laser deposition process. The Co-6 powder was deposited by using the LENS
technique on a substrate with dimensions of 15 mm × 150 mm × 10 mm, which was cut by
a wire electrical discharge machining (WEDM, ZAP B.P., Końskie, Poland) from the new
turbine blade. Then, the substrate was degreased in an ultrasonic bath, dried under a low
vacuum for 24 h, and finally blasted.
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Figure 1. Morphology of Co-6 feedstock powder.

2.2. The LENS Process

The LENS 850-R software (Optomec, Albuquerque, NM, USA) allows the use of a few
types of repair processes/repair utilities such as line build deposition, tube/chuck clad
deposition, Z clear deposition, and teach-and-learn method. By choosing the adequate
method, it is possible to adjust the rebuild method by taking into account the shape of parts.
One of them is the teach-and-learn technique. It is used to generate a tool path (series of
commands) for depositing material for a part build or repair. The basic idea is to position
the deposition head over an area where the material is to be deposited, teach that point,
move the deposition head to another location, teach that point, and continue until an area
has been taught. The system will then automatically generate the commands needed to
deposit material for the lines (contour) defined by the teach-and-learn screen. The area
defined can also be filled in (hatched).

The coatings were fabricated by using the LENS 850-R system with different laser
power (W) and powder flow rate (RPM) at the constant value of the laser head feed rate
(mm/s) (Table 1). The argon flow rates on the central purge and powder nozzles were
25 LPM and 3 LPM, respectively. Tool paths were generated using one of the few variants
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of the teach-and-learn module, the hatch-fill option. It allows filling the area including
its contour (defining all of the characteristic points of the contour is required) by repair
material (Stellite 6). During the process, the atmosphere in the working chamber was
continuously monitored so that the content of oxygen and water vapor was maintained
below 7 ppm. Moreover, in order to avoid crack formation in the applied coatings, before
the deposition process, the substrate was heated up to a temperature of 300 ◦C. This has
been confirmed in the work of Liu et al. [32], wherein they noted that cracking is the
result of high thermal stresses generated from the LENS processing, and their reduction
is possible precisely by preheating the substrate. The research was conducted as part of
Grant No. PBS3/B5/37/2015. The aim of this article was to obtain a Co-6 coating without
cracks and porosity with a thickness of 0.4 mm at a single deposition pass. The assumed
thickness allows reducing the necessity of machining processes.

Table 1. The set of the best LENS process parameters used during deposition of Co-6 coatings.

No.
Laser
Power

[W]

Powder
Flow Rate

[g/min]

Feed Rate
(Contour)

[mm/s]

Feed Rate
(Hatch)
[mm/s]

Thickness of
Obtained

Coating [mm]

Porosity
[%]

#1 600 9.5 10 8 0.94 1.5

#2 600 3.5 10 8 0.55 0.02

#3 400 3.5 10 8 0.25 0.02

#4 400 5.5 10 8 0.40 0.01

#5 400 8.5 10 8 0.44 1.0

#6 800 8.5 10 8 1.10 0.5

After the preparation of batch material, the set of various technological variants was
tested. Table 1 presents the best variants of the performed trials. Based on the visual
inspection and performed macroscopic observations, it was found that the Co-6 coatings
are characterized by a good metallurgical quality and good adhesion to the substrate
material with a clear coating/substrate interface (Figure 2). We have previously shown that
the cracks are a common defect that occurs during laser deposition of Stellite 6 superalloy,
and it is difficult to avoid [19,46]. During the process of laser deposition of Co-6 alloy,
high stresses induced by the high-temperature gradient are generated. Additionally, the
cracks can be also produced by some brittle phases/precipitates. Moradi et al. [47] have
suggested that process control is required to avoid cracks, for example, by controlling the
laser power density.

It should be noted that in the case of variants #2, #3, and #4 (Table 1), there were no
discontinuities of structure in a form of pores. For further and detailed analysis, specimen
#4 (Table 1) was selected (by taking into account its technological usefulness, including
minimal machining allowance). Moreover, it was found that control of a supplied powder
amount allows a one-pass deposition with various thicknesses of a deposited layer—
starting from that assumed at design step (0.25 mm) up to the value of 1.1 mm (Table 1).
It was also observed that the higher laser power at the same powder feed rate increases
the thickness of obtained coatings (Table 1). It has been previously documented that [47]
increasing the laser power causes more energy to be supplied to feedstock powder, which
leads to the melting of its greater volume on the substrate.

