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Abstract: High Power Impulse Magnetron Sputtering (HiPIMS) was used for deposition of indium
tin oxide (ITO) transparent thin films at low substrate temperature. A hybrid-type composite target
was self-prepared by low-pressure cold spraying process. Prior to spraying In2O3 and oxidized Sn
powders were mixed in a volume ratio of 3:1. Composite In2O3/Sn coating had a mean thickness of
900 µm. HiPIMS process was performed in various mixtures of Ar:O2: (i) 100:0 vol.%, (ii) 90:10 vol.%,
(iii) 75:25 vol.%, (iv) 50:50 vol.%, and (v) 0:100 vol.%. Oxygen rich atmosphere was necessary to
oxidize tin atoms. Self-design, simple high voltage power switch capable of charging the 20 µF
capacitor bank from external high voltage power supply worked as a power supply for an unbalanced
magnetron source. ITO thin films with thickness in the range of 30–40 nm were obtained after
300 deposition pulses of 900 V and deposition time of 900 s. The highest transmission of 88% at
λ = 550 nm provided 0:100 vol. % Ar:O2 mixture, together with the lowest resistivity of 0.03 Ω·cm.

Keywords: HiPIMS technique; hybrid-type metal–ceramic target; ITO; cold spray; composite coating

1. Introduction

In recent years, a development of nanomaterial-based semiconductor caused dynamic
progress in fabrication of more advanced electronic systems [1–3]. Indium-tin oxide (ITO),
a heavily doped and highly degenerated n-type semiconductor with high carrier concen-
tration (~1021 cm−3) [4–6], is one of the most widely used transparent conductive oxides
(TCO) due to unique combination of excellent electrical conductivity, optical transparency
and good mechanical properties and relatively good chemical stability [7–9]. Although
various new materials, such as tin dioxide (SnO2) [10], zinc oxide (ZnO) [11,12], indium
zinc oxide (IZO) [13], conductive nano-silver wire [14], have been applied in industry, ITO
is still the main choice for conductive optical [15]. Its excellent photoelectric performance
demonstrate potential in high efficiency optoelectronic devices including solar cells [16],
touch screens [17], panel displays [17], organic light emitting diodes [18], electro-optic
switches [19], liquid crystal devices (LCDs) [20], but also sensors for electronic skins [12] or
thin film photovoltaics [21].

Technologies of unmodified ITO film deposition on glass panels are well developed
and comprise physical vapour deposition (PVD) [22], chemical vapor deposition (CVD) [23],
spin-coating [24], spray pyrolysis [25] and ultrasonic spray [26]. Nevertheless, liquid
techniques, such as spin-coating, spray pyrolysis or ultrasonic spray, require additional
post-deposition annealing process to sinter nanoparticles, in order to achieve the specific
properties of material, particularly low electrical resistance [27,28]. Additional furnace
heating elongates the ITO fabrication time and increases the costs as well. To shorten the
time other heat-treatment (HT) processes can be used, e.g., laser annealing proposed by
Park and Kim [29] to sinter spin-coated ITO nanoparticles (NP). Unfortunately, achieving

Materials 2021, 14, 1228. https://doi.org/10.3390/ma14051228 https://www.mdpi.com/journal/materials

https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0003-2766-116X
https://orcid.org/0000-0002-8594-2384
https://orcid.org/0000-0002-6997-4204
https://doi.org/10.3390/ma14051228
https://doi.org/10.3390/ma14051228
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma14051228
https://www.mdpi.com/journal/materials
https://www.mdpi.com/1996-1944/14/5/1228?type=check_update&version=2


Materials 2021, 14, 1228 2 of 15

low electrical resistivity required only tens of seconds and as a result the control of HT
was difficult. Therefore, a still dominating processes of ITO films deposition are PVD,
e.g., magnetron sputtering (MS) [22] and vacuum evaporation [30], or CVD [23]. Target,
a feedstock material used in PVD processes, is ceramic (In2O3-SnO2 sinter) or metallic
(In-Sn alloy) [31]. The former material provides higher performance, while the latter one is
sputtered with Ar-O2 mixture and requires additional control. Nevertheless, ceramic targets
exhibit some imperfections, such as: (i) non-uniformity of chemical composition across the
target body that favour formation of black deposit, known as a nodule, which destabilize
sputtering process and affect final properties of the deposited film [32,33], (ii) possible
wrapping or cracking due to powders hot pressing in production process [34,35], and
(iii) induction of the particle arcing events resulting from intensely focused and localized
discharge of particles, created nodules, flakes, or impurities on target surface [33,35]. It
should be noted that commercially available targets consist of two soldered elements,
such as blank and backing plate. When the bonding is unstable, the target cracks in the
sputtering process and causes contamination of the film [36]. Described above problems can
be eliminated by preparation of a new type of target or modification of deposition process.

