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Abstract: The critical role of the immune system in host defense against foreign bodies and pathogens
has been long recognized. With the introduction of a new field of research called osteoimmunol-
ogy, the crosstalk between the immune and bone-forming cells has been studied more thoroughly,
leading to the conclusion that the two systems are intimately connected through various cytokines,
signaling molecules, transcription factors and receptors. The host immune reaction triggered by
biomaterial implantation determines the in vivo fate of the implant, either in new bone formation
or in fibrous tissue encapsulation. The traditional biomaterial design consisted in fabricating inert
biomaterials capable of stimulating osteogenesis; however, inconsistencies between the in vitro and
in vivo results were reported. This led to a shift in the development of biomaterials towards implants
with osteoimmunomodulatory properties. By endowing the orthopedic biomaterials with favorable
osteoimmunomodulatory properties, a desired immune response can be triggered in order to obtain
a proper bone regeneration process. In this context, various approaches, such as the modification of
chemical/structural characteristics or the incorporation of bioactive molecules, have been employed
in order to modulate the crosstalk with the immune cells. The current review provides an overview
of recent developments in such applied strategies.

Keywords: biomaterials; bone regeneration; osteoimmunomodulation; immune response;
macrophage polarization

1. Introduction

Annually, millions of people suffer from common bone defects caused by trauma,
infection, tumor resection and pathological processes [1,2]. Even though healthy bone
tissue has an extraordinary capacity for self-repair, around 10% of patients develop severe
complications, such as delayed healing and non-union, leading to more expensive and
often invasive treatment strategies [3]. A common method of treatment involves the use
of bone grafts for the rapid restoration of larger defects/injuries, but a series of disadvan-
tages, such as an insubstantial amount of satisfactory graft material available for use and
morbidity at the donor site (e.g., nerve injury, pain, hemorrhage, infection), limits its use
as a therapeutic tool for bone regeneration [4–7]. Because of the limitations associated
with the conventional treatment, in the last few decades, various implantable biomaterials
have been developed and tested as promising bone substitute alternatives. Their wide
usability relies on their ability to act as biocompatible supports and delivery platforms
for biologically active molecules, which can be easily tailored for a specific purpose (e.g.,
modification of the chemical and physical properties) [8–11]. However, regardless of their
inert and non-toxic character, adverse immune reactions such as excessive inflammation,
impairment of healing, fibrotic encapsulation and implant rejection can occur due to their
exogenous nature [11,12]. The traditional method of designing implantable biomaterials
focuses on developing bone substitutes that can elicit a favorable osteogenic and osseointe-
gration process, by tailoring their mechanical and physicochemical characteristics [2,13,14].
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Nevertheless, this concept does not always lead to satisfying results, with studies report-
ing certain inconsistencies between the in vitro and in vivo results, thus leading to the
hypothesis according to which the mechanism underlying the capacity of the materials
to mediate bone regeneration is known only partially and it is far more complex than it
was thought [13]. For a long time, it was believed that the bone dynamics involve only
cells from the skeletal system, such as osteoblasts and osteoclasts, but a more sophisti-
cated understanding of the bone biology suggests that the osteogenic process is a result
of the interplay between the skeletal and immune systems. Essential events in the bone
remodeling process, such as hematopoiesis, structural support and mineralization, require
intimate cooperation between the skeletal and immune systems, through numerous com-
mon regulatory molecules, such as cytokines, transcription factors, receptors and other
signaling molecules [15–18]. For example, cytokines such as the transforming growth
factor (TGF-β) and interleukin (IL)-4 have been reported to induce osteoblast migration,
proliferation and secretion of the extracellular matrix (ECM) in the early stage of cell differ-
entiation [19,20], while tumor necrosis factor-alpha (TNF-α) and IL-1β have the opposite
effect, being involved in the inhibition of the differentiation process [21]. Moreover, the
immune system has been recognized as being involved in the first stage of the natural
healing process and studies have shown that treatment with anti-inflammatory drugs
leads to impaired fracture healing [22–25]. This crosstalk between the immune and skele-
tal systems was first identified in a series of pioneering studies on osteoclast-activated
factors derived from immune cells in the 1970s [26]. However, almost 30 years later, the
term “osteoimmunology” was first coined and used to describe the introduction of a new
direction in research and of a new interdisciplinary field [26,27]. With this advancement
in bone biology, it was detrimental that a shift in the design paradigm should take place,
from biomaterials capable of direct activation of cells responsible for the osteogenic process,
towards biomaterials capable of modulating the local immune environment in favor of
bone healing and regeneration [13,28,29]. Biomaterials endowed with immunomodulatory
properties are classified as osteoimmunomodulatory biomaterials. Materials presenting
favorable osteoimmunomodulatory properties are capable of inducing a suitable inflam-
matory response that results in the formation of new bone tissue by issuing factors from
inflammatory cells capable of increasing osteogenic cell recruitment and differentiation.
On the other hand, biomaterials with poor osteoimmunomodulatory properties will lead
to an excessive chronic inflammatory process coupled with increased osteoclast forma-
tion, resulting in bone destruction, fibrous capsule formation and, in the end, implant
failure [13,29]. Therefore, osteoimmunomodulation brings forth a promising strategy for
designing bone biomaterials with multifactorial effects, such as tuning the immune system,
promoting osteogenesis and regulating osteoclastogenesis [30–32].

In this review, we highlight the interplay between the skeletal and immune system
and discuss how the specific characteristics of the biomaterials could be tailored in or-
der to tune the immune response elicited by the implantable biomaterials for favorable
tissue regeneration.

2. Overview of the Immune System

The immune system represents a powerful and diverse defensive tool, involved in host
protection against foreign threats and body homeostasis control. The main function of the
immune system is to resolve infections, repair the injured tissue and return the organism
to a state of homeostasis. Its efficacy relies on the ability to exhibit a specific yet limiting,
rapid and destructive response, appropriate for the inflammatory trigger [33]. At the most
basic level, the human immune system can be classified into two interconnected branches,
the innate immune system and the adaptive immune system, both involved in defending
the organism against numerous threats, such as injuries, microbes, bacteria and toxins
or any other causes [34,35]. The innate immune system is intimately connected to the in-
flammatory pathways and wound healing system, being capable of eliciting a non-specific
immune response on contact with a foreign material or injured tissue, without previous
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programming [11,36]. Due to its non-specific nature, the innate immune system represents
the first line of defense, being activated when certain molecules known as non-infectious
damage-associated molecular patterns (DAMPs) and infectious pathogen-associated molec-
ular patterns (PAMPs) [37] bind to specific molecular structures called surface-expressed
pattern recognition receptors (PRRs) presented by the immune cells (e.g., macrophages,
dendritic cells) resident in the normal healthy tissue [33,38]. The PRRs can function as solu-
ble proteins involved in the opsonization process, as phagocytic transmembrane receptors
(e.g., the mannose receptor and dectin-1) and can be involved in complement activation [33].
To date, many classes of PRRs, including toll-like receptors (TLRs), nucleotide-binding
oligomerization domain (NOD)-like receptors (NLR) and retinoic acid inducible gene-I
(RIG-I)-like receptors (RLR), have been studied and characterized [38]. These receptors
elicit an immune response through the activation of the transcription nuclear factor kappa
B (NF-kB), which prompts the upregulation of proinflammatory cytokine genes such as IL-1
and TNF-α, responsible for the recruitment and activation of different subsets of leukocytes
(e.g., neutrophils, macrophages) at the site of injury or infection [38,39]. This represents the
starting point of a cascade of events responsible for changing the local environment of the
surrounding tissue and vasculature [40]. The first cells to act are neutrophils, which engulf
pathogens and attract other immune cells such as macrophages and other neutrophils,
through the secretion of various inflammatory molecules and growth factors [41–43]. The
infiltrating macrophages, together with the tissue-resident macrophages, adopt a proin-
flammatory phenotype, clearing the foreign particles/debris through phagocytosis and
secreting pro-inflammatory cytokines such as IL-6, TNF-α and interferon-γ (IFN-γ), vital
for the early phase of normal tissue healing and the activation of the adaptive immune
system [44]. In contrast to the innate immunity, the adaptive immune system contains cells
(B and T cells) capable of recognizing specific antigens, after multiple contacts, developing
the so-called “immunological memory” [45]. A special subset of immune cells, which act
as messengers between the innate and the adaptive immune systems, is represented by the
dendritic cells. This cell population is capable of processing antigens into short peptides
and presenting them on their cell surface (antigen presentation), thus exposing the antigens
to the T cells for phagocytosis [46]. Another important subpopulation of cells is repre-
sented by the mastocytes, tissue-resident sentinels, capable of releasing various mediators
(e.g., cytokines, chemokines) involved in leukocyte recruitment and venular permeability
enhancement. Moreover, data found in the literature showed that by suppressing the
activation and function of the mastocytes, an indirect interference in the mast-cell-induced
recruitment of other immune cells could be observed [47].

Figure 1 offers a basic overview of the innate and adaptive immune system compo-
nents that contribute to the immune reaction towards a pathogen agent/foreign body.

Figure 1. The main components of the innate and adaptive immune systems.
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3. The Host Immune Response Following Biomaterial Implantation

Various materials (Figure 2) have been widely used in the field of regenerative
medicine and tissue engineering with the purpose of restoring the lost structure and
function of the injured bone tissue [48–52].

Figure 2. Various materials used in the bone tissue engineering field. PGLA: poly(lactic-co-glycolic acid); PCL: poly-ε-
caprolactone; PGA: poly(glycolic acid).

