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Abstract: Laser-assisted high speed milling is a subtractive machining method that employs a laser
to thermally soften a difficult-to-cut material’s surface in order to enhance machinability at a high
material removal rate with improved surface finish and tool life. However, this machining with
high speed leads to high friction between workpiece and tool, and can result in high temperatures,
impairing the surface quality. Use of conventional cutting fluid may not effectively control the heat
generation. Besides, vegetable-based cutting fluids are invariably a major source of food insecurity of
edible oils which is traditionally used as a staple food in many countries. Thus, the primary objective
of this study is to experimentally investigate the effects of water-soluble sago starch-based cutting
fluid on surface roughness and tool’s flank wear using response surface methodology (RSM) while
machining of 316 stainless steel. In order to observe the comparison, the experiments with same
machining parameters are conducted with conventional cutting fluid. The prepared water-soluble
sago starch based cutting fluid showed excellent cooling and lubricating performance. Therefore,
in comparison to the machining using conventional cutting fluid, a decrease of 48.23% in surface
roughness and 38.41% in flank wear were noted using presented approach. Furthermore, using the
extreme learning machine (ELM), the obtained data is modeled to predict surface roughness and
flank wear and showed good agreement between observations and predictions.

Keywords: machining; laser-assisted milling; sago starch; surface roughness; tool wear; response
surface methodology (RSM); extreme learning machine (ELM)

1. Introduction

A number of critical components, installed in nuclear power plants working under
critical temperature ranges, are manufactured using austenitic stainless steel. This material
offers high toughness, resilient strength with high ductility and thermal conductivity.
Moreover, it requires high cutting force to machine; while processing it especially at higher
speed and feed rate leads to excessive tool wear along with poor surface finish [1-3].
Nguyen, et al. [4] showed that surface roughness decreases approximately 57.65% at lower
feed rate per tooth (0.09 mm/z) in dry milling of 304 stainless steel. While tool wear, which
is due to adhesive wear, occurred in high speed milling of stainless steel as discussed by
Liu, et al. [5].
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The lowering of the mechanical strength as well as hardness of the materials at high
temperature is well established. This helps in easing the machining processes especially
for difficult-to-cut materials. Based on this method for the machining processes, involving
thermal assistance by applying an external source of heat for softening the workpiece,
can be widely effective especially for difficult-to-cut materials. Thus by employing such
technique, the cutting forces as well as tool wear can be reduced significantly resulting in
higher surface quality and productivity [6,7].

Lasers can be employed as an effective thermal heating source for machining processes
such as high-speed milling in order to improve machinability while ensuring better surface
finish and longer tool life [8,9]. Cao, et al. [10] conducted experiments on laser-assisted
milling of 13-8 stainless steel to investigate surface roughness and cutting force, where
results show that around 20.1% reduction in the cutting forces were observed along with
34.4% improvement in the surface roughness. Similarly using laser-assisted milling, Kim
and Lee [11] observed that with the rise in the spindle speed, around 1.9 and 1.6 times
reduction in the surface roughness were obtained, for AISI 1045 and Inconel 718, respec-
tively. Recently, Attia, et al. [8] also performed an investigation on high speed laser-assisted
turning of Inconel 718. A remarkable 25% improvement on the surface finish of the cut
was observed while the optimal cutting speed was noted at 500 m/min. Around eight
time increase of metal removal rate was observed at the optimal condition of machining.
In addition, around 50% reduction of tool wear and 33% reduction in cutting forces were
observed, by Bermingham, et al. [12] during laser-assisted milling of 17-4PH stainless
steel. While Ito, et al. [9] demonstrated the use of the technique to machine hard and
brittle fused silica at high speed. A notable 74% decrement in surface roughness was noted
compared to conventional techniques but with tool life was reduced comparatively owing
to direct absorption of excessive heat into the tool. In another study, up to 70% reduction in
cutting forces and 50% reduction in temperature were noted by Kadivar, et al. [13] while
studying laser-assisted micro-milling of austenitic stainless steel X5CrNil8-10. The results
also suggest that the use of lubrication and the resultant cooling can be improved with
laser-structuring.

Using the cutting fluids helps in improving tool life in addition to reducing cutting
forces as well as the temperature. Those cutting fluids which have mineral-base can be haz-
ardous to the human operators as these fluids generate toxic and foully odor fumes during
the cutting. Therefore, for successful laser assisted machining, an appropriate cutting fluid
formulation as well as delivery method are significant in industry [14]. As appropriate
cutting fluid formulations, one way is the use of environmental-friendly cutting fluid
such as vegetable-based cutting fluid, a combination of biodegradability, renewability and
excellent lubrication performance [15,16]. Using vegetable-oil based nanofluids, such as
coconut oil, sesame oil, and canola oil with nano molybdenum disulfide, Padmini, et al. [17]
achieved better machining performance for turning substrates of AISI 1040 in terms of tool
flank wear, surface roughness, cutting forces, and cutting temperatures. In the case of high
speed drilling of Ti alloys, the study to understand the behaviors of different cutting fluids,
it was observed by Rahim and Sasahara [18] that palm oil results in lower cutting forces
and subsequent workpiece temperatures compared to the other cutting oils using synthetic
ester.

