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Abstract: The purpose of this paper is to determine the random spatially varying elastic properties
of concrete at various scales taking into account its highly heterogeneous microstructure. The re-
construction of concrete microstructure is based on computed tomography (CT) images of a cubic
concrete specimen. The variability of the local volume fraction of the constituents (pores, cement
paste and aggregates) is quantified and mesoscale random fields of the elasticity tensor are computed
from a number of statistical volume elements obtained by applying the moving window method on
the specimen along with computational homogenization. Based on the statistical characteristics of
the mesoscale random fields, it is possible to assess the effect of randomness in microstructure on the
mechanical behavior of concrete.

Keywords: concrete; CT images; reconstruction; 3D FE models; homogenization; mesoscale ran-
dom fields

1. Introduction

The macroscopic mechanical properties of heterogeneous materials consisting of multi-
ple phases such as particle-reinforced composites and concrete are significantly influenced
by their underlying microstructure and can be determined through numerical homog-
enization. The application of homogenization methods in the analysis of multi-phase
materials offers an efficient alternative over direct simulation of the microstructure in terms
of required computational resources. The key issue in homogenization methods is the
linking of micromechanical characteristics with the random variation of material properties
at higher scales, which is usually established using Hill’s macro-homogeneity condition [1].
In this framework, it is necessary to identify a representative volume element (RVE) usually
through computational convergence schemes with respect to specific apparent proper-
ties [2]. In contrast to the RVE, which is characterized by deterministic material properties,
the spatial variation of the elasticity tensor at lower scales is quantified by random fields
computed on mesoscale models—statistical volume elements (SVEs) [3,4].

The highly heterogeneous microstructure of concrete is responsible for its complex
mechanical behavior. Therefore a wide variety of methods have been developed for the
accurate reconstruction of concrete microstructure mostly based on image processing and
random fields. The geometrical characteristics of aggregates are statistically analyzed in [5]
by processing 2D images of concrete obtained from X-ray computed tomography (CT).
A recent review on the use of micro-CT images to investigate the relation between mi-
crostructural features and properties of cement-based materials is provided in [6] showing
the important role of threshold determination on phase identification. Two non-Gaussian
random field models are developed in [7] for simulating the geometry of star-like inclusions
in heterogeneous materials. For illustration, the models are calibrated to the geometrical
features of a population of aggregates used in concrete. Huang and Peng [8] present a mul-
tiscale computational framework for generating concrete microstructures by concurrently
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coupling stationary Gaussian and fractional Brownian random fields, used to simulate
coarse and fine aggregates, respectively.

The mechanical properties of concrete are determined using computational homoge-
nization in a number of publications. Constantinides and Ulm [9] confirm the existence
of two types of calcium-silicate-hydrate (C-S-H) in cement-based materials, and examine
the effect of the two phases on the Young’s modulus and Poisson ratio of this kind of
material by means of nanoindentation tests. The effective properties of cement pastes
are computed using a homogenization model based on the elastic properties and volume
fractions of the two phases. Wriggers and Moftah [10] generate 3D concrete microstructures
taking into consideration the random aggregate morphology at the mesoscale. Then the
finite element (FE) method is used for the homogenization of concrete. In [11], 2D and
3D homogenization and fracture analysis of concrete are performed based on micro-CT
images and Monte Carlo simulation. Tal and Fish [12] determine a realistic RVE of con-
crete, which represents its random microstructure. A probabilistic upscaling procedure
for modeling the mesoscale elastic properties of concrete at the level of SVE is provided
by Dubey and Noshadravan [13]. To the authors’ knowledge, the random spatial variabil-
ity of the mechanical properties of concrete at various scales has not been thoroughly
investigated yet.

The purpose of the present paper is to provide a complete probabilistic description
of the spatial variation of the elastic properties of concrete taking into account its highly
heterogeneous microstructure, which is reconstructed using CT images of a cubic concrete
specimen. The variability of local volume fraction of the constituents (pores, cement paste
and aggregates) is quantified first. Mesoscale random fields of the elasticity tensor are
computed subsequently from a number of SVEs obtained by applying the moving window
method on the concrete specimen along with computational homogenization. Based on the
statistical features (empirical distribution and correlation functions) of the random fields, it
is possible to assess the effect of randomness in microstructure on the mechanical behavior
of concrete.