However, when implanted in vivo, all biomaterials can be recognized by the host as
foreign bodies [29], therefore eliciting an array of cellular and tissue responses [50], which
can determine the success of the osseointegration process and the biological performance
of the implantable devices [53]. Moreover, when degradable biomaterials are implanted,
due to their natural degradation process that takes place in a physiological environment,
the immune response is additionally affected by surface changes and degradation prod-
ucts [28]. Furthermore, depending on the structure of the implanted biomaterial, the initial
degradation can further facilitate the process, therefore leading in time to the abrupt failure
of the structure. Following the in vivo implantation, host reactions include a cascade of
processes that consists of blood–material interactions, provisional matrix formation, acute
and chronic inflammation, development of granulation tissue, foreign body reaction and
fibrous capsule development/fibrosis [54–58]. The presence of this cascade of events can
either result in tissue remodeling and new bone formation or, in the case of a prolonged
inflammatory state as a response to a foreign body reaction (FBR), it can lead to the de-
velopment of the fibrous capsule and osteolysis. Nanoseconds after bio-implantation,
blood from the injured vessels surrounds the implant, beginning the interaction with the
biomaterial. Following this event, the blood and interstitial fluid proteins, such as albumin,
fibrinogen, γ globulin, complement, vitronectin, fibronectin, sugars, lipids and ions, are
spontaneously adsorbed onto the surface of the biomaterial [9,54,59]. The surface properties
of the biomaterial are capable of influencing the concentrations and types of the adsorbed
proteins and the further recruitment and adhesion of various cells. These characteristics
are key players in the inflammatory and wound healing responses towards implantable
biomaterials [60–63].Therefore, the presence of the newly acquired layer of proteins dictates
the activation of the extrinsic and intrinsic coagulation systems, the complement system,
platelets and immune cells and directs their interactions towards the formation of an initial
thrombus at the interface between tissue and material surface, also known as the transient
provisional matrix [9,22,64]. The extrinsic and intrinsic coagulation systems are activated
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by specific proteins such as factor XII (FXII) and tissue factor (TF). Upon its interaction
with negatively charged surfaces, FXII becomes activated and starts a cascade of protein
reactions, which results in thrombin release [64,65]. In turn, the released thrombin activates
platelets and coagulation factors, thus enhancing the coagulation cascade at the site of
the injury [66]. Moreover, thrombin transforms fibrinogen to fibrin, necessary for the
formation of the primary fibrous mesh around the implanted biomaterial [28]. In addition,
the rapidly adsorbed fibrinogen is involved in triggering the immune response following
cloth formation and in platelet adhesion and activation [28].

The complement system represents a major host defense system, which becomes
activated upon contact with the adsorbed layer of proteins formed on the surface of the
implantable biomaterial [28]. Following the activation of the complement cascade at the
implantation site, high concentrations of C3a and C5a are produced [67] with the purpose
of triggering mast cell degranulation, increasing vascular permeability, attracting and
activating granulocytes and monocytes and inducing ROS release by granulocytes [68].

The coagulation cascade and the complement system interact on the surface of the
biomaterial, working together in the inflammatory cell activation. The fibrin mesh and the
activated platelets that result from the coagulation cascade, together with the inflammatory
mediators released during complement activation, lead to the development of the transient
provisional matrix [54]. The transient provisional matrix offers biochemical, structural and
cellular components for the wound healing process and FBR. Different cytokines, growth
factors, mitogens and chemo-attractants, found in the provisional matrix, are capable of
recruiting cells of the innate immune system at the site of the implant [54]. Moreover,
the complex tridimensional structure of the fibrin network offers an adequate support
system for cell migration and adhesion [54]. Hence, the provisional matrix can be seen as a
natural, biodegradable support system capable of releasing active bioagents involved in
the modulation of the following stages of wound healing [55]. Following the initial blood–
material interplay and provisional matrix development, acute and chronic inflammatory
responses follow each other. Their degree of intensity is dependent on both the extent of
the injury sustained during the implantation process and on the extent of the provisional
matrix formation [54]. The acute inflammatory response is characterized by the presence
of neutrophils (polymorphonuclear leukocytes (PMNs)) at the implantation site, their
recruitment being triggered by various chemo-attractants (TGF-β, platelet-derived growth
factor (PDGF), IL-1 and leukotriene (LTB4)) released from the host-activated platelets,
endothelial cells and injured tissue cells. Once recruited, they become activated and
adhere to the biomaterial’s surface through a mechanism that involves integrin-driven
interactions (β2 integrins) [9], triggering the phagocytic response and degranulation [69,70].
In addition, mast cells are also directly involved in the acute inflammatory response through
the release of histamine and inflammation-enhancing cytokines produced during their
degranulation [70]. IL-4 and IL-13, released during the degranulation process, are capable
of determining the extent and degree of the subsequent development of the FBR [54].
Moreover, the adsorbed host fibrinogen, coupled with the histamine release from the mast
cells, mediates the acute inflammatory response through the recruitment and adhesion
of phagocytes to the implant surface [71,72]. Upon activation, the neutrophils produce
and release proteolytic enzymes and ROS in an attempt to destroy the foreign bodies,
the cellular debris and the pathogenic agents [73]. Moreover, they secrete significant
amounts of pro-inflammatory cytokines such as IL-1β, TNF-α, IFN-γ, which will lead to
the further degradation of the surrounding tissue, as well as immunoregulatory molecules
such as IL-8, monocyte chemo-attractant protein (MCP)-1 and macrophage inflammatory
protein (MIP)-1α [74]. The secreted chemokines are potent chemo-attractants for monocytes,
macrophages, immature dendritic cells and lymphocytes [75] and their progressive increase
inhibits further PMN infiltration in favor of monocyte recruitment [76]. The remaining
PMNs found at the implantation site rapidly become exhausted, undergo apoptosis and are
engulfed by macrophages [76], disappearing within the first two days following biomaterial
implantation [54]. The acute inflammatory response normally resolves in less than one
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week, depending on the extent of the trauma at the implantation site, and it is followed
by a chronic inflammatory phase, where monocytes/macrophages are the predominant
cells involved in the inflammation evolution. The chronic inflammatory state usually lasts
no longer than two weeks and is confined at the site of the implantation. However, the
persistence of the acute and/or chronic inflammatory state for more than three weeks
usually indicates an infection [54]. In response to the chemo-attractants and activation of
cytokines released during the previous phase, the blood-circulating monocytes migrate
to the implant surface, bind fibrinogen to the provisional matrix and undergo phenotypic
differentiation, changing into macrophages [13]. Macrophages are key players in the
wound healing process, being involved in wound debris clearance and the production
of various mediators such as enzymes, cytokines, growth factors, etc. [77]. They possess
high plasticity, being able to change their functional phenotype in response to stimuli
received from changes in the microenvironment [29]. Therefore, they can acquire a pro-
inflammatory phenotype (M1) or an anti-inflammatory phenotype (M2) [78,79]. During the
early inflammatory phase, macrophages acquire a M1 phenotype, eliciting an upregulation
in the pro-inflammatory mediators [80], a mechanism necessary for the normal wound
healing process [81]. Adherent activated macrophages secrete chemokines [82], ROS and
degrading enzymes [83,84] for further inflammatory cell recruitment and degradation of the
biomaterial, respectively. Similar to the wound healing process, the adherent macrophages
polarize to an M2 phenotype, characterized by a switch in their secretion profile reflected
by anti-inflammatory cytokine production, reduced degradative capacity and the ability
to stimulate the migration and proliferation of fibroblastic cells towards an effective bone
regeneration process [77]. An ineffective switch from the M1 towards the M2 phenotype,
coupled with the mechanism of frustrated phagocytosis, leads to macrophage membrane
fusion and foreign body giant cell (FBGCs) formation, an event which represents a hallmark
of the chronic inflammatory state. Single macrophages are able to phagocytose particles
up to 5 µm in size [85], but if the particle size is larger, the cells undergo fusion to form
FBGCs. The process of cell–cell fusion is fostered through the activation of basophils,
mast cells and T helper (Th) cells that produce IL-4 and IL-13, cytokines that have been
shown to enhance macrophage fusion on the biomaterials’ surface [86–89]. However, the
mechanism through which cells of monocytic origin fuse to form multinucleated cells
has not been fully characterized, and the present proposed mechanism involves three
important steps. In the first step, cells need to acquire their ability to fuse; then, the fusion-
competent cells migrate and attach themselves to membranes found in close proximity,
and lastly, the cells undergo fusion, sharing their cellular components [90]. Moreover, in
order for cells to become fusion-competent, specific fusion-inducing mediators are required,
and even so, their simple presence is not sufficient if the surface of the biomaterial does
not support the fusion process. Therefore, the protein layer found on the surface of the
biomaterial dictates the fate of the adherent cells. In this context, a variety of proteins,
such as fibrinogen, collagen, fibronectin, laminin, vitronectin, have been studied in regard
to their ability to promote FBGC formation and the results showed that only vitronectin
supports the fusion process [91]. Consequently, the formation of FBGCs depends heavily
on the presence of the fusion-inducing stimuli and the appropriate adsorbed protein layer
on the biomaterial surface.

Following the resolution of acute and chronic inflammation, the formation of the
granulation tissue is recognized by the presence of macrophages and the recruitment
of fibroblasts and endothelial cells at the implantation site [55]. It is thought that the
granulation tissue is a precursor for fibrous capsule development, due to the fact that is
separated from the implant only by a one- to two-cell layer of macrophages, monocytes
and FBGCs [92]. The healing process of the tissue surrounding the implantation site,
depending on the immune response, can follow two paths: bone regeneration or
fibrous capsule development. The path which the implant will follow depends on the
proliferative capacity of the host cells and on the extent of the provisional matrix and
that of the ECM formed at the implantation site. Moreover, the synergetic action of the
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immune cells results in the release of various pro-fibrogenic factors, which are capable
of recruiting fibroblastic and endothelial cells. Normally, the recruited fibroblasts,
in an attempt to repair the injured tissue, will deposit type I and III collagen, but,
in the presence of a biomaterial, excessive secretion of collagen occurs, leading to
the formation of fibrotic tissue [93]. This newly formed tissue will encapsulate the
biomaterial and prevent the attachment of the bone-forming cells to its surface for
new bone formation. This scenario will render the biomaterial inert, failing to meet
the demands of a bone substitute material, leaving the defect to be filled with fibrous
tissue instead of the new bone tissue [55]. Figure 3 summarizes the key events involved
in the inflammatory response to an implantable biomaterial.