However, use of vegetable oil from edible sources such as peanut oil, groundnut
oil, palm kernel oil, palm oil, canola oil, and sunflower oil [17,19] will invariably trigger
issues of food insecurity. They are also traditionally used as staple food in many countries.
This unfortunately creates a problem for the global food security in terms of supply and
price. While starch-based ingredients are widely used in food and non-food industries.
Research on the application of starch as cutting fluid is very limited, reported specifically
for electrical discharge machining (EDM) process using corn starch [20] and cutting of
metals and non-metals using potato starch [21]. Results revealed that starch based cutting
fluid has excellent cooling and lubrication properties.
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In order to ensure the appropriate delivery method for cutting fluid, minimum
quantity lubrication (MQL) is one good form by delivering the fluid in the mist form.
This method has not only reduced the cost of machining, moreover it has led to increased
machining performance [4,22,23]. It was proven as an excellent alternative to flood lubrica-
tion method by Babu, et al. [24]. In addition, results showed that the tool wear and surface
roughness were respectively minimized by 70% and 66% under MQL. Using MQL with
vegetable-oil cutting fluid. Bermingham, et al. [25] found five times improvement in tool
life during laser-assisted milling of Ti-6Al-4V compared to conventional laser-assisted
milling (dry and flood machining). Also, Khalig, et al. [26] investigated the effectiveness of
MQL in micro-milling of Ti-6Al-4V and evaluated that high cutting speed of 35,000 RPM
showed improvement of tool wear under MQL condition compared to dry machining.

Predictive modelling can help assess the possible behavior of material [27-29] and
work tool during the planning stage of machining processes and suggest suitable paramet-
ric ranges for expected better performance. Such modeling shall improve the process by
reducing the losses and rejections. Moreover, the recent advancements in Al (artificial intel-
ligence) can help by integrating with predictive models using Artificial Neural Network
(ANN), genetic algorithm, and fuzzy logic. Since the data driven methods such as ANN
are not only time consuming but also limited without the generalization and overfitting
issues being prominent bottlenecks [30]. For example, a continual set of training data is
required for ANN model to achieve generalization; however, excessive training can lead
to overfitting [31]. Huang, et al. [32] proposed remedy using ELM algorithm to predict
the weights of the hidden nodes. This simplification helped reduced the train-test time
for ELM and provided generalization in addition to reduce the overfitting issues. Using
ELM, Mustafa [33] showed that the ELM estimates are superior than ANN with better and
quick cognition in lesser number of iterations. Using ELM for estimating surface roughness,
Cojbasi¢, et al. [34] obtained more accurate results in comparison with genetic algorithm
and ANN models with smallest training error along with norm of weights. A similar
observation was also made by Anicic, et al. [35]. In general, the ELM offers superiority in
terms of learning speed, norm of weight, and training error [34], thus offering predictive
modeling tool for controlling the parameters resulting in desired outcome.

Based on the discussion noted above, the higher productivity in higher speed milling
operations can be achieved using reduction in material strength with the aid of laser
assistance. To minimize environmental and food insecurity of edible oils, starch-based
ingredients can be utilized as an alternative of cutting fluids or lubricants [20,21]. While, the
potential of sago (Metroxylon sagu species pluralis) as an alternative source of raw material
for starch is enormous. To the best of the authors” knowledge, there is no publishable work
concerning the use of sago starch as lubricating or cutting fluid in laser-assisted machining
process. A study found that sago starch consists of oval granules with an average diameter
of 30 um [36]. Hence, the author anticipates that these granules may exhibit superior
thermal and tribological properties similar to the nano-fluids [37,38] and potentially can be
used for machining high-strength and difficult-to-cut materials.

In summary, the primary objective of this study is to compare the effect of process
parameters such as spindle speed, feed rate and laser power on surface roughness of
AISI316 stainless steel and tool’s flank wear width between starch based cutting fluid
and conventional cutting fluid. In this study, a water-soluble sago starch based cutting
fluid is prepared. Using response surface methodology (RSM) and ANOVA (Analysis of
Variance), an appropriate design of experiments was used to carry out to investigate the
effect of inputs on the outcomes. Furthermore, optimal input parameters are suggested to
predict the surface roughness and flank wear using the models. In addition, the machined
surface in terms of its integrity and the wear of flank were studied using scanning electron
microscopy, optical microscope and surface roughness tester. Finally, ELM was employed
to learn and predict the machining outcomes using the experimental data. The experiment
is described in the following section.
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2. Materials and Methods
2.1. Materials

In this study, a high strength austenitic AISI 316 stainless steel (RS PRO, Kuala Lumpur,
Malaysia) of 3 mm thickness having better corrosion resistance was chosen. This alloy
contains molybdenum which improves the alloy’s resistance to acids, alkalis, and chloride
pitting. The chemical composition and selected mechanical and thermal properties of AISI
316 stainless steel are given in Tables 1 and 2, respectively.

Table 1. Chemical composition of 316 stainless steel (wt.%) [39].

P S C Si Mn Mo Ni Cr Fe
<0.002 0.01 0.074 0.35 1.06 2.22 11.61 16.92 67.75

Table 2. Mechanical and thermal properties of 316 stainless steel [40].

Properties Value
Density (g/cm?) 8
Melting point (°C) 1370-1400
Thermal conductivity (W/m.K) 16.3
Young’s modulus (GPa) 193
Hardness Brinell (HB) 149

2.2. Experimental Details

In order to prepare the proposed water-soluble cutting fluid, sago starch was used.
Since the sago starch has high viscosity, some chemical ingredients (Sigma-Aldrich, Kuala
Lumpur, Malaysia) were added (shown in Table 3) to be able to use as cutting fluid. Hence,
by following Fukutani, et al. [21] with little modification, cutting fluid consisting of water
soluble sago-starch was obtained by dissolving carbonic acid ion and hydrogen carbonate
ion in distilled water. The pH of this fluid was 10.26 at the temperature of 25 °C. Moreover,
the viscosity of this water-soluble sago starch cutting fluid was measured using a viscometer
(SV-10; VIBRO) (A & D Co. Ltd., Tokyo, Japan), which was 1.18 mPa.s at 25.8 °C.