The paper is organized as follows: In Section 2, the process of reconstructing concrete
microstructure based on CT images is described. Section 3 presents the framework of
computational homogenization used to determine the random spatially varying apparent
elasticity tensor of 3D concrete microstructures. The numerical results obtained using the
proposed approach are discussed in the next section followed by some concluding remarks
in Section 5.

2. Reconstruction of Concrete Microstructure Based on CT Images
2.1. CT Images

Computed Tomography (CT) has its origins in the medical field and refers to a com-
puterized X-ray imaging procedure in which a patient is struck by a narrow X-ray beam
that rotates at a certain speed around the patient’s body. While the CT procedure has been
applied mainly for medical purposes, the gradual increase in available CT equipment and
the improvement of the cost factors have led to other utilizations, such as the exploration of
the microstructure of heterogeneous materials [14]. When the X-ray beam passes through a
sample, some of the X-ray radiation is absorbed and scattered, while the rest penetrates
through the sample, as shown in Figure 1.

The absorbed or scattered radiation of a material can be measured in Hounsfield
units (HU). HU is a quantitative scale that reflects the linear transformation of the original
linear attenuation coefficient measurement (µ) so as the radiodensity of distilled water at
standard pressure and temperature is defined as zero HU, while the radiodensity of air, at
the same conditions, is defined as −1000 HU. The linear transformation used to convert
the attenuation values µ to HU values on each pixel of the CT image is as follows:

HU = µ× slope + intercept (1)
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where the values of the rescale slope and intercept parameter are specific to the CT scanner
system used [15,16]. Their values can be obtained from the extracted DICOM (Digital
Imaging and Communications in Medicine) files.

Figure 1. Intensity Distribution of an X-ray array.

2.2. Reconstruction of Concrete Microstructure

The reconstruction of concrete microstructure is based on data obtained from the
CT scan. The specimen is cut in 2D slices (images) with their corresponding resolution
(Figure 2). Each pixel carries, beside its geometric properties, the attenuation value µ
that is converted to the respective HU value using Equation (1). Then, by utilizing voxels
(the generalization of pixels on a regularly spaced, three-dimensional grid), the voxel-based
FE method is employed. Using the moving window technique [17], random mesoscale
models or SVEs are created, which are discretized by a structured FE mesh based on
voxels geometry.

Figure 2. A 2D computed tomography (CT) image of concrete.

In this work, the medical CT scan was conducted at the laboratory of Magnitiki
Patron S.A. [18], which has provided all the DICOM data for the reconstruction of concrete
microstructure. The equipment used was a LightSpeed VCT of GE Medical Systems
Hellas (Athens, Greece) with peak potential and current applied to the X-ray tube equal to
140 kV and 180 mA, respectively. The axial resolution of the scan was fixed at 0.625 mm
resulting in 211 total slices, while the pixel resolution of the 2D image in each slice plane is
0.4883× 0.4883 mm2, resulting in 281× 281 pixels. Note that the dimensions of the scanned
cubic concrete specimen was approximately 136.724 × 136.724 × 131.25 mm3. For the
visualization of the image data the RadiAnt DICOM viewer software [19] has been used.
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3. Computational Homogenization

A fundamental assumption in the homogenization process is the statistical homo-
geneity of the heterogeneous medium [20]. This means that, at any material point of the
medium all statistical properties of the state variables are the same and thus identification
of the RVE is possible. In case of composites with periodic or nearly periodic geometry, the
RVE is explicitly defined [21] whereas in case of spatial randomness, the RVE needs to be
determined using computational methods [3,22–27].

A basic principle for the existence of the RVE is separation of scales as defined be-
low [1]:

d� L� Lmacro (2)

where the microscale parameter d denotes a characteristic size of the fillers, e.g., the average
dimension of aggregates, the mesoscale parameter L denotes the size of the volume element
and the macroscale parameter Lmacro denotes the characteristic length over which the
macroscopic loading varies in space. Note that, in the case of complete scale separation,
Lmacro denotes the size of the macroscopic homogeneous medium.

The statistical characteristics of the apparent elasticity tensor of concrete are computed
by analyzing a set of random mesoscale models or SVEs. These are obtained by applying
the moving window technique on a cubic concrete specimen reconstructed based on a set
of 2D CT images (see Section 2). Figure 3 depicts the cubic concrete specimen segmented
into a large number of non-overlapping SVEs along with a detail of the voxel based FE
mesh of a specific SVE. Each SVE model is characterized by the scale factor δ = L/d,
which is a non-dimensional parameter with δ ∈ [1, ∞]. The length scale of the SVE is
always smaller than the one of the corresponding RVE. For each positioning of the moving
window, the apparent material properties are computed through homogenization. The
obtained mesoscale properties and corresponding window centres are used to form the
related random field model, as shown in Section 4.

