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Abstract: In the past two decades, owing to the development of metamaterials and the theoretical
tools of transformation optics and the scattering cancellation method, a plethora of unprecedented
functional devices, especially invisibility cloaks, have been experimentally demonstrated in various
fields, e.g., electromagnetics, acoustics, and thermodynamics. Since the first thermal cloak was
theoretically reported in 2008 and experimentally demonstrated in 2012, great progress has been
made in both theory and experiment. In this review, we report the recent advances in thermal
cloaks, including the theoretical designs, experimental realizations, and potential applications. The
three areas are classified according to the different mechanisms of heat transfer, namely, thermal
conduction, thermal convection, and thermal radiation. We also provide an outlook toward the
challenges and future directions in this fascinating area.

Keywords: heat transfer; thermal cloaks; transformation theory; scattering cancellation method

1. Introduction

Invisibility cloaks have been popular in the past twenty years with the development of
metamaterials [1]. After the realization of invisibility cloaks at microwave frequencies [2],
the concept has been extended to various applications including thermal cloaks [3–10],
acoustic cloaks [11,12], matter-waves cloaks [13,14], and elastic-waves cloaks [15,16]. The
thermal cloak is theoretically designed to make a target invisible under temperature
detection [3] or reduce the heat flux in a specific region [7]. These two objectives are
expected to be achieved in arbitrary mechanisms of heat transfer, namely, heat conduc-
tion, heat convection, or heat radiation. Therefore, we divide thermal cloaks into three
sections according to different types of heat transfer. Generally, there are two methods
to achieve invisibility: transformation optics (TO) [3,8,17–26] and the scattering cancella-
tion method (SCM) [4,5,9,10,27–32]. The application of TO theory has led to a series of
novel optical devices, such as concentrators [33,34], rotators [35–37], superlenses [38–40],
hyperlenses [41,42], artificial black holes [43,44], and bending waveguides [45–47]. On
the other hand, the SCM has been proposed to design the simple bilayer cloak, based
on which a magnetostatic cloak had been created with a ferro-magnetic material and
superconductor [48].

Thermal conduction is the primary mechanism of heat transport within solids or
among them due to spatial temperature variations. In this situation, TO theory (governed
by the wave equation) could be converted into thermodynamics (governed by the heat
conduction equation) [4]. Heat is transferred through mass transport in thermal convection.
As convection is the chief mechanism of heat transfer in moving fluids, heat and mass trans-
fer are coupled with each other [7]. As a result, the convection–diffusion equation [49,50]

Materials 2021, 14, 7835. https://doi.org/10.3390/ma14247835 https://www.mdpi.com/journal/materials

https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://doi.org/10.3390/ma14247835
https://doi.org/10.3390/ma14247835
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma14247835
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma14247835?type=check_update&version=1


Materials 2021, 14, 7835 2 of 17

and fluid movement [51–54] need to be considered in thermal convection [7]. The transfor-
mation theory has been extended to transient thermal convection in porous media [7]. In
thermal radiation, heat is transferred by electromagnetic waves. For manipulating thermal
radiation, a structured thermal surface has been reported, which functions as a radiative
thermal cloak [17].

In this review, we first introduce the theoretical design of various kinds of thermal
cloaks, including conductive thermal cloaks, convective thermal cloaks, and radiative
thermal cloaks. Then, we list typical experimental realizations for each kind of thermal
cloak and discuss potential applications. Finally, we provide an outlook on the development
of this attractive area, as well as challenges to be addressed.

2. Conductive Thermal Cloak
2.1. TO-Based Thermal Cloak
2.1.1. Theoretical Design

For a TO-based cloak, its thermal conductivity, density, and specific heat capacity can
be expressed as [4]:

↔
κ
′
= κ0

AAT

det(A)
, ρ′c′ =

ρ0c0

det(A)
(1)

where κ0, ρ0, and c0, respectively, represent the thermal conductivity, density, and specific
heat capacity of the background material. A = ∂(x′ , y′ , z′)

∂(x, y, z) is the Jacobian matrix of the
coordinate transformation.