Table 3. Chemical ingredients to prepare the water-soluble sago starch cutting fluid.

Chemical Properties Quantity
Distilled water 11L
Sago starch 5g
Sodium carbonate 50¢g
Sodium hydrogen carbonate 30g
Ethanol 2mL
Dehydroacetic acid 05¢g
Cresol and soap solution 10 mL
Rust preventive agent (linoleic acid) 10 mL

In this case, the entire experimentation was conducted on a laser-assisted high speed
milling which was the combination of a cutting system, an MQL delivery system, and a
continuous-heating system with laser power (Figure 1). The cutting system was down-cut
milling as shown in Figure 2. For machining, X-Carve (CNC milling machine) (Inventables
Inc., S. Jefferson St, Suite, Chicago) was used which has a maximum speed of 8000 mm /min
with traversing rate of 500 mm/min in all three directions. The machining was carried
out using an end-mill micro grain carbide coated with titanium aluminum boron nitride
(AITiBN) (WIDIN Co. Ltd., Gyeongnam), as listed Table 4. To compare the experimental
results with the proposed cutting fluid, a conventional non-soluble cutting fluid was
applied during machining. The dynamic viscosity of this fluids at 26.8 °C is 96.33 mPa.s.
Because of the different viscosity of two fluids, the MQL flow rate of water-soluble sago
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starch cutting fluid and conventional cutting fluid were 5.85 mL/min and 0.33 mL/min,
respectively, with 345 kPa compressed air. In addition, MQL nozzle size is 0.3 mm and the
distance between the nozzle and the cutting area was 20 mm. For the entire experiments,
the constant cutting parameters were shown in Table 5.

Radial, y/gf\‘ Feed, x

Axial, z

MQL End-mill

Material

t

Compressor

Black-body coating

Laser module

Figure 1. Schematic diagram of the experimental setup.

ADOC

RDOC

Figure 2. Schematic diagram of the down-cut high speed milling.

Table 4. Tool summary.

Parameters Description
End-mill style ISE1-8-4T
End-mill material Micro-grain carbide
Coating Titanium aluminum boron nitride (AITiBN)
No. of flute 4
End-mill diameter 3.175 mm
Cutting length 9.525 mm
Shank diameter 3.175 mm

Full length 38.1 mm
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Table 5. The constant cutting conditions for high speed milling machining,.

Parameter Value
Cutting length 25 mm
Radial depth of cut 0.4 mm
Axial depth of cut (depth per pass) 0.2 mm
Total depth of cut 3 mm
Plunge rate 90 mm/min

For continual heating of the stainless steel surfaces, 1.6 W diode laser (SMART DIYs,
Tennessee, Japan) having the wavelength of 445 nm was employed. With the rectangular
beam spot, the size of the patch matched well with the cutting area. The distance between
laser module and material surface was 173 mm. A black coating on the substrate was used
to increase the absorptivity of imparted energy in to the materials [41] and in addition,
each substrate was pre-heated for 2 mins prior to operation.

For measuring the surface roughness, SRT-6200 tester (M&A Instruments Inc., Los An-
geles, CA, USA) was used, and each measurement was repeated for three times. Moreover,
SEM (scanning electron microscopy) (TM3030, HITACHI, Tokyo, Japan) was employed
to micrograph the machined surfaces. For the results reported here, two identical cutting
tools were used for the experiments, one was for water-soluble sago starch cutting fluid
and another was for conventional cutting fluid. In the case of finding the flank wear, optical
microscope (MD500, AmScope, Irvine, California) having 0.57 um/pixel resolution for
4x objectives was used following the ISO 8688-2:1989 standard for the end-mill as shown
in Figure 3.

VB

Figure 3. Flank wear width of end-mill based on ISO 8688-2:1989.

2.3. Response Surface Methodology (RSM)

The systematic investigation of the processing parameters on the characteristics of the
machining operation is studied using response surface methodology (RSM) as Design of
Experiment (DoE). DoE helps in recovering/obtaining maximum amount of information
with least number of well-planned experimentations. While RSM is used to identify the
optimal configurations for the wide ranging input/process parameters for the desired
outcome. Therefore, RSM was recommended in this experimental study in comparison
to multiple-objective optimization [42—44]. While the mathematical formulation of the
optimized set of parameters is obtained using regression model based on second-order
polynomial equation fitted using least-squares method. The mathematic form of the model
is as follows [45]:

k k k
y=PBo+ Z Bix; + Z ,Biix? + Z,Bi]‘xix]‘ +é 1)
i=1 i=1 i<j

where y represents the predicted response while the machining parameters are represented
by x; and x; are the value of ith and jth parameters respectively. Here, k is the total number
of the parameters; the interaction coefficient is given by f;;; whereas f; is the coefficient for
the linear terms; The quadratic coefficient is represented by f;;; the intercept coefficient is
Bo, and e denotes the statistical experimental error of observation. ANOVA for RSM was
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employed using MINITAB 18 (Minitab, LLC., Chicago) to note how the characteristics of
machining are affected by the input process parameters at 95% confidence level (« = 0.05).

2.4. Design of Experiments

In this particular study, the spindle speed, feed rate and laser power were considered
as the three major input process parameters. Prior to the final experiments, preliminary tests
were performed to deduct a range of high as well as low levels of the processing parameters
in order to observe the resultant surface roughness and tool wear. Since high speed milling
was conducted, the spindle speed and feed rate were selected 16,000-18,200 rpm and
400-800 mm /min, respectively, based on primary tests. Above 18,200 rpm spindle speed
and 800 mm/min feed rate, it was observed that the surface roughness was unacceptable,
and the cutting tool absorbed much temperature. Moreover, using preliminary tests at
800 mW laser power, the levels of laser power were selected.