A high potential in targets manufacturing revealed cold spraying [37], a promising
additive manufacturing technology dedicated for metal and metal–ceramic parts fabrica-
tion [38]. Cold spraying is a solid-state process used for the deposition of dense and uniform
layers via powder plastic deformation. Preheated gas stream accelerates powder particles
in de Laval nozzle to supersonic velocity. Impacting with high kinetic energy particles
deform and mechanically interlock on substrate surface [39]. Based on the process nature,
admixture of ceramic to metal powder decreases the porosity in the layers [40]. It is worth
stressing, that high density and uniformity is favourable for ITO targets. Furthermore,
combining a high-quality target with appropriate process can further improve properties
of deposited films. A perspective approach concerns ionized sputtering achievable in high
power impulse magnetron sputtering (HiPIMS).

HiPIMS is a plasma-based modern physical vapor deposition (PVD) technique that
uses ions instead of neutrals, or at least a significant fraction of ionized species, for thin
film deposition. This relatively new technology is characterized by very high peak power
density (>1 kW/cm2) at the sputtering target and high plasma density (>1019 m3) in front
of the target with very short variable pulse durations (in the range of 50–200 µs) [41]. It
results in high degree of ionization (up to 90%) and high ion-flux towards the substrate
with simultaneous lower process temperature. Consequently, HiPIMS has widened the
potential application areas of MS for deposition of high-quality thin films with denser
structure, smoother grain size, and higher mechanical properties compared to conventional
MS [42].

In this work, we applied HiPIMS to deposit ITO films on glass substrates with the use
of self-prepared Sn+In2O3 targets. Our previous study [37] showed that fully transparent
ITO films with the thickness up to 200 nm and resistance of 1 MΩ (sheet resistance of
1 × 105 Ω/sq) can be deposited by conventional magnetron sputtering using targets pro-
duced by cold spraying (CS). According to the bibliography research, there are no papers
describing the implementation of HiPIMS process in the deposition of ITO films with a
hybrid-type metal–ceramic targets. Therefore, the main attention is focused on the concen-
tration of oxygen in the Ar:O2 mixture, which oxidizes tin and influences the electrical and
optical properties of deposited films. Simultaneously, characterization of the HiPIMS is
presented for better understanding of the discharge behaviour during the process.

2. Materials and Methods
2.1. Materials

The cold-sprayed targets were prepared using mixture of two commercially available
powders, spherical tin (Sn) with particles size in the range of −13 + 4 µm (Libra, Trze-
binia, Poland), and needle-like indium oxide (In2O3) with particles size in the range of
−1.21 + 0.39 µm, forming a sponge agglomerates (VWR Chemicals, Leuven, Belgium). In
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order to enhance tin oxide content necessary for ITO target production, metal powder was
annealed in furnace at a temperature of 220 ◦C for 6 h without a protective atmosphere.
Tin increased oxidation starts with 150 ◦C [43], however higher temperature, e.g., above
200 ◦C, guarantees formation of SnO2 over SnO [44]. The In2O3 and oxidized Sn powders
were mixed in the volume ratio of 3:1 using a vibrating one-ball mill (agate ball diameter of
52 mm) with vibration amplitude set to 10 mm and milling time of 30 min. Final mixture of
the powders is presented in Figure 1a. A copper M1E disc with dimensions of 65 × 5 mm
was used as a substrate. Prior to spraying the copper substrate was cleaned in acetone and
grit-blasted with alumina (mesh 20).
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2.2. Targets Preparation

A low-pressure cold spraying (LPCS) unit—DYMET 413 (Obninsk Center for Powder
Spraying, Obninsk, Russia) was applied to spray the targets. Untypical circular de Laval
nozzle with the length of 250 mm and outlet diameter of 8 mm was chosen to increase tin
deposition efficiency. Further oxidation of tin powder was possible by using preheated air
as the working gas. A manipulator holder with attached spraying gun moved according
to the designed helix path with pitch of 4 mm. Targets were fabricated with following
spraying process parameters: (i) working gas pressure p = 0.6 MPa, (ii) working gas
temperature T = 300 ◦C, (iii) linear speed V = 10 mm/s, (iv) powder feed rate

.
m = 50 g/min,

and (v) spray distance l = 20 mm. To increase thickness of the targets, three coating layers
were deposited. A self-prepared target is presented in Figure 1b.

