

Supplementary Material

Helmet Phthalocyaninato Iron Complex as a Primary Drier for Alkyd Paints

Jan Honzíček ^{1,*}, Eliška Matušková ¹, Štěpán Voneš ¹ and Jaromír Vinklárek ²

- ¹ Institute of Chemistry and Technology of Macromolecular Materials, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
- ² Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
- * Correspondence: jan.honzicek@upce.cz; Tel.: +420-466-037-229

C (%)	τ ₂ (h)	τ ₃ (h)	τ4 (h)
0.003	0.3	7.8	13.0
0.001	0.8	2.8	9.6
0.0006	1.7	3.8	6.7
0.0003	3.2	6.0	6.0
0.0001	8.6	>24	>24

Table S1. Drying times for formulations of Borchi OXY-Coat in S471.^{1.}

¹ Tack-free time (τ_2), dry-hard time (τ_3) and dry-through time (τ_4).

Table S2. Assigned characteristic vibration modes for binder S622.

Citation: Honzíček, J.;

Matušková, E.; Voneš, Š.; Vinklárek, J. Helmet Phthalocyaninato Iron Complex as a Primary Drier for Alkyd Paints. *Materials* **2021**, *14*, 1220. https://doi.org/10.3390/ ma14051220

Academic Editor: Barbara Pawelec

Received: 12 February 2021 Accepted: 02 March 2021 Published: 5 March 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Sign	IR	Raman	IR	Raman	Assignment
	Fresh sample		Cured s	sample	
а	3525 w-br	-	3457 m-br	-	ν(O–H)
b	3070 vw	3074 m	3074 vw	3075 m	ν(C–H, arom.)
с	3008 w	3009 w	-	-	va(cis-C=C–H)
d	2954 vw	2958 sh	2955 sh	2958 sh	va(C–H, CH3)
e	2923 s	2928 vw	2926 m	2928 vw	va(C–H, CH2)
f	-	2901 vs	-	2906 s	vs(C–H, CH3)
g	2853 m	2854 w	2855 w	2857 w	vs(C–H, CH2)
h	1728 vs	1731 m	1724 vs	1730 m	ν(C=O)
i	-	1657 m	-	-	ν (cis-C=C–H)
j	1599 w	1601 m	1599 w	1601 m	ν(C=C, arom.)
k	1580 w	1581 w	1580 w	1581 w	ν(C=C, arom.)
1	1465 m	-	1465 m	-	δ(C–H, CH ₃ /CH ₂)
m	-	1442 m	-	1441 m	δ(C–H, CH ₃ /CH ₂)
n	-	1302 m	-	1301 m	δ(C-H, CH2)
0	1259 vs	-	1255 vs	-	v(C–O, ester)
р	1119 vs	-	1119 s	-	v(C–O, ester)
q	1070 s	-	1069 s	-	v(C–O, ester)
r	1040 w	1042 m	1040 w	1043 m	vs(C=C, arom., 1,2-disubst.)
t	741 s	-	741 s	-	δ(C–H, arom.)
u	705 w	-	705 w	_	δ(C=C, arom.)/δ(<i>cis</i> -C=C–H)

Sign	IR	Raman	IR	Raman	Assignment
0	Fresh s	ample	Cured s	sample	¥
а	3524 w-br	_	3468 m-br	_	ν(O–H)
b	3068 vw	3074 w	3071 vw	3075 w	ν(C–H, arom.)
с	3008 w	3010 w	-	_	va(cis-C=C–H)
d	2954 vw	2959 sh	2957 sh	2958 sh	va(C–H, CH3)
e	2923 s	2926 sh	2926 m	2928 vw	va(C–H, CH2)
f	_	2901 vs	-	2905 s	vs(C–H, CH3)
g	2853 m	2854 w	2855 w	2857 vw	vs(C–H, CH2)
h	1735 vs	1734 w	1727 vs	1732 w	ν(C=O)
i	_	1657 m	-	_	ν (cis-C=C-H)
j	1600 vw	1602 w	1601 vw	1601 w	ν(C=C, arom.)
k	1580 vw	1581 vw	1580 vw	1579 vw	ν(C=C, arom.)
1	1465 m	1458 sh	1465 m	1461 sh	δ(C–H, CH ₃ /CH ₂)
m	-	1441 m	-	1441 m	δ(C–H, CH ₃ /CH ₂)
n	_	1302 m	-	1306 m	δ(C-H, CH ₂)
0	1259 s	_	1256 s	_	v(C–O, ester)
р	1119 s	_	1119 s	_	v(C–O, ester)
q	1072 m	_	1071 m	_	v(C–O, ester)
r	1040 w	1042 w	1040 w	1043 w	vs(C=C, arom., 1,2-disubst.)
t	740 m	_	742 m	_	δ(C–H, arom.)
u	705 vw	_	705 vw	_	δ(C=C, arom.)/δ(<i>cis</i> -C=C–H)

Table S3. Assigned characteristic vibration modes for binder FP07.

Table S4. Assigned characteristic vibration modes for binder TI870.

Sign	IR	Raman	IR	Raman	Assignment
	Fresh s	ample	Cured s	sample	
а	3526 w-br	-	3460 m-br	-	ν(О–Н)
b	3068 vw	3076 w	3074 vw	3077 w	ν(C–H, arom.)
с	3008 w	3010 w	-	_	va(cis-C=C-H)
d	2953 vw	2961 sh	2955 sh	2961 sh	va(C–H, CH3)
e	2924 s	2928 sh	2926 m	2928 s	va(C–H, CH2)
f	-	2903 vs	-	2907 s	vs(C–H, CH3)
g	2854 m	2854 w	2855 w	2860 vw	vs(C–H, CH2)
h	1732 vs	1732 w	1727 vs	1732 w	ν(C=O)
i	_	1657 m	-	_	ν (cis-C=C-H)
j	1608 vw	1606 vw	1609 vw	1607 w	ν(C=C, arom.)
k	-	1593 vw	-	1593 vw	ν(C=C, arom.)
1	1466 m	1463 sh	1464 m	1461 sh	δ(C-H, CH ₃ /CH ₂)
m	1438 sh	1441 m	1438 sh	1441 m	δ(C-H, CH ₃ /CH ₂)
n	_	1304 m	-	1307 m	δ(C-H, CH ₂)
0	1299 m	-	1298 w	_	v(C–O, ester)
р	1227 s	_	1228 s	_	v(C–O, ester)
q	1161 s	_	1162 s	_	v(C–O, ester)
s	_	1004 w	_	1004 w	vs(C=C, arom., 1,3-disubst.)
t	728 s	_	729 s	_	δ(C–H, arom.)

Table S5. Kinetic parameters for formulation Borchi OxyCoat/S471.

C (%)	tind (h)	<i>k</i> _{max} (h ⁻¹)	<i>t</i> _{1/2} (h)
0.003	0.3	1.64	0.8
0.001	0.8	0.70	1.8
0.0006	1.3	0.53	2.7
0.0003	2.3	0.25	5.3
0.0001	5.4	0.06	18.2