Response surface methodology (RSM), as a design of experiment (DoE), is a compre-
hensive optimization and modern mathematical statistical method [46]. RSM has been
successfully employed to determine the optimal parametric combinations within a wide
range of machining process parameters [45,47]. The Box-Wilson second-order central com-
posite design (CCD) is the most commonly used in RSM since it can easily fit a second-order
response surface with the minimum parameters [48]. It includes the reliable curvature esti-
mation known for achieving a logical quantity of information in testing lack-of-fit [49,50].
In view of this, the experiments were planned using response surface methodology (RSM)
based on central composite design (CCD). High and low levels of input variables were
set as: High (+1), central point (0) and low (—1). Table 6 summarizes the actual as well as
coded levels of the three selected variables. In full factorial design, the technique generated
six axial points along with two center points and eight cube points along with four center
points. In order to stabilize the estimation variance, the number of replicates runs at the
center point was selected to be six. In total, 20 runs were designed as a set of experiments
for both the proposed and conventional fluids.

Table 6. Input processing parameters based on central composite design (CCD).

Extension
Parameter Unit Annotation -1 0 +1
Spindle rpm N 16,000 17,100 18,200
speed
Feed rate mm/min F 400 600 800
Laser power mW P 600 700 800

2.5. Extreme Learning Machine (ELM)

Using the complete set of experimentation for learning through linear learning struc-
ture proposed by Huang, et al. [32], ELM uses the generalized inverse of Moore-Penrose
for the selection of output weights with arbitrary input weights and biases. In addition,
ELM is not training intensive and rather involves linear equality through one step solution,
thereby quickening the process of relating input data (xy) to output (yy) vectors.

For the training of ith set, the input x; is used through a number of layers in the hidden
layers to obtain output y; of the network. Using ELM, the input to output relation is defined
as [32],

yj= Z.Bif(xjr w;, by) )

where f; represents the weights of the output layer and f designates the activation function.
The weight factors (w) relates the jth hidden and input nodes. While the bias of hidden
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nodes is represented by b;. Upon simplifications in the form of H the relationship can be
expressed by Equation (4),

flxy,wi,br) oo fx,wm, by)

H = : : - ®)
flxn,wi,b1) oo f(xn, W, bu)

Y =Hp (4)

ELM criteria is given by,
L(X,Y; ) = [|Y — Hp|" (5)

ELM provides an output through one step, unlike ANN [51]. Using Equation (6), 8 can
be obtained using:
B=H"Y (6)

where H* is inverse of Moore-Penrose H matrix.

This study uses the process parameter (inputs) to relate outputs including surface
roughness and flank wear utilizing two sets of data. Out of a total of 20 data sets, random
selection of 14 samples were selected for training while rest were employed to test the
relationship while ensuring non-intersection. All the inputs and outputs are initially
normalized on the scale —1.0 to 1.0. The analysis was carried out using MATLAB R2016a
(MathWorks, Inc., Massachusetts, United States). For ELM, as the number of hidden nodes
is usually selected to be less than number of training data [52]. Therefore, up to 12 hidden
nodes were selected keeping in mind that 14 training sets were used. The sigmoidal
function was used for activation.

3. Results and Discussion

Upon completion of training and testing, the resultant responses were assessed
through ANOVA, to obtain the effect of input continuous variables on output and estimate
the importance of each factor participating in the training. The measured characteristics
of surface roughness and flank wear with water-soluble sago starch cutting fluid and
conventional cutting fluid are shown in Table 7.

3.1. Evaluation of Model Adequacy

The adequacy of the models and the normality check was carried out using the
examination of residual upon fitting using regression technique. Figure 4 exhibits that the
scatter of residual is well aligned in the linear plot with the normal probability plot, thus
indicating that the normal assumption is properly justified.
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Table 7. Design of experiment and responses.

Experimental Input Parameter Response
Spindle Feed Surface Roughness (um) Flank Wear (um)
Power
No. Speed Rate . (mW) Water-Soluble Sago Conventional Water-Soluble Sago  Conventional
(rpm) (mm/min) Starch Cutting Fluid Cutting Fluid starch Cutting Fluid = Cutting Fluid
1 17,100 600 700 1.408 1.638 6.8221 7.8016
2 18,200 400 800 1.442 1.535 5.7516 7.9606
3 16,000 400 600 1.097 1.334 5.5646 6.6239
4 18,200 800 600 1.497 1.737 6.4682 8.5734
5 17,100 600 700 1.412 1.635 6.8871 7.7998
6 16,000 800 800 1.912 2.077 6.0577 6.7892
7 18,200 400 600 1.464 1.556 5.9019 8.0057
8 16,000 400 800 1.079 1.310 5.2812 6.5796
9 17,100 600 700 1.403 1.630 6.8717 7.8098
10 17,100 600 700 1.399 1.632 6.8528 7.8110
11 16,000 800 600 2.100 2.225 6.2510 6.8118
12 18,200 800 800 1.477 1.709 6.4232 8.3694
13 17,100 600 800 1.387 1.611 6.6984 7.7655
14 17,100 600 600 1.432 1.659 6.9238 7.8224
15 17,100 600 700 1.405 1.640 6.8467 7.8055
16 17,100 400 700 0.989 1.466 6.0472 7.6894
17 16,000 600 700 1.474 1.598 5.8764 6.6943
18 17,100 800 700 1.582 1.856 6.8720 7.9289
19 17,100 600 700 1.412 1.636 6.8671 7.8093
20 18,200 600 700 1.464 1.604 6.3539 8.2359
Normal Probability Plot Normal Probability Plot
(response is surface roughness with (response is surface roughness with
sago starch cutting fluid (umy) conventional cutting fluid (Lmy))
99 99
33 !’3,,' 95 /-’
§ P 90 &
80 . .
E ga ",,4' g %E = s’
§i &3 P
: 0 ‘,,»v“' 0oL !
-10 075 ":[‘)/050 -0.025  0.000 0.025 0.050 ! -lHJSU -0.025 0.000 0.025 0.050
Residual Residual
@ ®)
Normal Probability Plot Normal Probability Plot
(response is flank wear with sago (response is flank wear with
starch cutting fluid (um)) conventional cutting fhuid (um))
99 = 99 -
33 n/’.//‘ §§ o =t
£ - 1 &
20 o o % .‘/““
10 .« 10 e
3 ) 2 g I ///
I-fJ H) -0.05 0.00 0.05 0.10 ! -[;.04-0.().‘- -0.02-0.01 0.00 0.01 0.02 0.03 0.04 0.05
Residual Residual