2.3. Magnetron Sputtering Process

Magnetron sputtering deposition was performed using WMK-50 planar magnetron
source, which is capable of operation with continuous power density up to 50 W/cm2.
LPCS hybrid-type targets were successfully applied without a visible erosion zone. The
magnetic field induction over the race-track region (component parallel to the target
surface) was about 85 mT. To avoid arcs formation only the cathode assembly was used.
Thin films were deposited in various mixtures of Ar:O2 (further sample notation in the text
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is given after dash): (i) 100:0 vol.%—100Ar, (ii) 90:10 vol.%—90Ar, (iii) 75:25 vol.%—75Ar,
(iv) 50:50 vol.%—50Ar, and (v) 0:100 vol.%—0Ar. Oxygen rich atmosphere was applied to
oxidize tin atoms. The sputtering process was performed with a total pressure of working
gas and the vacuum chamber of 0.8 Pa and 0.001 Pa, respectively. Substrates were fixed
80 mm from the surface of the magnetron cathode. The power supply consisted mainly of
a tank capacitor, high voltage supply and two high power switches. The tank capacitor
was charged by the high voltage supply and consecutively discharged by the magnetron
cathode. The repetition frequency of the charge and discharge steps was set to 0.3 Hz. A
low duty cycle of HiPIMS pulses enabled deposition at low substrate temperature. The
films were deposited within 300 pulses, with a total time of 900 s and voltage of 900 V. The
number of the pulses was controlled by AVR Arduino Uno microcontroller electronics. The
HiPIMS setup was described in detail in our previous work [45].

HiPIMS process started with formation of LC resonant circuit. Two alternate pulses
with sinusoidal shape were generated, e.g., sputtering and inverse pulse, having duration
of 20 µs and 25 µs, and peak current of 1600 A and 500 A, respectively. The combination of
parameters unbalanced the magnetron. Nevertheless, a high value of the discharge peak
current temporarily unbalanced it even further. As a result, the conditions of electrons
avalanche were temporarily degraded. It is assumed the magnetron source used in the
experiments was extremely unbalanced and can be classified as the device of 6th group in
accordance with the Gencoa Ltd. classification.

2.4. Coatings and Thin Films Characterization Methods

The microscope analysis of powders, LPCS coatings and ITO films were performed
using Nikon Eclipse MA 200 optical microscope (OM) (Minato, Japan) and Tescan VEGA
3 SBH SEM microscope equipped with SE, BSE detectors, and EDS system for elemental
analysis. Small samples were cut from the LPCS coatings, mounted in epoxy resin and
polished to prepare metallographic specimen. Thickness of the coatings was measured in
the thickest and thinnest point of the cross section of three various specimens and a mean
range value was determined. EDS linear analysis was performed with accelerating voltage
of 15 kV and magnification of 5000×.

Structural properties of as-deposited ITO thin films were determined using X-ray
diffraction in grazing incidence mode (GIXRD) employing PANalytical Empyrean diffrac-
tometer (Malvern Panalytical, Malvern, UK) with PIXel3D detector and Cu Kα X-ray source
with the wavelength of 1.5406 Å. Analysis of the crystallite size was performed according
to the Scherrer’s equation [46]. Optical properties were assessed based on transmission
characteristics, which were measured using coupled Ocean Optics QE 6500 and NIR256-
2.1 spectrophotometers (Orlando, FL, USA) and coupled deuterium-halogen Micropack
DH-2000-BAL light source in the 300–2200 nm wavelength range.

Focused ion beam (FIB) (Gallium) was used to cut out specimens from specific regions
of ITO film for further studies on SEM microscope. The thickness of deposited films was
measured in the centre of the sample using FEI Helios NanoLab 600i (Thermo Fisher
Scientific, Waltham, MA, USA). ImageJ (ver. 1.50i) software was used to analyse porosity of
LPCS coatings and tin micro-particles inclusions in ITO films. ImageJ calculates area and
pixel value statistics of image selections defined by the user based on threshold intensity.
The semi-quantitative graphic analysis was made on five SEM images of the samples with
magnification of 1000.