Figure 3. (a) Schematic of 3D moving window technique on a cubic concrete specimen reconstructed
using 2D CT images, (b) Detail of the voxel based finite element (FE) mesh of a specific statistical
volume element (SVE) model of dimensions Lx × Ly × Lz.
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3.1. Computation of the Random Apparent Elasticity Tensor of 3D Concrete Microstructures

The stress and strain fields on a mesoscale realization of concrete Bδ(ω) can be writ-
ten as:

σ(ω, x) = σ̄ + σ′(ω, x) , ε(ω, x) = ε̄ + ε′(ω, x) (3)

where σ′ and ε′ are the zero-mean fluctuations and σ̄ and ε̄ are the means of the stress and
strain tensors. At some point X of the macro-continuum the above means can be computed
as volume averages over Bδ(ω) [1]:

σ̄(ω, X) =
1

Vδ

∫
Bδ(ω)

σ(ω, x)dVδ, ε̄(ω, X) =
1

Vδ

∫
Bδ(ω)

ε(ω, x)dVδ (4)

where Vδ =
∫

Bδ(ω)

dVδ and ω denotes randomness of a quantity.

Moreover, the strain energy can be calculated as:

Ū =
1

2Vδ

∫
Bδ(ω)

σ(ω, x) : ε(ω, x)dVδ =
1
2

σ : ε =
1
2

σ̄ : ε̄ +
1
2

σ′ : ε′ (5)

It is noted that for an unbounded space domain the fluctuation terms in Equation (5)
become too small and thus they can be neglected according to Hill’s condition:

σ : ε = σ̄ : ε̄ (6)

Hill’s condition is also valid for a finite size of the domain, provided that the following
constraint is satisfied [28]: ∫

∂Bδ

(t− σ̄ · n) · (u− ε̄ · x)dS = 0 (7)

where t, u are the traction and displacement vectors, respectively, and n is the unit nor-
mal vector on surface dS. Equation (7) is satisfied by appropriate boundary conditions
(e.g., uniform kinematic or static, orthogonal-mixed and periodic). In this study, computa-
tional homogenization is performed by applying uniform kinematic boundary conditions
on the SVEs (see Miehe and Koch [29]).

In general the 3D elasticity tensor C̄, which is of the 4th order, consists of 34 = 81
components. These are reduced to 21 independent components due to symmetries in stress
and strain tensors. Thus, the macroscopic linear constitutive relation for an anisotropic
material is as follows:

σ̄ = C̄ε̄⇒



σ̄11
σ̄22
σ̄33
σ̄12
σ̄23
σ̄31

 =



C̄1111 sym
C̄2211 C̄2222
C̄3311 C̄3322 C̄3333
C̄1211 C̄1222 C̄1233 C̄1212
C̄2311 C̄2322 C̄2333 C̄2312 C̄2323
C̄3111 C̄3122 C̄3133 C̄3112 C̄3123 C̄3131





ε̄11
ε̄22
ε̄33
ε̄12
ε̄23
ε̄31

 (8)

The unknown macroscopic elasticity components C̄ijkl , with i, j, k, l = 1, 2, 3, are equal
to the macroscopic stresses σ̄ij, which are derived by the solution of six independent kine-
matic uniform boundary value problems (BVPs). In each BVP the displacement boundary
conditions are obtained by a prescribed uniform unit strain tensor as shown below:
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ε̄ =





ε̄11 = 1
0
0
0
0
0

,



0
ε̄22 = 1

0
0
0
0

,



0
0

ε̄33 = 1
0
0
0

,



0
0
0

ε̄12 = 1
0
0

,



0
0
0
0

ε̄23 = 1
0

,



0
0
0
0
0

ε̄31 = 1




(9)

The imposed displacements on the boundary nodes of each SVE are calculated through
the prescribed uniform strain tensor using the following equation:

ub = DT
b ε̄ (10)

where the geometric matrix Db is calculated for a boundary node b based on its coordinates:

Db =
1
2



2xb 0 0
0 2yb 0
0 0 2zb
yb xb 0
0 zb yb
zb 0 xb

 with (xb, yb, zb) ∈ x (11)

The BVP which has to be solved is as follows:[
Kii Kib
Kbi Kbb

][
ui
ub

]
=

[
f i
f b

]
(12)

where the stiffness matrix K of the FE model is rearranged into four sub-matrices associated
with interior nodes i and boundary nodes b. The macroscopic stress tensor is then calculated
as a volume average by:

σ̄ =
1
V
D f b (13)

where f b = Kbbub + Kbiui is the vector containing the computed reaction forces on the
boundary nodes, ui = K−1

ii ( f i − Kibub) is the vector containing the calculated displace-
ments of the interior nodes and D =

[
D1 D2 ... Dnb

]
with nb the total number of boundary

nodes b.