@ (d)

Figure 4. Normal probability plot of the residuals corresponding to surface roughness (a) with
water-soluble sago starch cutting fluid, (b) with conventional cutting fluid, and flank wear (c) with
water-soluble sago starch cutting fluid, and (d) with conventional cutting fluid.

3.2. Quantitative Measurement

Using RSM, a quantitative model is also proposed for the surface roughness and flank
wear. The significance of the model is verified using ANOVA.
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3.2.1. Surface Roughness (Ra)

The ANOVA results of the surface roughness for with water-soluble sago starch cutting
fluid and conventional cutting fluid are shown in Tables 8 and 9, respectively. These reveal
that the spindle speed and feed rate are the most significant parameters (p-value < 0.05) of
surface roughness with both conditions. Though the linear power term has comparatively
less effect on the roughness, this factor is also assumed as significant by 94.6% confidence
level. Thus, the quadratic terms of spindle speed and feed rate has higher significance of
the confidence level.

Table 8. ANOVA results for the surface roughness with water-soluble sago starch cutting fluid.

Source DF Adj SS Adj MS E-Value p-Value
Spindle speed 1 0.01011 0.010112 6.00 0.040 significant
Feed rate 1 0.62350 0.623501 370.18 0.000 significant
Power 1 0.00858 0.008585 5.10 0.054 significant
Spindle speed x Spindle speed 1 0.03374 0.033736 20.03 0.002 significant
Feed rate x Feed rate 1 0.01368 0.013681 8.12 0.021 significant
Power x Power 1 0.00743 0.007429 441 0.069 significant
Spindle speed x Feed rate 1 0.39073 0.390728 231.98 0.000 significant
Spindle speed x Power 1 0.00336 0.003362 2.00 0.195
Feed rate x Power 1 0.00353 0.003528 2.09 0.186
Error 8 0.01347 0.001684
Total 17 1.14653
Table 9. ANOVA results for the surface roughness with conventional cutting fluid.
Source DF Adj SS Adj MS F-Value p-Value
Spindle speed 1 0.016241 0.016241 11.40 0.010 significant
Feed rate 1 0.577441 0.577441 405.34 0.000 significant
Power 1 0.007236 0.007236 5.08 0.054 significant
Spindle speed x Spindle speed 1 0.000642 0.000642 0.45 0.521
Feed rate x Feed rate 1 0.005322 0.005322 3.74 0.089 significant
Power x Power 1 0.000922 0.000922 0.65 0.444
Spindle speed x Feed rate 1 0.212226 0.212226 148.97 0.000 significant
Spindle speed x Power 1 0.001891 0.001891 1.33 0.283
Feed rate x Power 1 0.002145 0.002145 1.51 0.255
Error 8 0.011397 0.001425
Total 17 0.845237

The 3D response surface plot of the surface roughness with water-soluble sago starch
cutting fluid and conventional cutting fluid for different combinations of the input process
parameters is shown in Figure 5, where the surface roughness is predominantly affected
by spindle speed, feed rate and laser power. In both conditions, the surface roughness
significantly increases with the increase of feed rate and gradually increases with the
increase of spindle speed, which are shown in Figure 5a,b. However, the rate of increments
of the roughness is considerably reduced with around 17,100 rpm spindle speed with
the sago starch cutting fluid than conventional. By referring to Figure 5c,d, the surface
finish is increased with the increase of spindle speed and power due to the reduction of
cutting force with the increase of power [9,53,54]. While minimum surface roughness
can be achieved at medium power and medium spindle speed with sago starch cutting
fluid. In Figure 5f, the roughness linearly increases with the increment of feed rate and the
decrease of laser power with conventional fluid, however, it reduces slightly with high feed
rate (around 800 mm/min) with the sago starch fluid (Figure 5e). Overall, the surface finish
with the proposed cutting fluid is notably improved which is maximum 48.23% compared
to conventional (refer to experiment no. 16), because of the viscosity difference of the two
cutting fluids. As water-soluble sago starch cutting fluid has low viscosity which is able
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to improve more stable lubricity [55,56]. In addition, the water-soluble cutting fluid has
shown excellent lubricating properties [21].
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Figure 5. 3D response surface plots of surface roughness (Ra) in terms of spindle speed—feed rate for:
(a) Water-soluble sago starch cutting fluid and (b) conventional cutting fluid, spindle speed—power
for: (c) Water-soluble sago starch cutting fluid and (d) conventional cutting fluid, and power—feed
rate for: (e) Water-soluble sago starch cutting fluid and (f) conventional cutting fluid.