In the two-dimensional (2D) case, taking a circular cloak as an example (Figure 1), a cir-
cular region (r ≤ b) in original space (r, ϕ) is changed into an annular region (a ≤ r′ ≤ b)
in a new physical space (r′, ϕ′). Then, we obtain the transformation equation:{

r′ = a + b−a
b r

ϕ′ = ϕ
(2)

Substituting Equation (2) into Equation (1), we derive:

↔
κ′2D = κ0

(
r′−a

r′ 0
0 r′

r′−a

)
(3)

(
ρ′c′
)
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(
b

b− a
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As an analogy, for a three-dimensional (3D) spherical cloak, the transformation equa-
tion can be expressed as: 

r′ = a + b−a
b r

ϕ′ = ϕ
θ′ = θ

(5)

Substituting Equation (5) into Equation (1), we derive:

↔
κ
′
3D = κ0


b

b−a

(
r′−a

r′

)2
0 0

0 b
b−a 0

0 0 b
b−a

 (6)

(
ρ′c′
)

3D =

(
b

b− a

)3( r′ − a
r′

)2

(ρ0c0) (7)

Equations (3) and (6) indicate that the transformed conductivities remain inhomo-
geneous and anisotropic. Meanwhile, the product of density and heat capacity remains
inhomogeneous.

In the steady state, the conductivities of a 2D thermal cloak satisfies κ′r
κ0

= κ0
κ′ϕ

= r′−a
r′ .

It has been proven that the 2D thermal cloak [18] and the 3D thermal cloak [55] can be
designed with homogeneous and anisotropic materials, which satisfy:

For the 2D case :
κ′r
κ0

=
κ0

κ′ϕ
= C (8)

For the 3D case :
κ′r
κ0

=
κ0

2κ′θ − 1
=

κ0

2κ′ϕ − 1
= C (9)

where C is a constant. Then, a multilayered 2D thermal cloak that consists of two kinds of
isotropic materials was experimentally demonstrated [29].

2.1.2. Experimental Realization

The thermal cloak was designed to satisfy the following requirements: (1) to reduce
the external heat flux entering the cloaking region to make it colder than its surrounding
environment; (2) to ensure that the external temperature distribution is undisturbed. As
the ideal transient thermal cloak is difficult to realize in practice according to Equation
(3), reduced thermal conductivities and the product of density and heat capacity were
mathematically derived in Equations (10) and (11) [4].

↔
κ
′′

2D =

↔
κ
′
2D

det(A)
= κ0


(

b
b−a

)2( r′−a
r′

)2
0

0
(

b
b−a

)2

 (10)

(ρ′′ c′′ )2D =
(
ρ′c′
)

2D · det(A) = ρ0c0 (11)

From Equation (10), we can see that only one component of conductivity is spatially
varied. More importantly, the product of density and heat capacity is not spatially varied,
which removes the obstacle for practical realization.

Schittny et al. [19] performed an experiment of the reduced thermal cloak described in
Equation (10). For practical realization, the cloaking shell was discretized uniformly into 5
layers and the conductivity of each layer was approximately homogeneous. To remove the
anisotropy, each layer was replaced by two isotropic materials with thermal conductivity
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κA and κB and thickness dA and dB. Then, the multilayered structure was stacked along the
radial direction, and the effective thermal conductivities were obtained:

κr =
κAκB(dA + dB)

dAκB + dBκA
, κϕ =

dAκA + dBκB

dA + dB
(12)

For practical realization, copper and PDMS were used to realize the cloak, as shown
in Figure 2a. The measured temperature distribution is shown in Figure 2b. We can see
that the central region is colder than its surroundings without disturbing the external
temperature distribution.

The realization of a steady-state thermal cloak was first demonstrated by Narayana
et al. [29]. A total of 40 alternating layers of natural latex rubber and silicone elastomers con-
taining boron nitride particles were used to construct a multilayered thermal cloak working
under agar-water, as illustrated in Figure 2c. The measured temperature distribution is
shown in Figure 2d.
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Figure 2. Demonstration of TO-based thermal cloak and multilayered thermal cloak. (a) TO-based
thermal cloak [19]. (b) Measured temperature distribution of (a). (c) Multilayered thermal cloak [29].
(d) Measured temperature distribution of (c).