Finally, the parameters of coating no. 4 were shown to be suitable. This variant was
selected due to low porosity and the thickness fully comparable with the assumed one.
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2.3. The Characterization Techniques of Coatings

The LENS fabricated samples were cut off by a BP-97d electro-discharge machining de-
vice (ZAP B.P., Końskie, Poland) in a perpendicular direction to the substrate. Subsequently,
samples were subjected to a metallographic preparation process including grinding with
300–2400 SiC papers and polishing with 3–0.25 µm diamond suspensions. Microstructural
details were revealed by a chemical etching with Kallinge’s reagent (50 mL CH3OH, 50 mL
HCl, 5 g CuCl).

Microstructure investigations were carried out by Nikon Eclipse MA2000 light micro-
scope (Nikon, Leuven, Belgium) and FEI Quanta 3D field emission gun scanning electron
microscope (FEG-SEM, FEI, Hillsboro, OR, USA) equipped with an electron backscatter
diffraction (EBSD) system (TSL, Draper, UT, USA) and an energy dispersive spectroscopy
(EDS) chemical composition analyzer (EDS, FEI, Hillsboro, OR, USA). Qualitative and
quantitative analyses of chemical composition in selected areas of samples were carried out
by means of an energy dispersive spectroscopy (EDS) device coupled with an FEI Quanta
3D field emission gun scanning electron microscope. The EBSD technique was applied for
some detailed microstructure examinations including size and shape of grains, a phase
composition, grain boundaries character distribution, and grains orientation analyses.

The X-ray diffraction (XRD) phase analysis was performed with a Rigaku ULTIMA IV
diffractometer (Rigaku, Tokyo, Japan) equipped with a cobalt target (i.e., monochromatic
radiation with a wavelength of 0.17889 nm was used). During the diffraction test, CoKα

radiation with a voltage of 40 kV and an amperage of 40 mA was used. The analysis
was conducted within the 2θ range of 20–160◦ and with a step size of 0.02◦. Obtained
results were interpreted by using the DHN PDF 4 crystallographic database (ICDD, New-
ton Square, PA, USA).
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2.4. The Mechanical Properties Tests

To validate the effect of a microstructure formed upon the LENS processing on me-
chanical properties of coatings, the Vickers microhardness distribution measurements were
conducted in a perpendicular direction to layers with 50 g load and 10 s loading time in
every single indentation. Vickers indentations along five parallel lines (the spacing between
lines was 0.5 mm, while the distance of indentations in each line was 0.05 mm) were used
in order to carry out microhardness distribution analysis. Based on obtained results, the
average values were calculated.

In order to determine the bending strength of the LENS fabricated Co-based alloy
coatings, an additional sample was produced by using the LENS process (five samples)
according to parameters adopted for variant #4 (Table 1). The Co-6 powder was applied on
the previously prepared substrate made of the X22CrMoV12-1 steel with dimensions of
65 mm × 7 mm × 3.5 mm (length × width × height).

The static bending tests were performed by using INSTRON 8501 testing machine
(Instron, High Wycombe, UK) at a deformation rate of 2 × 10−3 s−1. Based on the obtained
test, the following parameters were determined:

- A deflection at the maximum bending strength;
- A maximum bending force;
- Bending strength;
- Deformation.

3. Results and Discussion
3.1. Microstructure of Co-6 Coatings

The microscopic analysis of etched metallographic cross sections of the Co-6 coatings
revealed that a microstructure both in a surface layer and entire volume of obtained
samples consisted of equiaxed, fine dendrites (solid solution of cobalt) with different
sizes (dependent on the distance from the coating surface) and eutectic carbides in the
interdendritic spaces (Figure 3). The grain size was analyzed in three characteristic regions,
defined as near the edge of the sample, in the middle part of the sample, and near the
substrate. According to the results of the SEM analyses, the grain size decreased from the
substrate to the edge of the sample. In the area near the substrate, it was the most diverse
and equal to 5.5 ± 1.0 µm. It was also observed that the grains near the substrate had an
elongated shape. On the other hand, in the sample volume and at the edge, the grain size
was 3.7 ± 0.5 µm. The differentiation in grain size in selected three regions of samples
resulted from directional heat dissipation in the LENS process, which was presented by
Balla et al. [48] and Łazińska et al. [49]. The LENS manufacturing process is assisted
by a high-temperature gradient and high cooling rates, which affect the morphology of
the microstructure. When applying the first layers of material, material cooling occurs
primarily through the cold substrate, which favors the directional growth of grains in the
opposite direction of heat dissipation. When the heat transfer through the substrate is no
longer dominant, the grains assume a shape similar to equiaxial. The authors of [50] also
observed a change in the grain size depending on the analyzed area of the sample, and
the grain size decreased from the beginning to the end of samples. In the present case, the
grain size decreased from the beginning to the end of samples and was, respectively, about
3 µm at the beginning of the sample and 2 µm at the end. This effect is also explained by
the fact that the substrate acted as a heat source.
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Moreover, at the distance of about 0.15 mm from the coating–substrate interface,
the morphologically changed areas with a banded structure, differently oriented to the
substrate, were observed.