Figure 3. The sequence of events contributing to the immune response towards biomaterial implantation.

4. The Role of the Immune System in Bone Dynamics

The immune cell involvement with the skeletal system does not only involve their
role in maintaining bone homeostasis, but they also play a vital role in the bone healing
process. The most recent studies in the bone tissue engineering field have reported that the
bone healing process is largely dependent on the intimate relationship between cells of the
immune and skeletal systems. Bone healing is a complex process that involves various time-
overlapping regulations. It can be divided into four major phases (inflammatory phase,
the fibrocartilaginous bone formation, bony callus formation and the bone remodeling
phase), each of them involving various processes that require an intimate crosstalk between
immune and bone-forming cells [29]. Among the cells of the immune system, macrophages
are recognized as key players in the recovery process to reestablish the tissue integrity and
function after injury [94].

4.1. Macrophage Plasticity and Polarization States

Macrophages are prodigious phagocytic cells, considered to be the organism’s first
line of defense against infectious microorganisms and various pathogens. However, in the
last few years, their indispensable role in homeostasis and the bone remodeling process
has been elucidated [50].

The macrophages present one of the most diverse and adaptive transcriptomes, ex-
pressing a broad range of cell surface receptors, pro- and anti-inflammatory cytokines,
growth factors, chemokines, proteolytic enzymes and many other cellular products [95–97].
They are derived from a distinct population of blood-circulating monocytes (CD14hiCD16−

and CD14+CD16+ monocytes) [98–100] that migrate and infiltrate the compromised tis-
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sue [95,101,102]. Once infiltrated, in response to the local signals associated with pathogens
or traumatized tissue, the monocytes differentiate into macrophages, becoming activated
and increasing their production of cytokines, chemokines or other molecules that con-
tribute to the local microenvironment. Very much like the monocytes from which they
originate from, macrophages are a heterogeneous cell population with different markers
and functions [98,103–106]. They possess an extraordinary, attuned responsiveness and a
diverse expression capacity which translates into high plasticity and the ability to exhibit a
spectrum of polarization states, which are defined by their function and patterns of gene
expression [16,106,107]. Polarized macrophages are generally referred to as having either
a pro-inflammatory M1 or an anti-inflammatory M2 phenotype, similar to the Th1/Th2
nomenclature which has been used for the T helper cells [108]. The M1 phenotype is nor-
mally associated with the early stages of tissue repair due to the fact that M1 macrophages
are key players in the acute inflammatory phase. The M2 cells act during the late phases of
bone healing, being involved in either new bone tissue formation or the development of
fibrous tissue. Both phenotypes produce and secrete different factors and cytokines that
interact with osteoblastic, osteoclastic, mesenchymal and endothelial cells during the bone
healing process.

The “classically activated” or the pro-inflammatory M1 phenotype emerges as result of
the exposure to inflammatory signals such as IFN-γ alone or in combination with microbial
products such as LPS or TNF-α [105]. M1 macrophages are recruited shortly after injury
and are involved in the early immune response by enhancing the local inflammatory
microenvironment through the production of pro-inflammatory cytokines and ROS as an
attempt to clear pathogens or other foreign bodies from the wound site [109,110]. The M1
phenotype releases various pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-12, IL-23)
and chemokines (α-chemokine ligands (CXCL1)-3, CXCL-5 and (CXCL8)-10), produces
high levels of nitric oxide synthase (iNOS), metabolizes arginine, secretes reactive oxygen
and nitric oxygen intermediates and promotes lymphocyte differentiation towards Th1
cells [106]. In the context of bone healing, the M1 phenotype dictates the initial clearance of
tissue debris and induction of osteoclastogenesis, while their prolonged presence leads to
a chronic inflammatory state. Regarding biomaterial implantation, the initial presence of
the M1 macrophages induces the necessary inflammatory response but their prolonged
presence leads to a severe FBR and fibrous encapsulation. Therefore, in order to restore
the normal function of the traumatized bone tissue and avoid implant failure, a timely,
favorable switch between the M1 and M2 phenotypes is necessary.

The M2 macrophages, also referred to as “alternatively activated “macrophages,
are induced through exposure to various signals, such as cytokines (IL-4, IL-13 and IL-
10) secreted from mast cells, basophils and other granulocytes, immunocomplexes (ICs),
adenosines, glucocorticoids (GCs), arginase, TLRs and growth factors (TGF-β) [16].The
M2 macrophages release anti-inflammatory cytokines such as IL-10, express high levels of
scavenging molecules and mannose and galactose receptors (CD163, CD206, CCR2) [111],
produce arginase-1 (Arg-1), which is a substrate of iNOS, and are involved in the polarized
Th2 reactions. In addition, the M2 macrophage population is heterogenous, encompassing
a range of different subsets, namely M2a, M2b and M2c [95], each with its own distinct
inductors, markers and functions. The M2a subset is normally induced as a result of
either IL-4 or IL-13 stimulation and its main role is to support the wound healing process
by secreting high levels of Arg-1, which contributes to the production of collagen and
fibroblast-stimulating factors [112]. The M2b subpopulation is induced by either Arg-1,
ICs or TLR agonists and is involved in suppressing the inflammatory reaction by Il-10
production [113]. M2c macrophages are induced by IL-10 and play a key role in the tissue
remodeling phase by releasing IL-10 and TGF-β [114]. In the context of biomaterial implan-
tation, the presence of the anti-inflammatory cytokines and tissue remodeling response
leads to neovascularization and inhibition of fibrotic encapsulation, which improves the
implant biological function and integration.
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However, this classification of macrophages into two different phenotypes represents a
simplistic picture of the in vivo situation; therefore, this concept is slowly being replaced by
the idea of a continuum of different activated states according to the temporal presentation
of stimuli that the macrophages are exposed to. This suggests that the presence of different
macrophage phenotypes in the same microenvironment can be used as a potential strategy
in order to obtain contrastive remodeling mechanisms for a reduced inflammatory reaction.
Figure 4 shows the inducers and the released molecules for each macrophage subtype.

Figure 4. Polarization of macrophages and the released cytokines. ↑ indicates upregulated production;
↓ indicates downregulated production; IL—interleukin; TGF-β—transforming growth factor β; TNF-
α—tumor necrosis factor α; INF-γ—interferon γ; LPS—lipopolysaccharide.

4.2. The Crosstalk between Immune and Bone-Forming Cells

Besides their involvement in removing tissue debris and confining and reducing
the spread of the inflammation, current research is shedding light on their involvement
in processes such as osteogenesis and osteoclastogenesis. The interplays between the
immune and bone-forming cells are multiple and follow different pathways. For example,
a series of studies demonstrated that the secretion of cytokines and chemo-attractants by
the immune system cells attracts mesenchymal stem cells (MSCs) to the injury site and
modulates the osteogenic and osteoclastogenic processes [115–117]. On the other hand, it
is known that osteal macrophages (OsteoMacs) are involved in hard callus maturing [46].
Chang et al. [118] reported that the lack of macrophages inhibited osteoblast-mediated
bone formation in vivo. Altogether, various cytokines, signaling molecules, transcription
factors and receptors can induce a favorable crosstalk between immune and skeletal cells,
due to their common origins.

4.2.1. The Immune Response and the Osteogenic Process

Osteogenesis is the bone formation process in which early bone is developed and ECM
is mineralized [29]. The immune cells are closely interconnected with the development
of new bone tissue, playing an indispensable regulatory role in the osteogenic process.
Similar to other inflammatory responses, during the bone healing process, macrophages
play a vital role in bone regeneration, by influencing the local microenvironment through
the secretion of various cytokines. Recently, it has been reported that both pro- and anti-
inflammatory macrophages can have a positive effect on the new bone formation, therefore
playing a major role in controlling osteogenesis-related processes. The secreted cytokines
can regulate the inflammatory response, controlling the differentiation of MSCs into bone
forming cells and, once matured, their function.
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The M1 phenotype releases inflammatory cytokines such as TNF-α, IL-6, IL-1β and
IL-23 [29]. It was reported that TNF-α could induce the upregulation of alkaline phos-
phatase (ALP) activity, an early osteogenic marker, and stimulate the mineralization pro-
cess by MSCs, through the activation of the NF-kB signaling pathway [119]. Moreover,
by pre-treating LPS-stimulated growth medium with a TNF-α-neutralizing antibody, the
stimulatory effect on the ALP activity was attenuated [120]. In addition, the vital role of the
pro-inflammatory cytokine IL-6 in the early stages of fracture healing has been reported by
Yang et al. [121] in their study, where IL-6 knockout mice were found to present a delay in
callus maturity, mineralization and tissue remodeling. On the other hand, the knockout
of Oncostatin M (OSM), a cytokine that pertains to the IL-6 family, in the early stages
of fracture healing led to a reduced amount of new bone [122]. Furthermore, delivering
pro-inflammatory cytokines such as TNF-α, IL-17 and INF-γ, in controlled dosages, has
been shown to activate the autologous differentiation factor from MSCs, inducing their
differentiation into mature osteoblasts [120]. However, due to their bimodal role, in the
specialized literature, their inhibitory effects on the osteogenic process have been reported.
For instance, TNF-α can suppress the differentiation of the osteoblastic cells by reducing the
levels of bone morphogenetic protein-2 (BMP-2) and enhancing the expression of canonical
Wnt signaling pathway inhibitors dickkopf-1 (DKK-1) and sclerostin (SOST). Furthermore,
it can stimulate the apoptotic process of the osteoblastic cells [123–125]. In addition, high
levels of TNF-α and INF-γ released by the proinflammatory T cells can suppress bone
marrow mesenchymal stem cells’ (BMMSCs’) ability to mediate the bone regeneration pro-
cess through a downregulation in the run-related transcription factor 2 (Runx-2) pathway.
However, this inhibitory effect can be overcome by the administration of anti-inflammatory
drugs such as aspirin [126]. It is hypothesized that anti-inflammatory drugs lead to the
activation of the transcription factor NF-kB, which in turn enhances the degradation of an
important component (β-catenin) of the Wnt osteogenic signaling pathway [127]. These
observations suggests that the effects of the pro-inflammatory mediators on bone dynamics
are time- and dose-dependent. Therefore, the proper timing and concentration of these
mediators is of importance in order to elicit new bone formation and avoid bone resorption.