4. Numerical Results and Discussion

In this section, numerical results concerning the determination of the random fields,
the empirical distributions and the 3D spatial correlations of the components of the ho-
mogenized elasticity tensor of the 3D concrete specimen are presented for various scale
factors δ examined. As shown in Figure 3, the size of each SVE corresponds to that of the
selected 3D window in the moving window technique. Moreover, the moving window
step in each direction has been selected equal to the size of the examined window so as
non-overlapping SVEs are extracted. In the following parametric study the examined
mesoscale sizes δi with i = 1, 2, 3, 4, correspond to different window sizes and thus different
total numbers of SVEs (see Table 1).

Table 1. Size of window and total number of SVEs corresponding to each δi examined.

δi Lx × Ly × Lz (mm3) No. SVEs

δ1 4.88× 4.88× 6.25 16,464
δ2 9.77× 9.77× 8.75 2940
δ3 19.53× 19.53× 18.75 343
δ4 27.34× 27.34× 26.25 125

In the context of FE simulation, the discretization of the SVEs into hexahedral solid
elements is based on the voxels which are used to reconstruct the 3D geometry of the
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concrete specimen. Information about the pixels (e.g., location, spacing, attenuation values
µ) and the slices (e.g., position, thickness) needed in order to construct the voxels and also
to identify the constituent materials is included in the DICOM files provided by the CT
scan system. In order to reduce the required computational cost, each hexahedral solid
element in the FE mesh of the SVEs corresponds to 2× 2× 2 voxels. The material assigned
to each integration point of an element depends on the HU value of the integration point
which is calculated by interpolating the nodal HU values using the shape functions of
the element.

Figure 4 depicts the histogram (empirical distribution) of the Hounsfield units (HU)
calculated by Equation (1) with rescale slope and rescale intercept equal to 1 and −1024,
respectively, for the CT equipment used. From this figure, the constituent materials (pores,
cement and aggregates) can be distinguished by defining specific ranges for their HU
values. Based on the observed peaks of the histogram and after careful processing of the
CT images using RadiAnt DICOM viewer, the HU range can be selected as [−960, 800]
for pores, [800, 2000] for cement and [2000, 2974] for aggregates. Figure 4 depicts also a
gray scale colorbar related to the HU values of the constituent materials of concrete. The
illustration of concrete specimen in Figure 3 is based on this color range.

Figure 4. Empirical distribution of Hounsfield unit (HU) values derived from all CT images followed
by the range of HU for concrete constituent materials.

Based on the aforementioned HU ranges, the local volume fraction (vf) variability
of the constituents of concrete can be studied next. Figure 5 illustrates the computed 3D
random fields along with the respective empirical distributions of the volume fraction of
the constituent materials for δ1. The dispersion of aggregates within cement paste is not
uniform and also, some air was trapped inside the paste during the mixture process. These
facts are evident in Figure 5, where regions of material rich or poor in aggregates and pores
can be observed. The mean vf of the constituents in the concrete specimen is 0.5% pores,
72.3% cement and 27.2% aggregates. For visualization purposes, Figures 5–7 provide 2D
contour plots of the random fields corresponding to the three orthogonal planes (XY, YZ
and ZX) intersected at the center point of the cubic concrete specimen.
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Figure 5. Random fields and histograms of volume fraction (vf) of concrete constituents for δ1.

Figures 6 and 7 illustrate the computed random fields and the empirical distributions
of the apparent C̄11 (axial) and C̄44 (shear) stiffness with respect to δi (see Equation (8) with
correspondence of subscripts: 1→ 11 and 4→ 12). These results have been obtained by
implementing the homogenization method presented in Section 3 in each mesoscale size
δi. The constituent materials of concrete are considered linear elastic. Specifically, their
Young’s modulus and Poisson ratio [E, v] are assumed as [20 GPa, 0.2] for cement and
[100 GPa, 0.2] for aggregates. Note that pores can be modeled by setting their Young’s
modulus equal to 0.2 GPa (1% of the Young’s modulus of cement) and Poisson ratio equal
to 0.45 (almost incompressible material). From Figures 6 and 7, it can be observed that
random fields become less variable and histograms narrow as the scale factor δ increases.
Specifically, the coefficient of variation (COV) reduces from 63% to 17% for both C̄11 and
C̄44 as δ increases. However, it is deduced that morphological uncertainty can lead to
significant random spatial variation of the mechanical properties of concrete.