2.2. SCM-Based Thermal Cloak
2.2.1. Theoretical Design

Another method to design a thermal cloak is based on the SCM [1]. As shown
in Figure 3a, we consider a bilayer thermal cloak at steady state, which comprises an
inner layer (a < r < b) and an outer layer (b < a < c) with conductivities of κ2 and κ3,
respectively. The background conductivity is κ0. We assume that the inner layer is a perfect
insulation material (κ2 = 0). Without disturbing the external field, we obtain [56]:

For the 2D case : κ3 =
c2 + b2

c2 − b2 κ0 (13)

For the 3D case : κ3 =
2c3 + b3

2(c3 − b3)
κ0 (14)

From Equations (13) and (14), we can see that the third parameter can be uniquely
determined if any two of κ0, κ3, and c/b are known.

We next consider the design of an elliptical bilayer thermal cloak, as shown in
Figure 3b [6]. An elliptical cloaking object is wrapped by an insulating layer and a con-
ducting shell. The thermal conductivities of the cloaking object, conducting shell, and
background are κ1, κ2, and κb, respectively. The inner and outer boundaries of the con-
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ducting shell are ξ1 and ξ2, respectively. It is noted that the inner and outer ellipses have
the same focus p. The relationship between the elliptical coordinate system (ξ, η) and the
Cartesian coordinate system (x, y) is written as{

x = p cosh ξ cos η
y = p sinhξ sin η

(15)

Then, we consider a uniform heat flux externally applied in the x-direction. The tem-
perature should be close to −H0 p cosh ξ when ξ → ∞ , where H0 is an arbitrary constant.
When the external temperature-field distortion is eliminated, we derive

κb = κ2 cothξ2 tanh(ξ2 − ξ1) (16)

Similarly, when the heat flux is applied in the y-direction, the temperature should
be close to −H0 psinhξ when ξ → ∞ . When the external temperature-field distortion is
eliminated, we derive

κb = κ2 tanhξ2 tanh(ξ2 − ξ1) (17)
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The red lines illustrate the heat flux distributions.

2.2.2. Experimental Realization

Based on the scattering cancellation method, bilayer thermal cloaks have been demon-
strated in both 2D [56] and 3D [20] cases. In the 2D case (Figure 4a), the bilayer cloak is
made of expanded polystyrene and Inconel 625 alloy, while the background material is a
thermally conductive sealant. The measured thermal profile is shown in Figure 4b. In the
3D case (Figure 4c), the conducting shell is copper and the background is stainless steel.
The measured thermal profile is shown in Figure 4d. From the measured results, we can
see that the bilayer thermal cloaks function well in the steady-state case. Moreover, these
cloaks perform well in the transient state.

The elliptical cloak is illustrated in Figure 4e, in which the shell is copper and an
insulating layer is placed between the cloaking target and the shell [6]. The anisotropic
background material is achieved with a periodic structure of a T-shaped unit. The required
thermal conductivities of the background are satisfied when the period equals 11 mm.
Figure 4f,g show the measured thermal profiles when heat flows along the y-direction
and x-direction, respectively. We can see that the isothermal lines greatly restore without
distortion when the cloak is applied. The elliptical cloak always fulfills its task in the
time-dependent case, showing an excellent transient performance [6].
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temperature distribution of (a); (c) photograph of the 3D cloak [20]; (d) measured temperature
distribution of (c); (e) photograph of the elliptical cloak [6]; (f) measured thermal profile when heat
flows from bottom to top; (g) measured thermal profile when heat flows from left to right.