3.2.2. Flank Wear (VB)

The ANOVA results of the flank wear width with water-soluble sago starch cutting
fluid and conventional cutting fluid are shown in Tables 10 and 11. Results indicate that
all input process parameters i.e., spindle speed, feed rate and laser power have most
significant effect on the flank wear with both cutting fluids because of the lower p-value
than 0.05 of the confidence level. Moreover, with the proposed cutting fluid, the two-factor
interaction (2FI) terms of spindle speed and feed rate are greatly significant. While with
conventional cutting fluid, only the 2FI terms of spindle speed, and the quadratic terms of
spindle speed and feed rate have effect on the wear.
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Table 10. ANOVA results for the flank wear width with water-soluble sago starch cutting fluid.
Source DF Adj SS Adj MS F-Value p-Value
Spindle speed 1 0.34891 0.34891 85.58 0.000 significant
Feed rate 1 1.24299 1.24299 304.87 0.000 significant
Power 1 0.08053 0.08053 19.75 0.002 significant
Spindle speed x Spindle speed 1 1.13803 1.13803 279.13 0.000 significant
Feed rate x Feed rate 1 0.25246 0.25246 61.92 0.000 significant
Power x Power 1 0.00539 0.00539 1.32 0.283
Spindle speed x Feed rate 1 0.00633 0.00633 1.55 0.248
Spindle speed x Power 1 0.00990 0.00990 2.43 0.158
Feed rate x Power 1 0.00477 0.00477 117 0.311
Error 8 0.03262 0.00408
Total 17 5.00305
Table 11. ANOVA results for the flank wear width with conventional cutting fluid.
Source DF Adj SS Adj MS F-Value p-Value
Spindle speed 1 5.84644 5.84644 7025.29 0.000 significant
Feed rate 1 0.26034 0.26034 312.83 0.000 significant
Power 1 0.01391 0.01391 16.71 0.003 significant
Spindle speed x Spindle speed 1 0.30726 0.30726 369.21 0.000 significant
Feed rate x Feed rate 1 0.00009 0.00009 0.11 0.754
Power x Power 1 0.00024 0.00024 0.29 0.605
Spindle speed x Feed rate 1 0.04191 0.04191 50.35 0.000 significant
Spindle speed x Power 1 0.00415 0.00415 4.99 0.056 significant
Feed rate x Power 1 0.00235 0.00235 2.83 0.131
Error 8 0.00666 0.00083
Total 17 6.75597

Figure 6 shows 3D response surface plots that reveal how the flank wear is affected
by the different input process parameters with water-soluble sago starch cutting fluid and
conventional cutting fluid. Based on Figure 6a,b, the flank wear increases significantly
with the increase of spindle speed and gradually increases with the increase of feed rate,
though the wear with conventional fluid is more pronounced at higher speed (18200 rpm)
in contrast to the sago starch cutting fluid. In addition, from the Figure 6¢c—f, the flank wear
reduces gradually for both cases, as the laser power is increased. Thus at low power, a
maximum wear is obtained due to the abrasion [57]. Overall, the flank wear with water-
soluble sago starch cutting fluid is considerably 38.41% reduced comparing to conventional
cutting fluid (refer to experiment no. 2). This is because, water-soluble cutting fluid has
excellent cooling properties which able to work with higher speed [21].

In sum, from the quantitative measurement, as spindle speed is increased, both surface
roughness and flank wear reduce with the water-soluble sago starch cutting fluid (Figures
5c and 6a). Thus, the spindle speed has a significant influence on these machining charac-
teristics.

3.3. Qualitative Measurement

This section discusses high-speed milling operation assisted with laser source with
both water-soluble sago starch cutting fluid and conventional cutting fluid under dif-
ferent process parameters. These experiments were performed to compare the surface
morphologies of the AISI316 stainless steel substrates. The characteristics of the surface
morphology and tool life using both water-soluble sago starch and conventional cutting
fluids are studied.
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Figure 6. 3D response surface plots of flank wear (VB) in terms of spindle speed—feed rate for:
(a) Water-soluble sago starch cutting fluid and (b) conventional cutting fluid, power—spindle speed
for: (c) Water-soluble sago starch cutting fluid and (d) conventional cutting fluid, and power—feed
rate for: (e) Water-soluble sago starch cutting fluid and (f) conventional cutting fluid.

3.3.1. Surface Morphology

Figure 7 shows the surface of two samples which were machined with conven-
tional fluid and water-soluble cutting fluid at a spindle speed of 17,100 rpm, feed rate of
400 mm/min and laser power of 700 mW. For both cases, feed marks exist on the machined
surface; however, the lines of feed mark are quite roughly jagged with conventional fluid
(Figure 7a), while the feed mark lines are almost straight with the proposed fluid (Figure 7b).
Moreover, some chips debris are adhered on the surfaces for both cases where the amount
of chips debris is significantly reduced with the proposed fluid compared to conventional.
As water-soluble sago starch cutting fluid has low viscosity which is able to increase the
liquid flow in the pump [21] that helps to restrict the adhesion of chips. Consequently,
with the proposed fluid, the finishing of machined surface is quite better than conventional.
On the other hand, when the speed is increased at 18,200 rpm, it can be noticed that there
is no significant difference between the machined surfaces with conventional fluid and
water-soluble cutting fluid according to the feed marks which are shown in Figure 8a,b.
In this case, the size of chips debris is reduced with both conditions. Nevertheless, with the
sago starch fluid, the amount of micro-chips debris is less than conventional.
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3.3.2. Tool Life

Figure 9 shows the average flank wear width with water-soluble cutting fluid and
conventional cutting fluid according to the number of experiments under the same cutting
conditions. Flank wear evolution for these two cutting fluid conditions is significantly
different. The tool life is observed to be around 19.64% higher with the water-soluble
cutting fluid condition compared to the conventional. Moreover, flank wear is seen to be
initially rapid, increasing at an approximately constant rate, which is just prior to intense
wear zone [58]. While the time spent during the machining of 25 mm length stainless steel
was less than five minute; the resultant relatively lesser wear width is noted in comparison
to [59-61]. This is due to the reason that the wear reduces proportionally with the reduction
of cutting time. In addition, the continual heating through laser sources also significantly
minimizes the wear width. According to ISO 8688-2:1989 Tool life testing in milling, the end
of life criterion is met when the average flank wear of end-mill reaches 0.3 mm over all
teeth. In sum, after conducting total 20 runs, the average flank wears with the proposed
cutting fluid and conventional are only 127.6186 um and 152.687 pm, respectively.