Electrical properties of the deposited ITO thin films were determined using Jandel
Multiheight Four Point Probe Stand (Jandel Engineering Limited, Leighton Buzzard, UK)
and Keithley 2611 System SourceMeter. Optical properties were assessed based on trans-
mission characteristics, which were measured using two spectrophotometers, i.e., Ocean
Optics QE 6500 for a 200–1000 nm wavelength range and NIR256-2.1 for a 900–2200 nm
wavelength range. Moreover, a Micropack DH-2000 BAL light source was used, which was
consisted of coupled deuterium and halogen lamps. The fundamental absorption edge
of investigated samples was determined by glass substrate parameters and was equal to
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about 318 nm. Optical fibers were used to illuminate ITO thin films and to direct the light
beam transmitted through the film to the spectrophotometers. The experimental setup for
measuring the transmission spectra is shown in Figure 2.
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Figure 2. A scheme of experimental setup for the transmission spectra measurements.

3. Results
3.1. Cold-Sprayed Targets

The microstructure of In2O3/Sn coatings deposited by LPCS is shown in Figure 3. It
is clearly visible that coatings are dense with low micro-porosity of 1.36%. The thickness
of the coatings was in the range of 720–1080 µm and resulted from surface waviness typ-
ical for cold-sprayed coatings. Coatings showed uniform distribution of indium oxide
and tin particles. It is worth stressing that the morphology of powder particles strongly
influences the structure uniformity and mechanical properties of a polycrystalline compos-
ite [47]. However, locally bigger tin particles, e.g., 20–30 µm in diameter, are noticeable
(see Figure 3a). Wang et al. [48] concluded that super-fine ceramic particles can be eas-
ily rejected from the surface of metal particles during impact leaving an unreinforced
region. A linear EDS analysis proved similar tin and oxide content in mixed In2O3/Sn
particles regions with a little lower content of indium (see diagram on Figure 3b). The
peak period of the yellow line on the diagram (Figure 3b) indicate location of tin particle.
LPCS is dedicated for composite metal–ceramic mixtures deposition [49]. Nevertheless,
the optimum size of metallic particles for efficient deposition ranges from 5 to 50 µm and
depends strongly on the powder material [50]. Therefore, deposited coatings obtained
homogeneous distribution of components, despite very small ceramic particles. In respect
of further application of the coating as a target, the homogeneity was mandatory. Moreover,
it was required to oxidize tin particles in hybrid-type composite coating prior to magnetron
sputtering of oxide films. Therefore, air with a relatively high temperature of 300 ◦C was
used as a working gas. Temperature of the gas stream at the end of the nozzle measured
with thermocouple was 196 ◦C. Despite supersonic flow with high velocity, tin oxidized in
the gas stream due to relatively small size particles [51]. It is well known that oxidation of
metal powder increases critical velocity of single particles [52,53]. However, tin shows low
value of both critical and erosion velocity in comparison to other metals [39]. Consequently,
deposition efficiency of oxidized tin was not decreased.
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3.2. HiPIMS Deposition Process and ITO Films

A self-designed HiPIMS power supply powered the magnetron source with voltage
pulses of 900 V. To ensure conditions for repeatable ignition of sputtering discharge the
gas pressure was increased from typical for WMK-50 source value of 0.25 Pa to 0.8 Pa.
The anode ring was not used to eliminate the uncontrolled arcs formations caused by the
high value of magnetron source current (1600 A). The magnetron source was encircled by
the dielectric pipe and covered with a glass cap to reduce the space for discharge plasma.
The sputtering sub-pulses generated high density plasma and consequently increased
the ionization rate of sputtered atoms. The deposition rate of ITO films was in the range
of 2.0–2.7 nm/min and increased with decreasing admixture of oxygen. According to
results presented by Rezek et al. [42], HiPIMS method ensures definitely higher deposition
efficiency compared to other magnetron sputtering techniques.