Opposing the M1 phenotype, the M2 pro-healing macrophages play an important
role during the middle and late stages of fracture healing, and depending on the release
profile of the inflammatory cytokines, they can induce the formation of either new bone
or fibrous tissue. The M2 phenotype secretes anti-inflammatory cytokines such as IL-10,
TGF-β, IL-1ra and pro-osteogenic molecules such as BMP-2 and VEGF [128]. IL-10 was
shown to enhance the osteoblastic differentiation in an IL-10-depleted mouse model [129].
Moreover, by stimulating human MSCs with TGF-β, their differentiation into osteoblasts
through autocrine BMP signaling was reported [130]. IL-1ra acts as an inhibitor for IL-1,
regulating its adverse effects. However, it was reported that the prolonged release of factors
such as TNF-α, TGF-β1 and TGF-β3 leads to the formation of scar tissue and a delay in the
wound healing process [131].

This close relationship between the immune cells and the bone regeneration process
demonstrates that the traditional strategy of focusing on the interaction between the
biomaterial and bone forming cells is not sufficient, as they do not reflect the in vivo
situation, in which the immune cells play a role during the process of wound repair.
Therefore, the observation of the intimate interplay between immune and skeletal systems
represents a strong argument in considering the importance of the immune response in
designing new bone substitutes.

4.2.2. The Immune Response and the Osteoclastogenic Process

Bone regeneration is a complex process in which its two stages of bone formation and
resorption are balanced. Bone resorption is a two-step process that starts with the prolifera-
tion and differentiation of osteoclast precursors and continues with the degradation of the
organic and inorganic phases of the bone tissue [132]. The osteoclasts are vital players in
the bone healing cascade, being involved in the ECM resorption and depletion of the tissue
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area prior to new bone deposition. The osteoclast maturation occurs through a complex
receptor activator system that involves the interaction between macrophages and bone-
forming cells [133]. In addition to osteoclastic differentiation, the immune system is tightly
connected to the osteoclastogenic process through the release of important cytokines and
chemokines from macrophages. The immune system modulates the osteoclastogenic pro-
cess through the involvement of three main cytokines—M-CSF, receptor activator of NF-kB
ligand (RANKL) and osteoprotegerin (OPG) [13]. During bone remodeling, under M-CSF
and RANKL stimulation, macrophages differentiate into osteoclasts. RANKL binds itself to
a receptor found on the surface of the osteoclast precursors, RANK, leading to an upregula-
tion of the gene expression for the survival and differentiation of osteoclasts, through the
TNF receptor-associated factor 6 (TRAF6), NF-kB, activator protein-1 (AP-1) and nuclear
factor of activated T cells 2 (NFAT2) [15]. Similarly, M-CSF binds to its associated receptor
c-FMS, found on the surface of the osteoclast precursors, leading to osteoclast differentia-
tion through the Akt and MAP kinase pathways [134]. Moreover, inflammatory cytokines
such as IL-6 and TNF-α play an important role in the RANKL/RANK/OPG systems
and, implicitly, in the osteoclastogenic process. IL-6 is known to induce the expression of
RANKL [155/135], while TNF-α indirectly modulates the expression of RANKL by stromal
cells through IL-1 stimulation. TNF-αwas also demonstrated to inhibit OPG expression
and stimulate M-CFS production in bone-forming cells [135,136]. Furthermore, through
the stimulation of the apoptotic process of osteocytes, TNF-α is capable of attracting osteo-
clasts [137]. Similarly to TNF-α, IL-17, IL-23 and IL-1 were capable of inducing a positive
effect on the osteoclastogenic process through the enhancement of RANKL expression (IL-
17 and IL-23) and stimulation of MCS-F production (IL-1) in bone-forming cells [138–140].
In contrast, some cytokines can elicit an inhibitory effect on the osteoclastogenic process.
For example, IL-10 downregulates the expression of the nuclear factor of activated T cells,
cytoplasmatic 1 (NFATc1), necessary for osteoclast differentiation, therefore inhibiting the
resorptive process. Moreover, it was reported that in a mixed osteoblast–osteoclast cell
culture, IL-12 was capable of inhibiting RANKL-mediated osteoclastogenesis and TNF-α
stimulated osteoclast differentiation [141,142]. OPG, a decoy receptor for RANKL, can
inhibit both the differentiation and function of osteoclasts, by binding itself to the RANKL
receptor and disrupting the RANKL/RANK interaction [133,143].

Apart from macrophages, other immune cells actively participate in the osteoclasto-
genic process. For instance, RANKL is expressed not only by osteoblastic cells but also by
the activated T cells and neutrophils, indicating their involvement in the osteoclastogenic
process [144,145]. Moreover, a reduction in the number of mast cells led to a suppression
in the bone remodeling process, whereas an increase in the systemic mastocytes led to an
enhancement in the amount of bone loss [146,147].

The close relationship between the immune cells and osteoclasts plays an important
role in many bone pathologies, such as rheumatoid arthritis, osteoarthritis, etc. The
presence of a prolonged pro-inflammatory state leads to an increase in the RANKL/OPG
ratio and enhanced osteoclast activity [148]. This has, as a direct consequence, a shift in the
bone remodeling process towards an accelerated bone resorption process, characterized by
a derangement in the organic and mineral components, which, in the end, will result in
excessive bone loss.

5. Development of Bone Biomaterials with Immunomodulatory Properties

The implantation of a bone biomaterial triggers multiple directional immune re-
sponses, resulting from the damage caused to the host tissue and from the interplay
between the biomaterial and the surrounding microenvironment. When facing the host
immune system, the implantable biomaterial is not simply a passive target, but elicits sig-
nificant effects that modulate the extent and type of implant-mediated immune response.
Therefore, understanding the influence of the biomaterial properties on different stages
of bone healing could lead to favorable results for the osseointegration process. The ideal
bone substitute should be capable of stimulating favorable crosstalk between the cells of
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the immune and skeletal systems in the different stages of bone healing. The fate of the
implant rests heavily on the immune response elicited by the biomaterial; therefore, the
need for materials capable of instructing the immune system to elicit an adequate immune
response has become apparent. The concept of biomaterial-associated osteoimmunomod-
ulation highlights two main developing strategies: the need for a proper evaluation of
the biomaterial’s effect on the immune responses and the development of biomaterials
capable of modulating a proper immune reaction at the implantation site [149,150]. In this
context, a series of strategies, such as modification of the chemical/topographical charac-
teristics or the incorporation of bioactive molecules (Table 1), have been proposed with
the purpose of designing biomaterials capable of controlling macrophage polarization and
the positive crosstalk with the bone-forming cells. The following section synthesizes the
recent advancements in the field of immunomodulatory biomaterials for osteogenesis and
osteoclastogenesis, with a special focus on the tunable properties of the bone biomaterials.

Table 1. Surface properties that influence the immune responses towards an implantable biomaterial.

Tunable Properties Effect of Immune Cells Ref.

Surface
chemistry

Wettability hydrophobicity: ↑monocyte adhesion
hydrophilicity: ↓macrophage adhesion; [53,82,151–160]

Charge anionic/neutral particles: ↓ inflammatory reaction
cationic species: ↑ inflammation; [30,160–163]

Surface
topography

Roughness induces significant immune reactions,
influences immune cell adhesion; [30,158,160,164–174]

Particle size influences the immune reaction,
no consensus has been reached on size; [161,175–177]

Porosity/pore size larger pore size: ↓ inflammation,
↑ angiogenic process; [178–182]

Delivery of biological molecules elicit immunoregulatory effects [2,183–197]

Data are collected from the specialized literature as seen in the flowchart from Figure S1 (Supplementary Materials). ↑ indicates enhancement;
↓ indicates inhibition.

5.1. Immunomodulatory Biomaterials for Osteogenesis
5.1.1. Surface Chemistry Alterations

The surface chemistry of the biomaterial is an important aspect that determines its
interaction with the biological microenvironment, in terms of protein adsorption and
cellular responses. As previously described, the biomaterial surface’s interaction with the
adsorbed layer of proteins is vital for the appearance of the immune response towards
the implant [198,199]. In this context, a series of studies reported that the immune cell
response can be influenced by altering different surface chemical characteristics, such as
wettability [152], surface charge [30] or functional groups [152].