Average flank wear
180

160
= 140
120
100

80
60
40
20

Flank wear width (um

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
No. of experiments

—&— Water soluble sago starch cutting fluid —e— Conventional cutting fluid

Figure 9. Average flank wear after conducting whole experiments.

Figure 10 demonstrates the different stages of the time evolution for the flank wear
after one and 20 runs respectively. After machining the first experiment, there is no
significant difference between the experiments with water-soluble sago starch cutting fluid
and conventional cutting fluid, shown in Figure 10a,c. While after 20 runs of cutting, the
wear mechanism with conventional fluid is mainly indicating a dominant fracture on the
tool tip and with the signs of the abrasion on the flank face. Moreover, the machining with
conventional fluid exhibits the effect of the chipping at the cutting edge which is mainly
owing to the severe abrasion wear (Figure 10b). In contrast, with water-soluble sago starch
cutting fluid, the flank wear occurs by normal degradation on the tool tip, i.e., abrasion and
micro-pitting; however, the micro-pitting is not significant (Figure 10d). Moreover, there is
no physical or apparent features such as fracture or breakages. Because, the low viscosity
of the cutting fluid allows it to settle between the tool and workpiece surface/interface
and provide the requisite cushion which minimizes the vibration resulting in prolong tool
life [62,63].
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Figure 10. Optical micrographs of the flank wear evolution of 4-flute tool with conventional fluid
(a) after one run, (b) after 20 runs, and with water-soluble sago starch cutting fluid (c) after one run,
(d) after 20 runs.

3.4. Optimization

The optimal configuration of input parameters was obtained using MINITAB 18
statistical software through the response optimizer option.

3.4.1. Statistical Outcome

The statistical outcome of optimization based on ANOVA results is shown
in Figures 11 and 12 with water-soluble sago starch cutting fluid and conventional cutting
fluid, respectively. The predicted input parameters at a spindle speed of 16,000 rpm, feed
rate of 400 mm/min and laser power of 727 mW, and the predicted values of surface
roughness and flank wear are 0.9958 um and 5.2801 um with the proposed fluid. For the
conventional fluid, at a spindle speed of 16,000 rpm, feed rate of 400 mm/min and laser
power of 800 mW, the predicted surface roughness and flank wear values are 1.2904 um
and 6.6125 um. Therefore, the notable reduction in the surface roughness and flank wear
are noted to be 29.58% and 25.23%, respectively, compared to conventional cutting fluid.
The accuracy of the predictions was verified using two separate runs of experiments at
optimal input parametric combination. One experiment was with water-soluble sago starch
cutting fluid and second experiment used conventional cutting fluid. During both of the
confirmation tests, the cutting tools were new and were never used before. Table 12 compares
the measured and predicted values using the regression model. The errors for both output
parameters i.e., surface roughness and flank wear are 2.66% and 0.30%, respectively with the
proposed cutting fluid, and 0.36% and 0.75%, respectively with conventional cutting fluid.
This indicates that the experimental results are in well agreement with the predictions.

Table 12. Experimental and predicted values of surface roughness, flank wear at the optimum levels.

Experimentation, Prediction,

Method Characteristic Error, %
pum pm
Water-soluble sago Surface roughness 1.023 0.9958 2.66
starch cutting fluid Flank wear 5.2960 5.2801 0.30
Conventional cutting Surface roughness 1.295 1.2904 0.36

fluid Flank wear 6.5635 6.6125 0.75




Materials 2021, 14, 1311 17 of 23

Optimal - Spindle Feed Rat Power (m
9 18200.0 800.0 800.0
D: 0.9969
. Cur [16000.0] [400.0] [727.0]
Predict  Low 16000.0 400.0 6000
Composite \/—
Desirability
D: 0.9969
Flank we
Minimum
y = 5.2801
d = 1.0000
Surface
Minimum
y = 0.9958
d = 0.99390
___________ :R_M_h.-___-r_—'-_

Figure 11. Response optimization plot of cutting parameters and the predicted results of flank wear
and surface roughness with water-soluble sago starch cutting fluid.
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Figure 12. Response optimization plot of cutting parameters and the predicted results of flank wear

and surface roughness with conventional cutting fluid.

3.4.2. Graphical Outcome

Figure 13 shows the obtained surfaces of laser-assisted high-speed milling operation
of stainless steel at optimal process parameters, where numerous chips debris with little
jagged feed lines on the machined surface can be observed with conventional cutting
fluid (Figure 13a). With sago starch cutting fluid (Figure 13b), it can be regarded that the
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presence of chips debris reduced, and the lines of feed mark are seemed straight smooth
lines. Moreover, some black dots originated from the black-body coating are seen on the
surface after machining with conventional fluid (Figure 13a) as compared to the water-
soluble sago starch cutting fluid. This is because water-soluble cutting fluid contains some
additives such as soap solution, rust-preventive agents, brighteners, and antiseptic agents
which assist to remove the debris as well [21].
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Figure 13. SEM photographs of machined surface at predicted parametric combinations with (a)
conventional cutting fluid, n = 16,000 rpm, f = 400 mm/min and P = 800 mW, (b) water-soluble sago
starch cutting fluid, n = 16,000 rpm, f = 400 mm/min and P = 727 mW.