2.3. Application

Based on the thermal cloak, thermal camouflage has been demonstrated, which can
change the actual perception into a pre-controlled one [57]. The thermal camouflage device
not only makes the object invisible, but also transforms it into other forms. As shown
in Figure 5a, the corresponding thermal signature of a “man” (in blue) is the same as
that of two “women” (in red) when the “man” is covered by the designed device. Thus,
with thermal camouflage, the information obtained from the receiver is false. Figure 5b
shows the actual realization of the thermal camouflage device. A thermal cloak is first
constructed based on the scattering cancellation method, and then two PDMS wing-ghosts
are placed besides the cloak. Figure 5c demonstrates the equivalent situation of Figure 5b.
The measured temperature distribution of Figure 5b,c is demonstrated in Figure 5d,e,
respectively. We can see that the camouflage device matches very well with that of its
equivalent object.
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Another application is the macroscopic thermal diode [21]. Inspired by the electronic
diode, the thermal diode is capable of conducting heat in one direction while prohibiting
heat flow in the opposite direction. To achieve this aim, nonlinear materials are needed.
The realization of a macroscopic thermal diode is based on a switchable thermal cloak
with different responses to heat flow along different directions. It is worth noting that the
switching effect will be triggered when the temperature changes, which is different from
the switchable electromagnetic cloaks [58–61].

In practice, the geometrical configuration of devices is supposed to be changed once
the temperature varies. The shape-memory alloy (SMA) was used to meet the requirement.
The scheme of the macroscopic thermal diode in the insulation state and conduction
state are, respectively, shown in Figure 6a,b, where the material of the cloak segments is
copper and expanded polystyrene (EPS). When it comes to the critical temperature, the
SMA slices will drive the copper slices to connect or disconnect, which brings an abrupt
change in thermal conductivity. Figure 6c,d display the temperature distributions of the
macroscopic thermal diode in the insulation state and conduction state, respectively. We
can see that the temperature distribution in Figure 6c remains almost constant, while an
obvious temperature gradient appears in Figure 6d. It is meaningful to realize such a
thermal diode as it has great potential related to other methods of thermal manipulation,
such as thermal preservation and thermal illusion [57,62].
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Figure 6. Experimental demonstration of the macroscopic thermal diode [21]. (a,b) Schematic
diagrams of the macroscopic thermal diode in insulation state and conduction state, respectively;
(c,d) measured temperature distributions of (a,b), respectively.

3. Convective Thermal Cloak
3.1. Theoretical Design

In convection, heat and mass transfer are coupled with each other [7,63]. In this case,
the convection–diffusion equation and fluid movement need to be combined for analysis.
The theory for transforming thermal convection at the steady state in porous media has
been established based on the convection–diffusion equation [64]. The continuity equation
and Darcy’s law are used to form equations, which remain invariant as coordinate systems
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change [7]. After a series of calculations [65–71], transformed equations for convection are
obtained: 

→
v′ = − β′

η ∇p
∂(φ′ρ f )

∂t +∇ ·
(

ρ f

→
v′
)
= 0

(ρC)′m
∂T
∂t + ρ f C f

(→
v′ · ∇T

)
= ∇ · (κ′m∇T)

(18)

where β is the permeability of porous media, η is the dynamic viscosity, p is the intensity
of pressure, ρ f is the density of the fluid material, C f is the specific heat of fluid material in
porous media, φ is the porosity, T is the temperature, and κm is the effective heat conductiv-
ity calculated using fluids conductivity and solids conductivity

(
κm = (1− φ)κs + φκ f

)
.

Figure 7 illustrates the model and the boundary condition under heat convection.
Considering a circular cloak, the geometrical transformation can be expressed as{

r′ = R1 +
R2−R1

R2
r

ϕ′ = ϕ
(19)
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3.2. Experimental Realization

Typically, mixing natural materials are used to achieve the desired thermal conductiv-
ity and specific inhomogeneity. However, its nontunable thermal conductivities and fixed
anisotropy lead to great trouble in the adjustment and functional switching of thermal
manipulations. In view of this, a tunable analog thermal material was proposed as it could
carry out effective conductivity ranging from near-zero to near-infinity [72]. Theoretically,
a high effective conductivity can be obtained in the fluid domain through extreme convec-
tion [73]. As a result, it is easy to modulate the thermal conductivity by controlling the
fluidic rotation speed.

To observe the performance of the convective thermal cloak, an experiment was
carried out in Figure 8a [72]. The measured temperature distribution with different rotation
rates is demonstrated in Figure 8b–e. From the measured results, we can see that the
cloaking performance improves when the fluid rotation rate varies from 0 to 100 rad/min.
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Figure 8. Schematic diagram of the design and measured temperature distribution [72]. (a) The
experimental setup and the fabricated sample; (b–e) the measured temperature distributions when
the rotation rates are 0 rad/min, 0.6 rad/min, 3.6 rad/min, and 100 rad/min, respectively.