The biomaterial’s wettability is strongly associated with the protein layer adsorption,
blood clot formation and fibrin formation. Highly hydrophilic biomaterials are normally
protein-resistant [2] while hydrophobic biomaterials present an intrinsic immunogenic-
ity [154,155] since the host immune system can recognize the hydrophobic portions of
different biological molecules as DAMPs, leading to PRR activation and molecule elimina-
tion [200]. In this context, the biomaterial’s hydrophobicity or hydrophilicity represents a
crucial factor which influences the protein adsorption. Visalakshan et al. [53] evaluated
the role of surface chemistry and wettability in serum-derived protein layer formation
on the surface of a biomaterial and the subsequent effects on the elicited immune re-
sponse. In this study, a substrate-independent technique (plasma polymerization) was
used to obtain nano-thin biomaterial coatings with different chemical functionalities and
a spectrum of surface charges and levels of wettability. The results showed that the type
and amount of the adsorbed proteins was significantly influenced by surface chemistry
and wettability. Therefore, the hydrophilic carboxyl surfaces favored albumin adsorp-
tion, while the hydrophobic hydrocarbon surfaces favored IgG2 adsorption. Furthermore,
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Thevenot et al. [154] investigated the effect of gold nanoparticles functionalized with in-
creasing hydrophobic chemical groups on immune cells isolated from mice spleen and the
results showed that particles with increased hydrophobicity stimulated the gene expression
profile of TNF-α and IFN-γ. Likewise, Kakizawa et al. [155] designed monodisperse silica
nanoparticles coated with different poly-(amino acids) of various degrees of hydrophobicity
and reported that the secretion of IL-1β and IFN-γ is correlated with the hydrophobicity of
the poly-(amino acids). Furthermore, it was demonstrated that biomaterials with increased
hydrophilicity enhanced the bone regeneration process. Li et al. [156] demonstrated that
pristine titanium (Ti) surfaces with lower hydrophilicity elicited an enhanced secretion of
several pro-inflammatory cytokines such as TNF-α, MCP-1 and IL-1β, in comparison to Ti
surfaces functionalized with heparin/fibronectin. On the other hand, Alfarsi et al. [157] re-
ported that surface hydrophilic modifications downregulated the gene expression profiles
of several pro-inflammatory cytokines and of their associated proteins. Hamlet et al. [158]
investigated the comparative effect of two hydrophilic modified sandblasted/acid-etched
(modSLA) and SLA Ti surfaces and the results showed a reduction in the gene expression
profiles of the TNF-α, IL-1β, IL-1α cytokines and MCP-1 chemokine from the macrophages
seeded on the surface of the hydrophilic Ti. In another study, Dai et al. [159] evaluated the
effect of hydrophilic Ti disks on RAW 264.7 murine macrophages and the results obtained
revealed that the hydrophilic surface was able to upregulate the secretion of IL-10 and
downregulate the secretion TNF-α, respectively. Moreover, Hotchkiss et al. [160] investi-
gated the effect of an oxygen-plasma-generated, hydrophilic Ti disk on primary murine
macrophages isolated from C57BL/6 mice and the results showed that the hydrophilic Ti
surface could downregulate the levels of pro-inflammatory cytokines and upregulate the
levels of anti-inflammatory cytokines. Furthermore, to combat the immunogenic effects of
the hydrophobic surfaces, hydrophilic molecules such as polyethylene glycol (PEG) and
polyethylene oxide (PEO) were added as monolayer coatings to delivery platforms and
tissue engineering constructs in order to increase their hydrophilicity and reduce protein
adsorption [201,202]. However, increased hydrophilicity results in high protein adsorp-
tion resistance, which can lead to decreased interactions with the immune cells, which in
turn may reduce the immunomodulatory effects [201–203]. Even though this reduction
in the interplay with the immune cells could be favorable in counteracting undesirable
pro-inflammatory responses, future strategies could leverage changes in surface chemistry
to modulate the immune reaction towards natural healing responses to injury. Another
important surface aspect is represented by the chemical groups. The surface charge of
the biomaterial plays a crucial part in immune response modulation [162,163,204,205].
Therefore, various functional groups, such as amino (-NH2), hydroxyl (-OH), carboxyl
(-COOH), are commonly studied. A series of in vivo studies demonstrated that the amino
and hydroxyl groups could induce the enhanced infiltration of immune cells [206–208] and
the development of a thicker fibrotic capsule surrounding the implant [207,209]. In addi-
tion, cell differentiation and focal adhesions [10,210] were enhanced to different degrees
by the presence of hydroxyl groups, followed by amino and carboxyl ones [10]. Bart-
neck et al. [162] reported that, depending on the exposed functional groups, surface-charge-
modified nanorods were capable of altering the inflammatory profiles of macrophages.
The amino-terminated nanorods exhibited a positive surface charge, therefore inducing
an anti-inflammatory M2 phenotype. On the contrary, the carboxyl-terminated nanorods
induced a switch towards the M1 pro-inflammatory phenotype, due to the negative surface
charge. However, a series of studies have reported that positively charged particles can
lead to enhanced activation of the inflammasome in comparison to negatively charged
particles [163]. Moreover, other works showed that the immune function can be inhibited
or blocked by negatively charged particles [205,211], due to changes in the migratory be-
havior and function of macrophages. These actions can disrupt the macrophage-mediated
inflammatory response and promote regulatory T cell phenotypes [211]. For example,
Getts et al. [211] synthesized negatively charged particles from carboxylate poly(lactide-
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co-glycolide) (PLGA), polystyrene and microdiamonds and reported that all the tested
particles could suppress the inflammatory activity of macrophages.

In addition, several bone biomaterials are not inert but bioactive; therefore, their
surface is in dynamic evolution due to the release or uptake of soluble products when
in contact with a physiological environment. This process is even more complex in the
case of resorbable biomaterials because the interaction with the surrounding cells will not
only take place through direct contact with the biomaterial surface but also through the
products (e.g., ions) released in the local microenvironment. Therefore, the effect of the
chemical composition on the immune cells’ response is an important factor that should be
taken into consideration. For instance, Chen et al. [212] used a chemical immersion method
to coat Mg scaffolds with β-tricalcium phosphate (β-TCP) as a strategy to manipulate their
osteoimmunomodulatory properties, and the outcome suggested that the coating could
induce a proper and effective switch towards the M2 macrophage phenotype, therefore
leading to enhanced bone marrow-derived stem cell (BMSC) differentiation and inhibition
of the inflammatory state and osteoclastogenic process. In another study, Chen et al. [213]
investigated the effect of Mg-β-TCP extracts on the macrophage response and the results
showed that, in response to the calcium-sensing receptor (CaSR) pathway activation, the
macrophage polarized towards the anti-inflammatory M2 phenotype. Moreover, the ex-
pression of BMP-2 was significantly upregulated by β-TCP stimulation. In terms of BMSCs’
differentiation, their osteogenic differentiation was significantly enhanced, therefore sug-
gesting the important role of macrophages in biomaterial-mediated osteogenesis. Similarly,
Chen at el. [214] demonstrated that a biphasic calcium phosphate (BCP) scaffold consisting
of β-TCP:HA (80:20) was able to generate a more favorable osteoimmunomodulatory
microenvironment in comparison to β-TCP and HA (hydroxyapatite) alone, both in vitro
and in vivo. The BCP scaffold led to an enhancement in the number of pro-healing CD206+
M2 macrophages and the induction of the new bone-forming process in a murine model.
Wang et al. [215] reported that another BCP with a similar composition β-TCP:HA (70:30)
could elicit the early expression of various growth factors from the RAW 264.7 cell line
and enhance the production of osteocalcin (OCN) and ECM mineralization by MSCs when
cultured with condition media collected from the seeded murine macrophages. Moreover,
following implantation in a physiological environment, the bioactive bone biomaterials
undergo a degradation process which results in the corrosion products’ release [216].
Amongst the corrosion products, ions can elicit significant effects on the local biological
microenvironment [217–219], and a summary can be found in Table 2.

Based on these observations, the strategy to modulate the immune response by the
controlled release of a defined combination of bioactive elements can be considered a
worthy approach.

Altogether, the presented results offer important information regarding the altering of
the biomaterials’ characteristics in order to obtain the desired cellular biological behavior.
However, future studies are still necessary to fully comprehend the complex relationship
between biomaterials’ surface chemistry and immune cell response.
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Table 2. The effects of various ions on the immune response and bone-related events.

Ion Effect on the Immune Response and Bone Events Ref.

Calcium (Ca) involved in the noncanonical Wn5A/Ca2+ signaling pathway and the CaSr signaling cascade [220–223]

Magnesium (Mg)
In Vitro

↓ pro-inflammatory cytokine production through the inhibition of the toll- like
receptor (TLR) pathway [224]

↓ expression levels of TNF-α and IL-6
↑ production of TGF-β1 in macrophages [225]

In vivo ↓ osteoclastogenic process
↑ osteogenic cell recruitment [226]

Silicon (Si)
In vivo ↑ local inflammatory response [227]

In Vitro contradictory results have been reported, proving the ion’s inertness [228]

Zinc (Zn) In Vitro

↑ anti-inflammatory cytokine production (IL-10)
↓TNF-αand IL-1β secretion, through TLR-4 pathway modulation [229–232]

ZnO NP: ↑ osteogenic process of osteoblasts [233]

↓ inflammatory activity of RAW264.7 cells
↓differentiation and formation of mature osteoclasts [234]

Cobalt (Co) In Vitro: ↑pro-inflammatory effects via the hypoxia-inducible factors (HIFs) [235,236]

Strontium (Sr) In Vitro ↓ TNF-α production in human primary monocytes [237,238]

↑ indicates enhancement; ↓ indicates inhibition.

5.1.2. Physical Property Alterations

Implantable devices display inherited physical characteristics, either introduced or
resulting from the manufacturing process [11]; therefore, in addition to the surface chem-
istry aspects, the biomaterial’s topography, roughness, porosity and pore size can influ-
ence the immune cells’ plasticity [239–250], function and interaction with bone-forming
cells [251,252]. By modulating the physical surface properties of the biomaterials, modifica-
tions in the adsorbed protein layer and signaling transduction can occur, therefore leading
to changes in the cellular behavior [2]. In the last few decades, the surface modification
strategy has attracted more and more attention in the field of implantable devices, but
only recently have the osteoimmunomodulatory properties of the surface been taken into
consideration as a potential method to regulate the local microenvironment for bone tissue
engineering [107].