3.5. Estimation Using ELM

Using ELM, the surface roughness and flank wear are predicted both proposed and
conventional cutting fluids, which are showed in Tables 13 and 14, respectively. With
water-soluble sago starch cutting fluid, the root mean square errors are minimum at 6
and 4 number hidden nodes for surface roughness and flank wear, respectively. The
average errors of these machining characteristics are only 3.52% and 1.33%, respectively.
With conventional cutting fluid, the number of hidden nodes is 8 and 8 to reduce the
errors for surface roughness and flank wear, where the average errors are only 2.79% and
0.57%, respectively. This suggests that the observed results are in good agreement with the
predictions.
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Table 13. Comparison of extreme learning machine (ELM) prediction with experimental findings for water-soluble sago

starch cutting fluid.
Water-Soluble Sago Starch Cutting Fluid
Surface Roughness Flank Wear
Run
Experimentation Prediction Experimentation Prediction
Error % Error %
(um) (um) (um) (um)

1 1.582 1.6317 3.14 6.8720 7.0973 3.28
2 1.477 1.4237 3.61 6.4232 6.4259 0.04
3 1.474 1.5446 4.79 5.8764 5.8135 1.07
4 1.464 1.4904 1.80 5.9019 5.9712 1.17
5 1.079 0.9959 7.70 5.2812 5.3600 1.49
6 1.432 1.4310 0.07 6.9238 6.9860 0.90

Average error % 3.52 Average error % 1.33

Table 14. Comparison of ELM prediction with experimental findings for conventional cutting fluid.
Conventional Cutting Fluid
R Surface Roughness (Ra) Flank Wear (VB)

un

Experimentation Prediction Error % Experimentation Prediction Error %

(um) (um) (um) (um)

1 1.856 1.8449 0.60 7.9289 7.9891 0.76
2 1.709 1.6568 3.05 8.3694 8.4071 0.45
3 1.598 1.7366 8.67 6.6943 6.6961 0.03
4 1.556 1.5354 1.32 8.0057 8.0713 0.82
5 1.310 1.3023 0.59 6.5796 6.6551 1.15
6 1.659 1.7002 248 7.8224 7.8375 0.19

Average error % 2.79 Average error % 0.57

4. Conclusions

In this present work, using RSM the effect of proposed water-soluble sago starch

cutting fluid on surface roughness of AISI316 stainless steel material and tool’s flank wear
during laser-assisted high speed milling were investigated. Using ELM, the observed data
is compared with the predictions of the machined surface and tool condition. The following
conclusions can be drawn from the obtained results.

1.

The effect of single process parameter on surface roughness and flank wear were
analyzed. In the levels of the parameters which were defined previously, the both
surface roughness and flank wear with sago starch cutting fluid increased with an
increase in the spindle speed and feed rate, and decreased with an increase in the laser
power. However, the spindle speed has a significant influence on these machining
characteristics. For instance, with higher spindle speed (18200 RPM), the minimum
Ra and VB were 1.442 um and 5.75 um, respectively, with sago starch cutting fluid
compared to conventional fluid (1.535 pum and 7.96 pm, respectively). Overall, with
water-soluble sago starch cutting fluid, the surface roughness and flank wear reduced
by 48.23% and 38.41%, respectively, compared to conventional droplet cutting fluid;
RSM-based optimization of the input process parameters was achieved at a spindle
speed of 16,000 rpm, feed rate of 400 mm/min and laser power of 727 mW, and the
predicted values of surface roughness and flank wear were 0.9958 um and 5.2801 um
for the proposed cutting fluid. For the conventional, at a spindle speed of 16,000 rpm,
feed rate of 400 mm/min and laser power of 800 mW, the predicted surface roughness
and flank wear values were 1.2904 um and 6.6125 pum. Therefore, the surface roughness
and flank wear reduced by 29.58% and 25.23%, respectively, compared to conventional
cutting fluid;
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3. Surface morphology analysis showed that the jagged feed lines converted to the straight
smooth lines and the presence of chips debris reduced with the proposed cutting fluid
compared to conventional. Tool life is improved by 19.64%;

4. ELM-based prediction errors of the surface roughness and flank wear were only 3.52%
and 1.33%, respectively with the proposed cutting fluid. With the conventional cutting
fluid, the predicted errors of surface roughness and flank wear were only 2.79% and
0.57%, respectively, suggesting good agreement between observations and predictions.

In sum, the study is expected to be useful for laser-assisted high speed machining of
various different materials due to the effect of water-soluble sago starch cutting fluid in
order to improve surface finish and tool life.

However, the situation is worth stating that the internal properties of machined
surface, i.e., the temperature and cutting force are critical parameters that can influence the
efficiency and operational beneficial of the entire experimentation. Therefore, this calls for
future investigation determining whether low-cost heat sources such as laser with high
power can replace low power laser before industrialization.
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Al Artificial Intelligence

AlTiBN Titanium Aluminum Boron Nitride
ANN Artificial Neural Network

ANOVA  Analysis of Variance

CCD Central Composite Design

DoE Design of Experiment

EDM Electrical Discharge Machining
ELM Extreme Learning Machine
LAM Laser-Assisted Machining
MQL Minimum Quantity Lubrication
RSM Response Surface Methodology
SEM Scanning Electron Microscope

ADOC Axial depth of cut
RDOC Radial depth of cut
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f Feed rate

p Laser power
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Adj SS Adjusted Sum of Squares
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