To determine a fluctuation of chemical composition at the coating–substrate interface,
EDS linear measurements were conducted. It was found that the samples produced by
the LENS process had a “one-step” transition zone (Figure 4) with an intense increase in
elements fraction characteristic for a given alloy.
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It was also observed, e.g., for variant #4 of the LENS process (Figure 4), that the intense
fluctuations of chemical composition occurred, as a result of the “transfer” of a substrate
material during the LENS process. It was found that in the analyzed technological variant,
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the width of the mixed interface from 40 to 100 µm depended on the analyzed area. The
cobalt and chromium fluctuations conformed to the passage of the analyzing electron beam
through the dispersive CoCr phase, which was also confirmed by the conducted XRD
analyses. Moreover, the detailed point analysis of chemical composition performed on the
same LENS specimen revealed a presence of the areas with different chemical compositions
in the volume of the deposit (Figure 5).
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The matrixes of Co-6 deposits fabricated by the LENS method constituted strongly
fragmented dendrites (with an average size of 5 µm) based on cobalt (matrix, point #1
in Figure 5), which were separated by interdendritic regions enriched with chromium
(grain boundary, point #3 in Figure 5). Interestingly, a third area containing elements such
as Cr, Co, and W compositions was also observed. According to the literature, this area
corresponds to W-rich carbides. This is the typical hypoeutectic microstructure of the
laser-deposited Stellite 6 containing cobalt-rich dendrites and chromium-rich interdendritic
areas [10,43]. This type of fine-grained dendritic structure is related to the high cooling
rates produced during laser cladding. The same type of microstructure was observed
by Thawari et al. [14]. According to them, laser cladding consists of primary dendrites
of a Co-rich solid so9lution with Cr-rich interdendritic arrays of M7C3- and M23C6-type
carbides and the area of W-rich carbides.

3.2. EBSD and XRD Phase Analysis

The probable phase composition was estimated based on the analysis of the chemical
composition of the coating obtained for variant #4 (Table 1), and it was confirmed by
a microanalysis performed by using the EBSD technique (Figure 6). As a result of the
obtained phase distribution maps (for two magnifications), the information of the structural
components occurring in the Co-6 coating fabricated by LENS was received. It was found
that the matrix of the analyzed coating was cobalt austenite, which was decorated by CrCo
solution and finely dispersed cobalt–tungsten carbides. Furthermore, a negligible amount
of the cobalt–tungsten carbides was detected.
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cobalt–tungsten carbides.

The results of an X-ray microanalysis were confirmed on a macro scale (Figure 7) by
using the Rigaku ULTIMA IV diffractometer. It was found that on a macro scale, the phase
composition of Co-6 is in good agreement with the results of the electron diffraction in
micro areas (EBSD results). The peaks corresponding to the Co phase, the CrCo solution,
and the complex cobalt–tungsten carbides (M3C type) were recorded (Figure 7), which
confirmed the multiphase structure of the deposit created under applied LENS conditions.
The obtained results of the phase analysis correlated with the results of the chemical
composition analysis (Figure 5). The X-ray diffraction pattern characterized by high
intensity and small width of the identified peaks confirmed also a relatively low level of
the internal stresses in the LENS-produced structure deposit.
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3.3. Microhardness