An extensively studied modification method is represented by the surface rough-
ness, a biomaterial characteristic which can influence the interaction with the immune
cells [164,165,253–255]. For instance, the roughness of Ti has been reported to influence
immune cells’ attachment and spreading [165] and modulate the production and secre-
tion of pro-inflammatory cytokines and chemokines [164]. Li et al. [256] investigated
the influence of a micro-arc oxidation (MAO)-modified Ti surface on the inflammatory
microenvironment and the results suggested that the modified surface was capable of
generating a favorable inflammatory microenvironment by controlling the inflammatory
mediators’ production at both stages following implantation (before and after osteoblast
recruitment to the surface of the biomaterial). In general, roughness can be presented on a
microscale, and there has been evidence that micropatterned surfaces can elicit beneficial
effects on the osteoimmune microenvironment, leading to an improvement in the implanta-
tion success rate [2,13]. For example, Vlacic-Zischke et al. [166] developed microroughness
on the surface of a Ti substrate via a sandblasting acid-etching method and the results
obtained revealed that the modified surface increased the level of TGF-β signaling and
stimulated osteoblast differentiation. Furthermore, Hotchkiss et al. [160] reported that Ti
surfaces altered with microroughness promoted the M2 macrophage phenotype switch
and an increase in IL-4 and IL-10 cytokine production, in comparison with the smooth Ti
substrate, which promoted M1 polarization. In another study, Zhu et al. [167] compared a
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smooth-surface BCP with a BCP with a micro-whisker and nanoparticle hybrid-structured
surface (hBCP) and it was observed that the hBCP substrate could downregulate the ex-
pression levels of the TNF-α and IL-6 pro-inflammatory cytokines. Uddin et al. [168] used
a synergistic surface modification combining deep ball burnishing and HA coating for a
commercial AZ31 Mg alloy and the results indicated that the burnished surface reduced
pro-inflammatory cytokine production and increased anti-inflammatory cytokine release,
in comparison to the untreated support. In addition, due to the increased roughness
of the modified surface, an improvement in the coating adhesion strength could be ob-
served. Moreover, the microroughness of the surface does not only influence the cytokine
production but the angiogenic process and BMSCs’ function. Yang et al. [169] showed
that the proliferation and recruitment of rat BMSCs can be promoted by the interactions
between the rough surface of the Ti substrate and circulating blood. These observations
suggested that microroughness could be beneficial for the healing and bone regeneration
processes. However, Hamlet et al. [158] reported contradictory results, demonstrating that
Ti substrates with modified microroughness promoted an enhanced pro-inflammatory
cytokine profile.

Since the surface roughness of the natural bone tissue is estimated to be around 32 nm,
recently, nanoscaled biomaterials have been extensively studied. Biomaterials with surface
modulation at a nanoscale level can directly influence important processes such as cell
adhesion and proliferation and modulate osteogenic events [257]. Chen et al. [30] devel-
oped plasma-polymerized allyalamine surfaces in which gold nanoparticles of different
size (16, 38 and 68 nm) were immobilized to modulate the immune cell response. The
results obtained suggested that the scale of the nanotopography was able to significantly
modulate the immune microenvironment with changes in the gene expression profile of the
inflammatory cytokines, osteoclastic activities and osteogenic and angiogenic factors. Fur-
thermore, it was observed that the 68-nm surface topography elicited the most promising
outcome in terms of osteogenic differentiation of the BMSCs. Similarly, Dalby et al. [170]
demonstrated that nanostructures are capable of stimulating human MSCs to produce
and secrete bone minerals even in the absence of special osteogenic agents. In terms of
Ti-based biomaterials, a simple and easy method to modify the surface topography is the
employment of the electrochemical anodization method [258], which leads to the formation
of self-ordered TiO2 nanostructures such as nanofibers, nanotubes, nanorods, nanoarrays,
nanowires and nanosheets. Neacsu et al. [171] investigated the influence of TiO2 nanotubes
with a diameter of 78 nm on the in vitro behavior of RAW 264.7 cells under both standard
and pro-inflammatory conditions and the results obtained suggested that the nanostruc-
tured surface significantly reduced the release of inflammatory mediators and induction of
FBGCs, as compared to the commercial pure Ti surface. The same group conducted a more
in-depth study regarding the mechanism through which the developed nanotube-modified
surface attenuates the inflammatory response of macrophages [172]. It was shown that
the nanotubular surface reduced the LPS-induced phosphorylation of mitogen-activated
protein kinase (MAPK), IkB-α, IKKβ and inhibited the nuclear translocation of NF-kB-p65.
These findings, coupled with the inhibition of NO release and MCP-1 production, suggested
that the nanotubular TiO2 surfaces can suppress the inflammatory activity of macrophages
through the inhibition of the MAPK and nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-kB) pathways. Ma et al. [173] developed TiO2-modified surfaces with
different roughness (6–12 nm) and the in vivo results indicated the enhanced secretion of
the pro-inflammatory cytokines associated with higher roughness. Another study [174]
investigated the influence of two different dimensions of TiO2 nanotubes fabricated via the
anodic oxidation method at 10 V (NT 10) and 20 V (NT20) on the macrophage behavior and
the generated osteoimmunomodulatory microenvironment. The obtained data showed
that the nanotubular TiO2 surfaces could modulate the macrophage polarization state, with
the larger nanotubular surface (NT 20) showing the smaller M1/M2 ratio and enhanced
expression of IL-10 and arginase-1 (Arg-1). On the other hand, the NT 10 surface promoted
the differentiation of macrophages towards the M1 phenotype and the production and
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release of high levels of IL-1β, TNF-α and iNOS. In addition, decorating the Ti surfaces
with nanoscale coatings can offer advanced features to the biomaterial that enhance the
osseointegration process [259]. For instance, Bai et al. [260] developed a microporous TiO2
coating doped with HA nanoparticles on the surface of pure Ti using the MAO method
and different annealing temperatures. The in vitro results suggested that the MAO-650
surface did not only support the proliferation and differentiation processes of the bone-
forming cells but also elicited a favorable osteoimmunomodulatory effect by inhibiting
the inflammatory activity of macrophages. In another study, Qiao et al. [261] deposited an
Mg-incorporated NT array (MgN) coating on the surface of Ti and the in vitro and in vivo
results showed that the newly developed coating may have endowed the surface with
immunomodulating features by eliciting an inhibitory effect on the inflammatory response
of macrophages. Unlike random roughness, various microfabrication methods have been
employed to obtain patterns with a desired shape and size on the biomaterial surface [173].
In this context, numerous studies investigated the cells’ ability to recognize specific shapes
and the results showed that the cellular response can be pattern-dependent. For instance,
McWhorther et al. [176] reported that cell morphology dictates the macrophage phenotype,
with an elongated morphology promoting a switch towards an M2 macrophage subtype
and enhanced expression of the anti-inflammatory markers. This observation was sup-
ported by another study [107] with similar results. Here, elongated macrophages seeded on
striped patterns promoted a switch towards the M2 macrophage phenotype. Furthermore,
Luu et al. [177] developed Ti substrates with 400–500-nm-wide grooves and observed that
the macrophage elongation occurred along the direction of the patterns. In addition, the
macrophages presented an anti-inflammatory gene expression tendency, with higher levels
of IL-10 secretion and decreased production of TNF-α.

With a morphological structure similar to that of natural collagen fibrils [262], electro-
spun nanofibers are regarded as potential bone regeneration constructs. Saion et al. [263]
investigated the effect of various fibrous poly (L-lactic)-acid (PLLA) scaffolds with different
alignments and fiber diameters. The results obtained suggested that the secretion of the
pro-inflammatory cytokines is dependent on the fiber diameter. Therefore, in the case of
the PLLA films, a higher level of cell infiltration and FBGC formation could be observed,
whereas the nanofibrous PLLA scaffold induced a reduced inflammatory reaction compared
to both microfibrous and simple films. However, despite the large body of information
regarding the effect of various topographical features on cell behavior, future investigations
are necessary since the role of osteoimmunomodulation is not fully comprehended.

Since the infiltration of oxygen and nutrients may determine the fate and polarization
of macrophages, the porosity and pore size of the biomaterial have been acknowledged as
another relevant surface characteristic [182,261]. Smaller pores could disrupt the nutrients
and oxygen diffusion, especially in the center of the implantable device, thus resulting in a
local hypoxic microenvironment [178]. In turn, the local hypoxic environment may enhance
the local inflammatory reaction, leading to the formation of the granulation tissue and the
complete blockage of the small pores, thereby creating a barrier between the surrounding
bone cells and the implant. This path results in impaired bone tissue regeneration and
implant failure [97]. Moreover, a proper hypoxic environment can stimulate the release
of the angiogenic growth factors necessary for the formation of new blood vessels from
the local host tissue [178]. Therefore, the surface of the biomaterials should present an
appropriate pore size capable of inducing a moderate hypoxia environment, which can
hinder the inflammatory reaction but promote the angiogenic effects. Klinge et al. [179]
reported that pores with a size range of 90–120 µm lead to chondrogenesis and reduce
the vascularization process, while larger pores with a diameter of 350 µm promote the
osteogenic and angiogenic processes. In addition to its relevance in the bone-forming cell
behavior, the pore size can influence the host immune system and its interaction with the
implantable device [264]. It was reported that by increasing the pore size, a reduction in
the activity of the FBR could be observed [179,180]. However, the underlying mechanism is
still not fully elucidated, but it has been proposed that it may be related to the polarization
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of the macrophages [181,265,266] due to the fact that a correlation between the increasing
fiber/pore size and the upregulation of the M2 markers could be observed [181]. For
instance, Garg et al. [181] reported that an increase in the pore size and porosity of a
polydioxanone scaffold led to an enhancement in M2 macrophage markers. Furthermore,
surfaces with larger pores downregulated iNOS production, in comparison to smaller
pores, which promoted a switch towards the M1 phenotype. Similarly, Chen et al. [182]
demonstrated that surfaces with pores in the size range of 100–200 nm presented cells
with a round-shaped morphology and increased expression of M2 phenotype markers.
Sussman et al. [267] used poly(2-hydroxyethyl methacrylate) (pHEMA) and poly(methyl
methacrylate) (PMMA) to evaluate the effect of the microsized pores on macrophage
polarization and the results showed that surfaces with a pore size of 34 µm promoted the
expression of M1 phenotype markers (iNOS, IL-1R1) upon host implantation.