Figure 6. Random fields and histograms of C̄11.
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Figure 7. Random fields and histograms of C̄44.

Figures 8–10 depict the 3D spatial correlations of ρ̂C̄11
C̄11

, ρ̂C̄44
C̄11

and ρ̂
vfaggr

C̄11
, respectively, for

increasing mesoscale size δi. For visualization purposes, the aforementioned figures depict
the spatial correlation values corresponding to the three orthogonal planes (XY, YZ and
ZX) intersected at the center point of the cubic concrete specimen. The estimates of the
spatial correlation functions ρ̂B

A have been calculated for every lag
(
ξx, ξy, ξz

)
according

to the following formula:

ρ̂B
A
(
ξx, ξy, ξz

)
=

1
n− 1

nwx

∑
i=0

nwy

∑
j=0

nwz

∑
k=0A

(
xi, yj, zk

)
− µ̂A

σ̂A

B
(

xi + ξx, yj + ξy, zk + ξz

)
− µ̂B

σ̂B


−nwx∆ξx ≤ ξx ≤ nwx∆ξx , −nwy∆ξy ≤ ξy ≤ nwy∆ξy , −nwz∆ξz ≤ ξz ≤ nwz∆ξz

(14)

with ρ̂B
A denoting auto-correlations when A ≡ B, otherwise cross-correlations are defined.

µ̂A, µ̂B are the sample mean values while σ̂A, σ̂B are the sample standard deviations of
quantities A, B, respectively. The total number of SVEs is n = nwxṅwyṅwz. It can be
observed that the correlation length of all mesoscale random fields increases as the scale
factor δ increases. In other words, the random fields become fully correlated for large
δ [30]. The auto-correlations for lag

(
ξx = 0, ξy = 0, ξz = 0

)
are 1 and tend to zero for lag

values |ξx| > Lx, |ξy| > Ly and |ξz| > Lz. The cross-correlations have similar behavior
with maximum value at zero lag less than 1. This can be attributed to the fact that the
probability of SVEs to share common aggregates is decreased as the length of the vector
~ξp = [ξx, ξy, ξz] is increased.
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Figure 8. Auto-correlation function of C̄11.

Figure 9. Cross-correlation function between C̄11 and C̄44.

Figure 10. Cross-correlation function between C̄11 and vf of aggregates.

Figure 11 presents scatter plots of elasticity components C̄11, C̄21, C̄31, C̄44 and vf
of aggregates corresponding to data obtained in δ3. These plots show that there is a
strong positive correlation among all elasticity components and also between the elasticity
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components and the vf of aggregates, which verifies the fact that morphological uncertainty
in the microstructure of concrete can affect significantly its homogenized properties.

Figure 11. Scatter plots of elasticity components C̄11, C̄21, C̄31, C̄44 and vf of aggregates for δ3

(correspondence of subscripts: 1→ 11, 2→ 22, 3→ 33, 4→ 12).

5. Conclusions

• In this paper, the random spatially varying apparent elasticity tensor of 3D concrete
microstructures has been computed using CT images of a cubic specimen for the
reconstruction of concrete microstructure and computational homogenization.

• A complete probabilistic description of the spatial variation of the elastic properties of
concrete has been achieved through computation of the respective mesoscale random
fields. In this way, it was possible to assess the effect of randomness in microstruc-
ture on the mechanical behavior of concrete based on the statistical characteristics
(empirical distribution and correlation functions) of the random fields.

• A moderate to large variability of the local volume fraction of the constituents (pores,
cement paste and aggregates) has been observed depending on the scale factor
δ considered.

• This was reflected on the moderate to high COV of the apparent axial and shear
stiffness, meaning that microstructural uncertainty can lead to substantial random
spatial variation of the mechanical properties of concrete.

• The computed random material property fields can be used for the stochastic FE
analysis of concrete structures.

• The consideration of the interfacial transition zone (ITZ) between cement paste and
aggregates and the determination of random fracture properties could constitute the
subject of future research.
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