3.3. Application

One application based on the convective thermal cloak is the thermal meta-device as an
analog to zero-index photonics [73]. The zero-index metamaterials [74–76] have been used
to manipulate thermal emission [77,78], as well as to realize large optical nonlinearity [79]
and Dirac cones [80]. Based on the equivalence between the integrated rapid fluid field
and a thermal near-zero-index material, a thermal zero-index cloak was experimentally
demonstrated [73].

The experimental design of thermal zero-index cloaking is illustrated in Figure 9a.
In the experimental setup, the water channel surrounding the object is used as the inner
layer of the cloak. When the water flows into the channel, it will be driven by a spinning
disc attached to an electric motor. The outer layer is built directly through drilling holes
to achieve the required conductivity of the background. Figure 9b shows the tempera-
ture distribution when the water in the central channel is at rest. Figure 9c shows the
temperature distribution when the water is circulating around the object. We can see that
the temperature of the central water is colder than its surroundings when the water in
the central channel is at rest (Figure 9b). When the water is circulating around the object,
a constant temperature is achieved (Figure 9c), which validates the performance of the
thermal zero-index cloak.
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Figure 9. Experimental demonstration of a convective thermal zero-index cloak [73]. (a) Experimental
setup; (b) measured temperature distribution when the water in the central channel is at rest;
(c) measured temperature distribution when the water is circulating around the object.

4. Radiative Thermal Cloak
4.1. Theoretical Design

A conductive thermal cloak can be achieved based on the scattering cancellation
method [81] or transformation theory [82] by tailoring thermal conductivity. However,
this methodology does not take effect in the radiative environment, as objects always emit
radiative heat in a thermally insulated environment. To get around the bottleneck, Li et al.
proposed a new method for the design of a radiative thermal cloak [17].

A Cartesian coordinate system was built at the center of the background’s upper
boundary, as shown in Figure 10a. For the upper boundary, the thermal radiation along
the y-direction can be represented as the surface temperature T0(x)|y=0. If an object sits
on the surface (y = 0), the radiation measurement through an IR camera will change due
to two reasons. The first reason is that a part of the background is covered by the object,
leading to the change in radiation position. We assume that the cover range is from x0 to x1,
and radiation surface is S, leading to a change in surface temperature denoted as T(x)|S.
The second reason is the change in conduction system due to the introduction of the object,
resulting in T0(x)|y=0 6= T(x)|y=0. Therefore, the radiative thermal cloak was designed to
reduce these two main effects. The following condition is always maintained:

T0(x)|y=0 =

{
T0(x)|S, x ∈ [x0, x1]

T(x)|y=0, x /∈ [x0, x1]
(20)

This is not a traditional cloaking problem, as the device is placed directly on the
surface of the background. To solve this problem, there are three major steps. The first
step is space preparation, where an artificial space is created for operation. Then, a region
with width L and height δ shown in Figure 10a is considered and the transformation is
expressed as follows:

x′ = x; y′ =
(δ + y)(L− 2|x|)H

δL
+ y (21)
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which leads to the hatched region in Figure 10b. Based on this transformation, the back-
ground heat signature is translated to the upper boundary in Figure 10b. The second
step is putting the target object inside the created space using another transformation. A
traditional unidirectional cloak [83] is applied along the specific y-direction to force the
heat flow direction. The wedge is divided into six parts, as expressed by the dashed lines
in Figure 10b, with h = H

2 and b = L
4 . The regions in pink and cerulean are transformed,

while the regions labeled “A” remain undeformed, as shown in Figure 10c. The third step
is to eliminate the infinitesimal space. As a result, the limit δ→ 0 is taken to achieve the
desired purpose, where the background is not modified, as illustrated in Figure 10d. In
step 4, the bottom of the device is truncated to realize contact between the object and the
background, as illustrated in Figure 10e. Finally, the thermal radiation from the upper
boundary of the device takes the place of that from the object in the y-direction.
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Figure 10. Flow diagram of designing the radiative thermal cloak [17]. (a) The background; (b) Step
1: space creation; (c) Step 2: perform the transformation of a unidirectional thermal cloak; (d) Step 3.
space elimination; (e) Step 4: final design.