Finally, the balance between the biomaterial porosity and the structural robustness
must be also considered in order to ensure that its strength is not compromised [268].
Importantly, increased porosity can influence macrophage function and the regenerative
microenvironment, whereas changes in the biomaterial’s structure may have a negative
impact on its mechanical strength. In the case of implantable devices designed to replace
tissues with structural functions such as bone, where the mechanical strength is absolutely
necessary, this particular aspect is extremely important. Therefore, even if the pore size of
the biomaterial can be tuned to promote a favorable switch in the macrophage polarization
state, a deeper understanding of the interaction between these immunological outcomes
and the material properties is necessary [10,269]. Moreover, the reported results are often
contradictory and difficult to correlate and compare due to the variations amongst the
surface topographies. This observation highlights the importance of using the proper cell
types for a given implant purpose to identify the optimal properties capable of promoting
the desired in vivo response.

5.1.3. Delivery of Cytokines and Biological Molecules

Beyond chemistry and topography modifications, the incorporation of different bioac-
tive molecules has been widely employed as a strategy to modulate the crosstalk between
the osteoblast and immune cells. The osteoimmune microenvironment presents various cy-
tokines and signaling factors involved in multiple signaling pathways, some of which have
not been fully elucidated. Therefore, the selective process of the bioactive molecules should
be done with caution. In order to elicit a positive inflammatory response, various active
molecules, such as inflammatory cytokines [183–185], growth factors [186] or extracellular
matrix components [187,188], have been incorporated into different biomaterials.

Due to the fact that the inflammatory response is the starting point of the healing
process, the use of pro- and anti-inflammatory molecules has been widely investigated as
an approach for the polarization of the immune cells. For example, Kara et al. [2] evaluated
the potential of a newly designed scaffold system to sequentially deliver a short release
of IFN-γ and a sustained release of IL-4 to macrophages, in order to obtain a polariza-
tion of M1 and M2 macrophage phenotypes, respectively. The results showed that the
developed scaffolds were capable of modulating both the osteoimmune microenvironment
by controlling the cytokine secretion profiles and the angiogenic behaviors. Similarly,
Spiller et al. [189] developed decellularized bone scaffolds capable of sequential cytokine
release, and the results indicated that the synergistic action of the M1 and M2 phenotypes
led to an enhancement in the osteogenic process due to the increased growth factor secre-
tion from macrophages. By immobilizing on the surface of a self-assembled monolayer
made of Cr and Au, a fusion protein of recombinant human IL-1 receptor antagonist and
elastin-like peptide (IL-1ra-ELP) prepared through the transformation of Escherichia coli,
Kim et al. [190] observed an attenuated pro-inflammatory cytokine profile favorable to the
osteogenic process. Furthermore, Li et al. [191] investigated the effect of the sequential
polarization of macrophages through the incorporation of IFN-γ into CaSiO3/β-TCP scaf-
folds implanted subcutaneously in a mice model, and the outcomes suggested that, whilst
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the pro-inflammatory molecule elicited the M1 phenotype in the short term, the continuous
release of Si ions from the scaffold determined the M2 phenotype switch. In another study,
Alhamdi et al. [192] evaluated the in vitro effect of a biomimetic CaP coating functional-
ized with simvastatin and IFN-γ and the results indicated a sequential polarization of
human monocyte line, THP-1. Recently, Croes et al. [193] have incorporated IL-17 into a
β-TCP/HA scaffold and the results showed that the construct with IL-17 included was
capable of stimulating the ingrowth of the vascularized connective tissue in a rabbit model,
therefore proving its osteogenic potential. Overall, the introduction and delivery of pro-
and anti-inflammatory cytokines into implantable biomaterials may prevent undesired
side effects and stimulate M2 phenotype polarization.

In addition, the delivery of proteins such as BMP-2 represents a widely investigated
method to stimulate the osteogenic process. Wei et al. [194] investigated the immunoregu-
latory role of a gelatin sponge functionalized with 20 mg/mL BMP-2 on the macrophage
behavior and osteogenic process. The results showed that BMP-2 delivery led to increased
macrophage recruitment and passive control of the osteogenic process through immuno-
suppression due to the reduction of M1 phenotype markers such as IL-1β, IL-6 and iNOS.
Therefore, these findings suggest that under inflammatory conditions, BMP-2 can induce
positive immunoregulatory modulation. Due to its wide range of organic molecules, such as
collagen, growth factors, enzymes and glycosaminoglycans (GAGs), capable of modulating
the cellular behaviors, the ECM has been also considered as a strategy to induce a positive
effect on the osteoimmune microenvironment [16]. For instance, Mansour et al. [195] re-
ported that by incorporating bone ECM extracts into synthetic dicalcium phosphate (DCP)
bioceramics, an increase in the interaction between the biomaterial surface and plasma
proteins could be observed in vitro. Furthermore, by coating the scaffolds with ECM
molecules enriched with non-collagenous proteins, the levels of the pro-inflammatory cy-
tokines, such as IL-1β, IL-2, TNF-α, and the number of tartrate-resistant acid phosphatase
(TRAP) positive osteoclastic cells in a rat tibia model were reduced. In another study,
Diez-Escudero et al. [187] compared the effects of biomimetic and sintered CaP scaffolds
functionalized with GAGs (ECM molecules capable of binding various growth factors) on
the immune response. The covalent functionalization of β-TCP with heparin (a member of
the GAG family) led to a reduced pro-inflammatory immune response coupled with the
enhanced osteogenic potential of MSCs when incubated with conditioned media harvested
from the macrophages grown in contact with the functionalized surfaces. However, by
functionalizing a calcium-deficient hydroxyapatite (CDHA) substrate with heparin, an
enhancement in the osteoclastic activity and function coupled with a resorptive process of
the substrate could be observed.

Finally, the incorporation of nucleic acids, such as siRNA, pDNA or microRNA, into
implantable biomaterials emerged as an attractive strategy to induce local specific cell
responses [196]. The local delivery of microRNA is especially advantageous due to the
fact that these molecules can inhibit various pathways with minimal immunogenicity.
For example, Mencia-Castano et al. [197] functionalized a collagen–nanohydroxyapatite
composite construct with a microRNA-133a inhibitor and the results showed enhanced
bone deposition in a calvaria defect in rats due to the stimulation of the CD206+ M2
macrophages’ recruitment.

Altogether, based on the bone metabolism mechanism, various osteoimmunomod-
ulatory cytokines and bioactive molecules have been incorporated into different bone
biomaterials with the purpose of modulating the macrophage polarization state and signal-
ing pathways, to regulate the osteogenic process directly and indirectly. Even though the
presented results are helpful for the achievement of a desirable osteoimmune environment,
further studies are still needed.

5.2. Immunomodulatory Biomaterials for Osteoclastogenesis

The successful implantation of an orthopedic biomaterial requires the orchestrated
activation and function of the two main types of bone cells, namely osteoblasts and osteo-
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clasts [270]. Therefore, an understanding of the mechanisms through which bone-resorptive
osteoclasts interact with the biomaterial could lead to the design of suitable implant surfaces
capable of modulating the osteoclastogenesis towards desirable results [271]. However,
the activation or deactivation of the osteoclastogenic process as an important regulator of
bone regeneration and remodeling has only been recently highlighted [13] in a series of
studies [135,141,241,271–298].

5.2.1. Modification of the Surface Chemistry

Tuning the different surface chemical characteristics of the biomaterial’s surface can
represent a strategy employed to modulate the activation and function of osteoclasts.
First of all, it was found that highly hydrophilic surfaces are capable of decreasing os-
teoclast activity and function by inhibiting macrophage adhesion and fusion into FBGCs.
Bang et al. [278] studied the effect of two different Ti surfaces (sandblasted/acid-etched and
hydrophilic sandblasted/acid-etched Ti) on osteoclastic differentiation and function. Their
results showed that the hydrophilic surface was capable of downregulating important
osteoclastic markers such as TRAP, c-FOS, osteoclast-associated immunoglobulin-like re-
ceptor (OSCAR) and NFATc1. Furthermore, ion immobilization could lead to a suppressed
osteoclastogenic process. Bose et al. [281] reported that by doping a β-TCP substrate with
Mg2+, reduced activity in the resorptive process could be observed. Similarly, studies on
RAW 264.7 macrophage cells seeded on a single TCP substrate or Mg2+-functionalized
TCP substrate demonstrated that the modified surface inhibited osteoclast differentiation
and actin ring formation. In addition, many studies have reported that one of the most
commonly used materials for bone regeneration, namely calcium phosphate ceramics,
can influence the osteoclastogenic process. This class of ceramics includes materials with
different chemical compositions and crystal phases, such as α- and β-TCP and HA [282].
However, despite their high potential as bone substitutes, the bioceramic materials present
a series of disadvantages that limit their use in the bone regeneration field. For instance,
HA is scarcely absorbed within the body, leading to a permanent stress concentration and
poor stability [283], while β-TCP possesses a high degradation rate due to its high solubility,
poor mechanical properties and insufficient osteoinductivity and osteogenicity [284]. On
this basis, in order to overcome the limitations imposed by these materials, biphasic cal-
cium phosphate bioceramics consisting of both β-TCP and HA in varying ratios have been
fabricated [271]. Wepner et al. [286] studied the effect of the newly developed electrospun
biphasic HA/β-TCP nanoscaffolds (ratio 40/60) on human osteoblasts (hFOB 1.19) and
monocytes (THP-1) and the results revealed that both cell lines showed no cytotoxic effect,
reduced apoptosis and well-differentiated osteoclast-like cells. Similarly, Yamada et al. [285]
evaluated the effect of various calcium phosphate ceramics (HA, β-TCP and HA/β-TCP
substrates with different composition ratios) on neonatal rabbit bone cells in terms of
resorptive activity. The obtained results showed that the HA/β-TCP substrate with a ratio
of 25/75 elicited the most extensive resorption activity, while the single β-TCP substrate
presented only small discontinuous resorptive lacunae and no resorptive lacunae on the
HA or HA/β-TCP (ratio 75/25) substrates. Moreover, the incorporation of silicon (Si) into
HA substrates led to higher osteoclastic activity compared to the single HA substrate [287].