Figure 4 presents variation of the discharge current and voltage versus time. A
discharge step of the tank capacitor was determined as a single deposition pulse with
sinusoidal characteristic (see red line in Figure 4). The pulse consisted of two sub-pulses:
(i) the sputtering sub-pulse delivering the energy of 1.8 J (marked as 1) and (ii) the reverse
sub-pulse delivering the energy of 0.4 J (marked as 2). Therefore, the total delivered
discharge energy was equal to 2.2 J. The average discharge power, calculated as the number
of deposition pulses multiplied by the energy of such pulse and that divided by the
deposition time, was about 0.73 W. The sub-pulses referred to the negative or positive
potential at the target, respectively. The discharge power curve took the form of a wave and
arose from multiplying discharge voltage by discharge current (see black line in Figure 4).
The value of peak discharge current in the sputtering sub-pulse was up to 1600 A and thus
unbalanced the magnetron source. As a result, temporary reduction in the magnetic field
by the electron drift current occurred. Consequently, the effectiveness of gas ionization by
electrons was temporarily reduced as well. This phenomenon can eliminate formation of
metallic micro-particle inclusions in deposited film [45].
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All deposited films showed crack free surface (Figure 5) and structure (Figure 6) as
well. Thicknesses of ITO films were in the range of 32.8–38.1 nm and thus it influenced
insignificantly the transparency. The major factor affecting the films thickness was the
working gas atmosphere responsible for tin oxidation. Therefore, the thickest film was
deposited in the atmosphere of pure argon (sample 100Ar), while the thinnest with pure
oxygen (sample 100Ar) (Figure 6). In the case of ultra-thin films (thickness below 50 nm),
the oxygen content in gas atmosphere influences not only film thickness [42], but refractive
index of the film as well [54].

The GIXRD patterns of all samples are characterized only by patterns of amorphous
ITO (Figure 7). Formation of amorphous ITO structure resulted from combining low-
temperature magnetron sputtering process and ultra-thin thickness of the films. It should
be emphasized that the initial stage of ITO growth on glass substrate normally begins
with amorphous structure [55,56]. Nevertheless, in this study thermal energy necessary
for crystallization was dissipated by short pulse durations [57]. ITO thin films undergo
an amorphous—polycrystalline phase transition at ~200 ◦C [58], which increases optical
and electrical properties [59]. On the other hand, amorphous structure can be desirable
due to solving ITO etching residue problems in large-size 3D display devices [60]. What is
more, amorphous structure is typical for ITO film deposited by low-temperature sputtering
process on temperature sensitive substrates, e.g., polymers [61]. Further GIXRD analysis
showed presence of metallic tin nanocrystallites with the size of 20–22 nm and a tetragonal
structure [62] in ITO films deposited with pure argon (100Ar) and in the Ar:O2 mixture
containing 50% Ar (50Ar) (Figure 7). This result can be coupled with large inclusions having
diameter up to 15 µm, which were revealed on the 100Ar film surface (Figure 5a). It is
assumed that tin microparticles visible in the SEM (Figure 5) images are in fact agglomerates
of tin nanoparticles. It arises from unbonded metallic tin in composite target, which
sputtered without oxidizing atmosphere causing pure metallic tin inclusions. Moreover,
pure argon generated the highest discharge currents and thus increased possibility of
microparticle inclusions. Even a short time of the sputtering sub-pulse was not able to block
micro-particles ejection. Nevertheless, addition of oxygen to argon resulted in significant
reduction in inclusions. The oxygen gas reacted with tin and decreased microparticles
diameter below 3 µm (Figure 5b–e). Furthermore, increasing oxygen content decreased
discharge current value. Eventually, tin microparticles quantity decreased from 6.69% in
100Ar sample to 1.28% in 0Ar sample (see Figure 8).
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Figure 8. Surface morphology (OM) and percentage quantity of tin microparticles in ITO films deposited with the use of
Ar:O2 mixture: 100Ar (a), 90Ar (b), 75Ar (c), 50Ar (d), and (e) 0Ar.

Figure 9 shows results of light transmission measurements of bare glass substrate and
substrates coated with ITO thin films deposited in various Ar:O2 mixtures. The average
transparency in the visible wavelength range is quite similar for samples deposited with
the use of Ar:O2 mixtures of 90Ar, 75Ar, 50Ar and in pure oxygen. Moreover, deposited
thin ITO films had only a slight influence on the transparency of bare glass substrate. For
example, the transmission coefficient at λ = 550 nm for glass substrate was equal to ca. 89%,
while for sample with ITO thin film deposited in pure oxygen the transmission was about
88%. Increasing the argon content in the Ar:O2 mixture during magnetron sputtering up
to 90% resulted only in a slight decrease in transmission coefficient to ca. 86%. However,
deposition of ITO thin film in pure argon atmosphere significantly deteriorated average
transparency of the final sample. For this sample, the transmission coefficient at λ = 550 nm
was only about 42%. It arises from tin microparticle inclusions. Nevertheless, the addition
of oxygen to argon eliminated the problem. Tin easily reacted with oxygen forming fine tin
oxide particles and restrain formation of pure tin micro-droplets inclusions. Our previous
results showed that applying extremally unbalanced magnetron source reduce the micro-
particles inclusions [45]. On the other hand, Rezek et al. [42] noticed that sputtering
efficiency from metallic target is significantly higher compared with (partly) oxidized target
and thus a coverage of the target by oxide decreases with increasing the power density
in HiPIMS process. Therefore, metallic targets ensure higher sputtering rate. What is
more, according to Zhao et al. [54] the growth behaviour of thin films from metallic target
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is significantly affected by Ar:O2 gas and can be described by following factors: (1) the
oxidation of target surface proceed more effectively with higher oxygen content, (2) the
critical nucleation size depend strongly on to the partial pressure of film-forming atom,
and (3) sputtering rate of the target declines in time, resulting in an expanding diffusion of
adsorbed atoms and promoting formation and growth of the grains on the film surface.
Consequently, a full control of process parameters, particularly the target power density
and oxygen flow rate, is mandatory while applying HiPIMS process.
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Figure 9. Light transmission measurements of ITO films.