4.2. Experimental Realization

The radiative thermal cloak was fabricated with PDMS and a layered structure of
copper (Figure 11a) [17]. To examine the performance, the FLIR i60 IR camera was used
to observe temperature profiles from the y-direction at the upper surface of the system.
The temperature distributions were measured in the three cases: a pure background, a
bare object, and the object covered by the cloak. The measured thermal profiles are shown
in Figure 11b. Obviously, the object covered by the radiative thermal cloak exhibited the
same thermal signature as the background. For quantitative comparison, the temperature
variation T(x) was used to evaluate the impact of the object on the thermal radiation. Then,
the surface temperature deviation ∆T(x) was calculated and is plotted in Figure 11c, which
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validates the design. More recently, the radiative thermal cloak has been extended from
two dimensions [17] to three dimensions [84].
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Figure 11. Radiative thermal cloak [17]. (a) Photograph of the fabricated sample; (b) measured ther-
mal profiles of pure background, with base object, and with radiative thermal cloak; (c) quantitative
comparison of surface temperature deviation.

4.3. Application

Any object with a temperature beyond absolute-zero would emit thermal radiation.
Although humans cannot see the infrared radiation, many animals can detect the change
in heat energy [85]. Scientists had considered the thermal infrared coating concept as a
method to mitigate the emissivity of an object and disturb the thermal signature [86,87],
but it is unstable in practice as the camouflage performance is strongly influenced by the
environment. Based on a quasi-conformal mapping method, a unidirectional far-infrared
cloak that can hide large-scale objects has been experimentally demonstrated [88].

The far-infrared cloak consists of four isosceles triangles and four right-angle triangles.
The material is germanium with a refractive index of n = 4 [88]. Then, the performance
of the far-infrared cloak is examined by hiding a mouse, and the schematic diagram is
demonstrated in Figure 12a. In the experiment, a mouse is fixed on the cylinder inside
the cloak. For comparison, the head of the mouse is not covered. To adjust flexibly, the
background temperature is controlled by placing a glass tank filled with water behind the
cloak, where the temperature of water could be changed.

Figure 12b–d show the thermal images obtained by an infrared camera at room
temperature (25 ◦C). We can see that the part of mouse inside the cloak is invisible, while
the head of mouse is still visible. Thus, a rat, or a large-scale object, is successfully hidden
from thermal detection [88]. Recently, a broadband 3D invisibility cloak made of fast-light
media has been reported, which provides a new method for broadband invisibility of large
objects [89].
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5. Conclusions

In this review, we have introduced the recent progress of thermal cloaks for three essen-
tial modes of heat transfer, including thermal conduction, thermal convection, and thermal
radiation. In the near future, more achievements and breakthroughs can be expected
ranging from basic theory [90,91] to potential application [92]. Though great progress has
been achieved, a large challenge is still to synergistically use different approaches for more
sophisticated and practical heat transfer control [93].

At steady state, both thermal and electric conduction satisfy the Laplace equation,
which is promising for the manipulation of thermal-electric fields simultaneously. A bi-
functional cloak has been theoretically explored [94] and experimentally demonstrated [95].
In view of the excellent performance of the thermal-electric cloak, it is attractive to achieve
a multi-physics cloak that manipulates more than two physical fields in the future.

Janus metamaterials or meta-devices are artificial devices, which are designed to
integrate two or more functionalities into one element [96–100]. A path-dependent thermal
meta-device has been demonstrated more recently [101]. Meanwhile, new theoretical ap-
proaches in thermotics have been proposed to achieve path-dependent meta-devices [102].
Designing a more compact and miniaturized system integrating more functionalities is an
active research field.

Beyond transformation theory [3,4] and the scattering cancellation method [103],
the topology optimization method has been employed to design thermal metamateri-
als [104,105]. By using the topology optimization method, arbitrarily irregular-shaped
metamaterials can be designed. In addition, a bifunctional cloak for manipulating heat
flux and direct current simultaneously has been demonstrated based on topology optimiza-
tion [106].
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