Altogether, the osteoclastogenic process can be influenced by surface chemical modifi-
cations, with a downregulated osteoclastic differentiation on hydrophilic surfaces.

5.2.2. Modification of the Physical Properties

Another strategy used to modulate various cell functions is represented by surface
topography modification. Surface roughness is an important modification method used
in order to modulate processes such as osteogenesis and osteoclastogenesis and to en-
sure rapid bone integration with the implantable biomaterial. In terms of Ti implants,
various methods, such as polishing and sandblasting, have been used in a number of
studies [291,298]. Brinkmann et al. [291] studied the effects of various Ti surfaces (smooth
(TS), acid-etched (TA) and sandblasted/acid etched (SLA)) on RAW 264.7 macrophages.
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Their findings demonstrated that osteoclasts on rough surfaces (TA and SLA) showed a
similar osteoclastogenic process to those observed on natural bone tissue, whereas on the
smooth surfaces, the osteoclastogenesis was limited. Similarly, Sommer et al. [292] investi-
gated the osteoclastogenesis process on various substrates (Ti, TiAl6Mo7, CoCr28Mo6 and
FeCrNi) with sandblasted and polished surfaces and the results revealed that the number
of osteoclasts and TRAP activity were higher on the rough surfaces in comparison to the
smooth surfaces. However, the osteoclastogenic process was not significantly affected by
the various alloying compositions. Ion et al. [289] investigated the behavior of the RAW
264.7 cell line on mesoporous nanochannels generated in hot glycerol–phosphate electrolyte
on the surface of a Ti50Zr alloy. The acquired results showed that the nanochannels led
to a decrease in the proliferation rate and levels of pro-inflammatory cytokines released
into the culture media. In addition, the nanochannels supported cell adhesion but did
not permit macrophages to undergo fusion and form FBGCs. Furthermore, in a further
study [290], the same nanochannelar surface induced an inhibition of the differentiation
and maturation of osteoclasts from their precursors when treated with RANKL. Regarding
calcium phosphate ceramics, Davison et al. [241] modified the macrostructure of a biphasic
calcium phosphate substrate and evaluated its effect on the RAW 264.7 cell line. The results
showed that the substrate with a smaller surface microstructure led to the formation of
ectopic bone and multinucleated osteoclast cells in dog muscles. However, the substrates
with a larger surface architecture formed neither new bone tissue nor osteoclast-like cells.
Costa et. al. [280] deposited on PCL surfaces HA coatings with various submicrometer
and micro-scale topographical characteristics, with the purpose of investigating the ef-
fect of various roughness levels of HA on the bone-forming cells’ behavior. The results
demonstrated that the micro-rough HA coating inhibited the resorption ability of the
osteoclasts isolated from the long bones of New Zealand white rabbits, in comparison to
the smoother HA coating, which presented resorption lacunae. This inhibitory effect could
be explained by the presence of disruptions in the F-actin sealing zones observed only on
the micro-rough surfaces. Collectively, these studies suggest that nano/microscale surface
architecture could represent a major feature in osteoclastogenesis modulation. However,
future studies are needed in order to fully elucidate the exact mechanism through which
surface architecture affects the osteoclast activity and function.

5.2.3. Loading of Various Cytokines and Biological Molecules

Recently, numerous methods for surface functionalization that modulate the osteo-
clasts’ activity, especially as an osteoporosis treatment, have been employed. The immobi-
lization of alendronate, an anti-osteoporosis drug, represents one of the most commonly
studied approaches. Lee et al. [294] evaluated the in vitro and in vivo effects of gold
nanoparticles (GNPs) functionalized with alendronate on bone marrow macrophages
(BMM). The results acquired following in vitro investigation revealed that the osteoclast ac-
tivity was significantly reduced in comparison to the control group. Moreover, the in vivo
results showed enhanced bone regeneration, similar to that of the host bone. Similarly,
Boanini et al. [279] investigated the influence of alendronate-coated mesoporous glass
nanospheres on the osteoclast activity and their findings demonstrated reduced osteoclas-
togenic activity. In another study, Forte et al. [295] immobilized both alendronate and
quercetin on an HA substrate and the results revealed a reduction in the osteoclast viability
and differentiation capacity on the functionalized HA substrate, as compared to the control
group. Furthermore, Boanini et al. [279] studied the influence of a quercetin-functionalized
HA substrate on human osteoclast precursor cells, T-110, and the in vitro results suggested
that the conjugated quercetin was capable of reducing the level of secreted cytokines and
the osteoclast activity.

Electrospun fibers are promising delivery platforms due to the technique’s ability to
produce fibers with properties similar to those of the ECM, thereby allowing them to receive
various biological molecules or drugs. Ghag et al. [296] functionalized PCL electrospun
fibers with poly(vinyl phosphonic acid-co-acrylic acid) (PVPA-AA) in order to investigate
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the effects of the newly developed PCL/PVP A-AA scaffold on human osteoblast cells
(HOBs) and human osteoclast precursor cells. The results obtained demonstrated a com-
bined positive effect of the newly developed scaffold on both osteoblast and osteoclast
behavior. Therefore, favorable osteoblastic cell differentiation and maturation coupled
with an enhanced mineralization process was reported. On the other hand, the presence
of the PVPA-AA polymer led to a reduction in the number of osteoclasts due to an upreg-
ulation in the expression of OPG. Moreover, Riccitiello et al. [297] prepared electrospun
nanofibers from resveratrol (RSV), a drug used to influence the osteoclastogenic process,
and the results showed that the newly synthesized fibers suppressed the maturation of
the osteoclast precursors. In another study, Negrescu et al. [235] coated an AZ31 Mg alloy
with electrospun PCL fibers loaded with coumarin (CM) and/or ZnO NP, and the in vitro
results showed that the co-presence of the ZnO NP and CM in the coatings reduced the
differentiation and formation of mature osteoclasts.

Despite the aforementioned studies, it can be stated that the number of biologically
active molecules used for surface functionalization in terms of modulating the osteoclas-
togenesis process is quite limited. Therefore, more research has to be conducted in this
respect in order to develop biomaterials via functionalization with biomolecules exhibiting
high potential to treat bone defects.

6. Conclusions and Future Perspectives

The success of an orthopedic implant is determined by how well the biomaterial
integrates into the in vivo local bone microenvironment and is capable of modulating the
bone-healing cascade events. However, the response of the host immune system triggered
by biomaterial implantation is one of the most significant critical issues that needs to be
overcome for the development of bone implants. It is a well-known fact that the early
inflammatory state represents the first step in the natural healing process, and that the
chronic inflammatory state that appears as a response to biomaterial implantation can lead
to impaired bone regeneration and, ultimately, implant failure. It comes not as a surprise
that novel biomaterials that exhibit excellent biocompatibility and are capable of sustaining
cell viability are also highly immunogenic, being capable of eliciting an inflammatory reac-
tion. The traditional implant-designing methods are focused on developing biocompatible
biomaterials capable of suppressing the FBR and, implicitly, the excessive inflammation
and fibrous tissue encapsulation of the implant. However, in recent years, a more in-depth
understanding of the bone biology and the influence of the immune system on the function
of the bone-forming cells led to a new direction in research and the emergence of a new
field called “osteoimmunology”. It was found that immune cells participate actively in
bone dynamics, both under physiological and pathological conditions, through the release
of various regulatory molecules such as cytokines, transcription factors, growth factors and
signaling molecules. Therefore, given the importance of the immune system cells in bone
dynamics, a shift in the paradigm of the nature of biomaterials has been considered. In
consequence, the design methods do not focus on fabricating only “inert” (e.g., biocompat-
ible) biomaterials but also “immunomodulatory” implants, able to induce and modulate
a favorable immune response rather than suppressing it. The type of immune response
elicited by the host is dictated by the properties of the biomaterial, which can be modified
in order to obtain different features capable of influencing the protein adsorption and
signaling factors’ binding. Numerous studies have reported different surface modification
strategies, such as chemical and physical alteration and functionalization with biological
molecules. The chemical tuning of the biomaterial surface with various functional groups,
surface charges or modifications to improve the physical properties, such as topography
and stiffness, can be effectively employed to regulate the functions of the immune and
bone-forming cells. Moreover, the incorporation of various biological molecules can also be
used as an approach to modulate the immune functions and bone metabolism. Likewise, a
significant number of studies have suggested the important role of macrophage phenotype
modulation, an approach which has been widely employed even though the exact mecha-
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nism is still unclear, and it requires further investigation. It is well known that both the
inflammatory reaction and the wound healing process are intimately connected to changes
in the redox balance, and even though, at low concentrations, oxidative stress exhibits
various physiological roles, an upregulation of ROS production and persistence over a
long period of time can prove to be harmful to the host. Moreover, low concentrations of
ROS can positively modulate the macrophage polarization state towards an M2 phenotype,
while a negative effect on the phenotype switch has been observed in different studies
when ROS production has been inhibited. In order to stimulate new bone formation and
modulate the immune response induced by ROS production, various natural antioxidants,
such as quercetin, resveratrol, curcumin, etc., have been included in different biomateri-
als/scaffolds with positive results. In addition, compared to macrophages, information
about the role and potential of other immune cells, such as dendritic cells or T cells, in the
bone remodeling process is limited in the current literature. Another pressing matter is
represented by the limited number of studies regarding the influence of the biomaterials on
osteoclast activity and function. The existing literature suggests that the osteoclastogenic
process is modulated by regulatory molecules secreted by the immune cells and osteoblasts.
However, the majority of studies have reflected the in vitro situation, with only a few
studies approaching the in vivo biomaterial-mediated osteoclastogenesis.

Despite the enormous progress that has been made in the field of osteoimmunomodu-
latory biomaterials for bone regeneration, the need for further studies that can clarify the
exact interplay between immune and bone-forming cells and help to develop functional
biomaterials capable of inducing a proper material–host response is compelling.
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