Presence of tin micro-particles affected the resistance of the coating as well. The
results of electrical measurements are presented in Figure 10. A low resistance of 0.5 MΩ
(resistivity of about 2 Ω·cm and sheet resistance of 5 × 104 Ω/sq) showed sample 100Ar.
Moreover, the resistance increased from the centre of the film towards its borderline to 5 MΩ
due to decrease in coating’s thickness (see Figure 10a). Samples 90Ar and 75Ar showed
resistance higher than 300 MΩ, arising from oxidation of tin (Figure 10b,c). Nevertheless,
significant improvement of the electrical properties showed sample 50Ar. Resistance of the
film was 200 MΩ in the sample centre and decreased to 10 MΩ (resistivity of about 30 Ω·cm
and sheet resistance of 1 × 106 Ω/sq) on its borderline (see Figure 10d). Despite high
transparency, 50Ar sample gain progressive electrical properties. Eventually, the lowest
resistance of 0.1 MΩ (resistivity of about 0.03 Ω·cm and sheet resistance of 1 × 104 Ω/sq)
was obtained in the centre of 0Ar sample. It is worth stressing that electrical properties
depend strongly on the thickness of deposited film which locally may differ. Therefore,
appropriate process parameters can further improve the electrical properties of the films.
Rezek et al. [42] observed that resistivity significantly decreases with increasing pulsed-
averaged target power density up to 950 W/cm2 as a result of decreasing the grain size
in film microstructure. In other studies, the bias voltages were frequently applied to
the substrate to control the electron bombardment momentum and thus, to improve the
film properties [63]. Since the negative ion energy depend strongly on the self-bias, it is
stated that negative oxygen ions are one of the factors significantly influencing thin film
properties [64]. Therefore, further research should be directed on increasing HiPIMS power
density or lowering the DC self-bias.
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4. Conclusions

In this study, hybrid-type composite In2O3/Sn targets fabricated by low-pressure
cold spraying were applied in high power impulse magnetron sputtering (HiPIMS). The
coatings showed dense structure with low porosity and uniform distribution of components.
However, despite preheating of Sn powder in the air atmosphere and oxidizing parameters
of the spraying process, tin particles remained in the coating and had to be oxidized during
the sputtering process.

HiPIMS magnetron sputtering was performed using four various ratios of Ar:O2
gas atmosphere. The atmosphere of pure argon resulted in the worst transparency and
satisfactory electrical properties. It arises from tin micro-particles inclusions and the
highest thickness of ITO film. Increasing content of oxygen in the gas atmosphere resulted
in significant increase in transparency due to reduction in metallic inclusions. Nevertheless,
the electrical properties of the films decreased as well. Eventually, the application of
the atmosphere of 100 vol.% of O2 enabled combines the best transparency with highest
electrical properties. It should be noted that further research is needed to select the proper
HiPIMS parameters and further decrease the resistivity of the film.
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M.W.; validation, M.W. and A.W.; formal analysis, M.W. and A.W.; investigation M.W. and A.W.;
optical transmission investigation M.M.; resources, M.W. and A.W.; data curation, M.W. and A.W.;
writing—original draft preparation, M.W. and A.W.; writing—review and editing, M.W. and A.W.;
visualization, M.W.; supervision, A.W.; project administration, M.W. and A.W.; funding acquisition,
M.W. and A.W. All authors have read and agreed to the published version of the manuscript.
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