The obtained microhardness distribution as a function of a distance from the surface
for specimen with a coating made of Stellite 6 alloy indicated a partially “tempering” of
the subsurface zone of coating at a depth of about 0.4 mm (as an average from the five
tracks performed with the same step). This was a result of the lower heat conductivity of
protective gas (argon) than a substrate made of X22CrMoV12-1. In this section, a monotonic
increase in microhardness was observed until achieving the plateau at a level of about
550 HV (50 HRC) and at a distance of 0.7 mm (Figure 8). At the distance of about 0.7 mm
from the coating surface, a decrease in microhardness was observed, reaching 400 HV
(41.7 HRC) at a length of approx. 0.2 mm. Probably, substantial microhardness fluctuations
occurred due to the presence of hard carbides phases, confirmed by the results of both EBSD
and X-ray analyses (Figures 6 and 7). The chart in Figure 8 shows the smooth transition of
the microhardness from the laser deposit to the substrate. Traxel and Bandyopadhyay [43]
observed a similar effect for Stellite 6 deposited to SS410 substrate using the LENS tech-
nique. The Stellite coating obtained by them had the same microhardness, which was
506 HV0.2/15. According to literature data, clad/cast Stellite™ 6 alloys are characterized
by hardness in the range ∼450–550 HV [14,42,51]. On the other hand, Thawari et al. [14]
have suggested that the large difference in hardness in the zone between the substrate and
the deposited layer is related to the increased Fe content [14]. The content of the elements
Co and Cr in Stellite 6 at the interface decreases due to the dilution effect. Due to the
surface tension and high temperature in the melting zone, the iron diffuses, which results
in a lower hardness. Changes in hardness in the heat-affected zone associated with mixing
Stellite 6 powders and molted substrate were also observed by the authors of [47].

3.4. Three-Point Bending Tests

The static bending test was performed for two variants: (I) a sample with a deposited
coating made of Co-6 alloy (variant #4) and (II) a reference sample made of a material
of turbine blade without coating (the same substrate, marked as #0 in Figure 9). Five
samples were prepared for the selected variants. It was found that the substrate material
was characterized by a deformation of ~6%. In turn, the bending strength was 1700 MPa.
The results of performed bending tests are summarized in Table 2. For the sample with
the Co-6 coating produced by using the LENS technique, a decrease in ductility of about
30% was detected, at the statistically comparable bending strength relative to a reference
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sample (sample “0”). According to the authors of [52], the flexure strength of cobalt-based
alloy prepared by the hot isostatic pressing process is 2224 MPa.
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Table 2. The results of static bending test.

Sample
Number

Diamensions of Sample [mm] Bending
Force F [kN]

Deflection
[mm]

Bending
Strength

[MPa]

Deformation
[%]l0 b H

#0 50 7 3.5 2.07 ± 0.8 7.13 ± 0.21 1726 ± 69 6.13 ± 0.18

#4 50 7 3.5 1.87 ± 0.37 5.27 ± 1.16 1669 ± 34 4.39 ± 0.09

Moreover, the cracks were formed in the coating area without visible interfacial
delamination (Figure 10a). The SEM observations revealed no cracks and delamination
between the substrate and Co-6 coating (Figure 10b). This proved a durable connection
between the substrate material and the deposited coating. Observation of the fractures
showed that the type of fracture changed from ductile in the steel substrate to brittle along
the interdendritic regions in the Co-6 coating. This effect was also observed by the authors
of [53].
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4. Conclusions

By analyzing the obtained results, it was found that the LENS technique allows
deposition of Co-based Stellite 6 coating on the used substrate (fragments of the turbine
blade). The proposed alloy after deposition by the LENS technique had a high hardness
equal to 50 HRC with a smooth transition zone in the coating–substrate area.

The quality and thickness of the coating deposits were equally influenced by manu-
facturing LENS parameters—namely, the laser power and powder feed rate.

The best metallurgical quality of the Co-based Stellite 6 coatings was achieved for
the parameters of the LENS process ensuring microstructures made of an equiaxed, fine-
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dendrite-based solid solution of cobalt. The selected manufacturing parameters made it
possible to obtain a coating with an assumed thickness of about 0.4 mm when applying
one layer of material.

In the case of coatings made of Co-6 alloy marked as #2, #3, and #4 (characterized by
different thicknesses), the porosity was not observed. The coatings made of the Co-6 alloy
had a characteristic structure for this type of material, which consists of dendrites with an
average equal size equal to 5 µm, which are separated by a network of eutectic carbides by
chromium-rich interdendritic regions and cobalt–tungsten carbides. The higher dispersion
degree of Co-6 coatings was a result of the rapid crystallization of the liquid metal pool
due to the interaction of laser radiation.

The obtained Co-6 coating was characterized by the highest hardness near the sub-
strate at the level of 525 HV. At the edge of the coating, the hardness was slightly lower
and amounted to 450 HV.

The static bending test showed a decrease in ductility for the sample with the Co-6
coating produced by using the LENS technique, at the statistically comparable bending
strength relative to a reference sample. In order to improve the ductility and mechanical
properties, an interlayer should be used, which increases the material’s heat capacity during
laser beam deposition and reduces the heat dissipation rate, thus leading to an increase in
the molten pool. No delamination was observed between the Co-6 coating and the base
material after the test.
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